355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Леонид Гальперштейн » Здравствуй, физика! » Текст книги (страница 3)
Здравствуй, физика!
  • Текст добавлен: 19 мая 2017, 00:30

Текст книги "Здравствуй, физика!"


Автор книги: Леонид Гальперштейн



сообщить о нарушении

Текущая страница: 3 (всего у книги 14 страниц)

Вода не выливается из бутылки

Если налить воду в бутылку с широким горлышком, скажем в молочную, и бутылку, перевернуть вверх дном, что произойдет?

Тут и опыта никакого не надо: вода выльется, и очень быстро!

Ну, а нельзя ли все-таки перевернуть бутылку так, чтобы вода из открытого горлышка не выливалась?

Давай попробуем. Только не в комнате, выйдем лучше во двор. Для нашего опыта нужно много места. Ведь мы не просто станем переворачивать бутылку, а поставим ее в хозяйственную сетку, с которой ходят за покупками.

Постепенно раскачай бутылку в сетке и – раз! Бутылка делает полный оборот… второй… третий… десятый… И каждый раз она переворачивается дном вверх, а горлышком книзу. Но ни одна капля воды не выливается! Почему? Что произошло с водой? Может быть, тут виновато вращение?

Вода выливается вверх

Теперь вместо бутылки возьми пустую консервную банку. В ней легко пробивать дырки гвоздем. И если у, тебя нет подходящей сетки, можешь пробить две дырки у верхнего края банки, пропустить в них концы веревки и завязать толстыми узлами, чтобы не вырвались. А за середину веревки вертеть. Можешь для проверки повторить предыдущий опыт с этой банкой, налив ее примерно на две трети. Вода и здесь не будет выливаться при вращении.

Ну, а теперь пробей в дне банки маленькую дырочку. Пробил? Наливай воды и раскручивай. Оборот… два… три… Из дырочки в дне бьет струя воды. Бьет вниз – это понятно. Бьет вбок… Это уже странно. Бьет вверх! Прямо вверх, каждый раз, как банка окажется наверху!

Отчего же так странно ведет себя вода в этой вращающейся по кругу банке? Почему из настежь открытой верхней части не выливается ни капли, а из маленькой дырочки в дне бьет фонтан?

Ты, верно, уже понимаешь, что все дело именно во вращении. Ведь из неподвижной банки вода вверх не бьет ни через верхнюю часть, ни через дырочку. А как только ты начинаешь банку раскручивать, вода словно стремится убежать от центра, вокруг которого происходит вращение.

Бежит от центра… Силу, которая отбрасывает вращающееся тело от центра вращения, назвали центробежной.

Но назвать, даже и самым удачным словечком, – это еще мало. Главное – понять, в чем дело.

Когда банка движется, вода движется вместе с ней. Движется по инерции. Но ты, конечно, уже заметил, что тела, движущиеся по инерции, сами по себе не сворачивают в сторону. Вратарю, например, пришлось потрудиться, чтобы мяч отклонился. Веревка, которая удерживает банку, порядком тянет твою руку. Тянет вниз, когда банка внизу, это понятно. Но вот когда банка вверху– и тяга тоже вверх!

Банка стремится лететь прямо, лететь по инерции. А веревка не пускает, заворачивает по кругу. Банка сопротивляется, натягивает веревку.

Вода в банке тоже стремится двигаться по инерции, прямо. Но банка (или бутылка) не пускает, заворачивает по кругу. Вода сопротивляется, давит на дно. И если в дне дырочка, из нее бьет фонтан!

Значит, центробежная сила тоже происходит от инерции!

Зонтик и сепаратор

Раскрой зонтик, упри его концом в пол и раскрути. Внутрь зонтика брось мячик. Пусть покатается на карусели!

Но мячик не хочет кататься. Он ползет вверх, к краю зонтика. При сильном вращении он вылетает на пол и далеко откатывается в сторону. Ты уже знаешь почему. На мячик действует центробежная сила.

Интересно, что на этом же явлении основано действие сепаратора для молока. Латинское слово «сепаратор» означает «отделитель». И он действительно очень хорошо отделяет от молока жирные сливки.

Ты, конечно, знаешь, что в молоке есть жир. Он не смешивается с водянистой частью молока, он плавает в ней в виде крошечных капелек, которые можно увидеть только в микроскоп. Если дать молоку спокойно постоять несколько часов, более легкие капельки жира постепенно всплывут и соберутся в верхней части посуды. Если из этой верхней части жидкость слить, получим уже не молоко, а сливки. В них больше жира, чем в молоке. А внизу останется молоко тощее, или обрат.

Но на больших молочно-товарных фермах и на молочных заводах нужно перерабатывать слишком много молока. Некогда ждать, пока сливки сами отстоятся. Вот тут и нужен сепаратор. Это сосуд, который вращается очень быстро. Сосуд похож на бочонок. Под действием центробежной силы молоко отбрасывается к его стенкам. Вспомни, как в опыте с вращающейся консервной банкой струйка воды била вбок!

Вода – тяжелая часть молока. Поэтому она прижимается к стенкам сильнее, чем более легкий жир. Вода выжимает, вытесняет жир к середине бочонка. И там, в середине, собираются сливки, а на окружности – обрат.

Сепаратор устроен так, что молоко можно все время подливать, не останавливая вращения. А сливки и обрат все время вытекают по особым трубкам. Сливок получается меньше, их желтоватая струйка гораздо тоньше на вид. А голубоватый обрат льется толстой струей.

Есть еще большие сепараторы, в которых делают сливочное масло. Из них уходит только обрат, а сливки не сливают. Они вращаются в сепараторе до тех пор, пока все крошечные жиринки не слипнутся в один сплошной масляный ком!

Только тогда заканчивается работа центробежной силы. Готовое масло вынимают из сепаратора, промывают и прессуют.

Легче на поворотах!

Когда вагон или автомобиль делает поворот, тебя что-то толкает к наружной стенке. Ты уже знаешь, чьи это шутки. Здесь работает центробежная сила, сила инерции, которая заставляет двигаться дальше прямо.

Но ведь сила инерции действует и на весь вагон, на весь автомобиль. Значит, она и его стремится свалить наружу? Да, стремится. Вот почему автомобиль на повороте обычно сбавляет скорость. Как бы не перевернуться! А на трамвайных линиях и железных дорогах в местах поворотов наружный рельс укладывают выше внутреннего. И вагон на повороте слегка наклоняется внутрь. Выходит, что вагон, покосившийся набок, здесь устойчивее, чем стоящий прямо!

Да ты и сам, катаясь на велосипеде, при поворотах наклоняешься внутрь. Ты делаешь это бессознательно, не задумываясь о силе инерции. Иначе просто не получается, иначе ты опрокинешься наружу!

Шоссейные дороги обычно на поворотах делают наклонными. Наружный край выше внутреннего, чтобы автомобили не переворачивались.

На треках для велосипедных и мотоциклетных гонок наклон пути на поворотах особенно заметен. Там ведь скорость движения очень велика. А в цирке иногда можно видеть даже такой аттракцион: мотогонки по вертикальной стене. Трек устроен вроде стенок барабана. Мотоциклисты сначала разгоняются на земле, в середине, описывают круги все быстрее и быстрее, наклоняются все больше и больше… И вот они уже въезжают на стенку, и мчатся по ней, лежа в воздухе горизонтально!

Этот аттракцион не каждому удастся увидеть, потому что показывают его не так часто. Зато каждый может сделать похожий опыт с колечком, катящимся в миске. Возьми миску в руки, поставь на дно колечко и начинай потихоньку покачивать миску так, чтобы колечко покатилось по кругу.

Быстрее, быстрее, и вот уже колечко, заметно наклонившись внутрь, бежит по стенкам миски. А если движение замедлится, колечко станет описывать все меньшие круги.

Хорошо напрактиковавшись с колечком, можешь попробовать проделать такой же опыт с монетой.

Кстати сказать, при очень быстром движении монета или колечко могут и вовсе выкатиться из миски. Беда здесь невелика. Но на гоночных треках тоже иногда бывает, что неосторожный водитель вылетает через край вместе со своей машиной. Вот это уже большое несчастье.

Глава шестая. ПОЧЕМУ ЛЕТИТ РАКЕТА!

Почему летит ракета?

Почему плывет лодка? Потому, что гребец работает веслами. Весла загребают воду и толкают лодку вперед. Почему летит птица? Потому, что она крыльями машет. Крылья, словно весла, загребают воздух и толкают птицу вперед. Почему летит самолет? Потому, что у него двигатель работает и вращает воздушный винт. Винт врезается в воздух, словно шуруп в доску, и тянет самолет вперед.

Если нет доски, шуруп можно вертеть сколько угодно. Он вперед не пойдет. Если нет воздуха, воздушный винт тоже можно вертеть сколько угодно. Он тоже вперед не пойдет. И сам не пойдет, и самолет за собой не потянет. Значит, самолет может летать только там, где есть воздух.

А вот на Луну самолет не полетит. Только поднимется повыше, а там уже воздуха совсем мало. Дальше и вовсе безвоздушное пространство начинается. Как же там летать?

На Луну может долететь только ракета. Ей воздух не нужен, она сама себя толкает. У ракеты двигатель особый. В нем сгорает топливо и получается много горячих газов. А в дне у ракеты дырка. Называется сопло. Из этого сопла газы вырываются сильной струей.

Это от них за ракетой словно огненный хвост остается. Струя бьет назад – ракета летит вперед. Непонятно? Давай сделаем опыт.

Нет, на Луну мы с тобой пока не полетим. И ракет пускать не будем. Мы всего-навсего сделаем водяную карусель из консервной банки. Все равно материалов для космической ракеты нам не достать. А пустая консервная банка всегда найдется. И инструменты нужны самые простые – молоток да небольшой гвоздь.

В боковой стенке банки, у самого дна, пробей гвоздем дырку. Потом, оставив гвоздь в дырке, отогни его в сторону. Нужно, чтобы дырка получилась косая и струя из нее била вбок.

На другой стороне банки этим же гвоздем пробей вторую дырку, как раз напротив первой. И тоже отогни гвоздь в сторону, чтобы дырка была косая. Только посмотри сначала, в какую сторону отгибать. Если ты в первый раз влево отгибал, то и теперь отогни влево. Так и на картинке у нас нарисовано.

В верхней части банки пробей еще две дырки, тоже одну против другой. Только здесь гвоздь отгибать не надо. Эти дырки могут быть прямые.

В верхние дырки продень концы длинной нитки и завяжи их. Вот и готов прибор для наших опытов. Захвати с собой ведерко воды и ступай во двор.

Наполни банку водой и подними ее за нитку. Вода польется из нижних отверстий двумя косыми струйками. Конечно, эти струйки куда слабее, чем струя пламени, бьющая из сопла ракеты. Но и они окажут свое действие. Струйки бьют в одну сторону – банка закрутится в другую.

От этих опытов на дворе образуется лужа. И сам ты, наверное, тоже намокнешь. Ну да ничего! Зато теперь ты знаешь, почему летит ракета!

Бумажная рыбка

Вырежь из плотной бумаги рыбку. На нашем рисунке она показана в натуральную величину. В середине у рыбки круглое отверстие А, которое соединено с хвостом узким каналом АБ. Налей в таз воды и положи рыбку на воду так, чтобы нижняя сторона ее вся была смочена, а верхняя осталась совершенно сухой.

Это удобно сделать с помощью вилки. Положив рыбку на вилку, осторожно опусти ее на воду. Рыбка поплывет, а вилку утопи поглубже и вытащи.

Теперь нужно капнуть в отверстие А большую каплю масла. Лучше всего воспользоваться для этого масленкой от велосипеда или швейной машины. Если масленки нет, можно набрать машинного или растительного масла в пипетку. Но пипетку потом трудно будет отмыть. Очень удобно капать с помощью соломинки. Обрезок соломинки, не имеющий «суставов», опусти одним концом в масло на 2–3 мм. Потом верхний конец прикрой пальцем и перенеси соломинку к рыбке. Держа нижний конец точно над отверстием А, отпусти палец. Масло вытечет прямо в отверстие.

Стремясь распространиться по поверхности воды, масло потечет по каналу АБ. Растекаться в другие стороны ему не даст рыбка. Как ты думаешь, что сделает рыбка под действием масла, вытекающего назад?

Ясно: она поплывет вперед!

Вертящаяся спираль

Из очень тонкой проволоки сверни небольшую спираль, слегка смажь ее маслом и положи на воду с помощью вилки. Потом набери несколько капель мыльного раствора в пипетку или же в соломинку, как в предыдущем опыте.

Урони капельку раствора в центр спирали. Сейчас же спираль завертится в направлении, указанном на рисунке стрелкой. Когда вращение прекратится, пусти еще одну каплю. Спираль завертится снова!

Ты, конечно, хорошо понимаешь, почему спираль приходит в движение. И почему она вертится в сторону, обратную той, куда вытекает мыльный раствор,

Реактивный катер

Постарайся достать кусочек камфары. У нее есть такое свойство: если положить кусочек на воду, то частички камфары начнут отделяться с большой быстротой. Понимаешь? Ведь это годится для реактивного двигателя! Нужно только так устроить, чтобы частички могли выходить лишь в одну сторону.

Для этого сделай маленький катер из алюминиевой фольги (в нее завертывают шоколад и дорогие сорта конфет). Кусочек камфары вставь в прорез на корме катера. Теперь катер может часами безостановочно бегать по поверхности воды в тазу!

Реактивный двигатель нашего катера так прост, что проще не придумаешь. Однако и он может отказывать в работе. Когда я был еще совсем небольшим мальчишкой, мне однажды подарили такой катер. Только не самодельный, из фольги, а покупной, целлулоидный. Катер был очень красив, но – увы! – он и не думал двигаться, хотя к нему был приложен порядочный кусочек камфары.

Только много позже я узнал, в чем дело. Оказывается, этот красивый опыт не выносит ни малейших следов жира. Их не должно быть ни на катере, ни на поверхности воды. Поэтому, принимаясь за изготовление катера, хорошенько вымой руки. Готовый катер протри ваткой, смоченной в эфире. А таз перед опытом тщательно вымой горячей водой с содой или стиральным порошком!

Неутомимые танцоры

Если тебе удастся достать камфару и эфир, можешь сделать еще одну очень интересную игрушку.

Сквозь кружок, отрезанный от корковой пробки, пропусти накрест две тонкие иголки. Если пробки нет, годится пенопласт, твердая и очень легкая пористая пластмасса. На концах иголок укрепи четыре маленькие пробковые пластинки. К пластинкам приклей по кристаллику камфары так, как показано на чертеже. Приклеить можно сургучом. Капнуть сургуч на пробку, подогреть над свечой или спичкой и пинцетом положить на него кристалл камфары. А можно приклеить и клеем БФ-2.

Здесь тоже очень важно, чтобы не было ни малейших следов жира. Работай чистыми руками. Готовую вертушку возьми пинцетом и прополощи в эфире. После этого ни в коем случае не бери ее руками, а только пинцетом. Миску, в которой вертушка будет плавать, вымой горячей водой с содой или стиральным порошком.

Поставь вертушку на воду. Она должна начать быстро вращаться. Если все в порядке, вырежь из тонкой (писчей) бумаги танцующую пару и приклей на пробковый кружок.

Это будут самые неутомимые танцоры на свете. Они могут кружиться дня три без остановки, пока кристаллы камфары не станут совсем маленькими.

Предложи товарищу угадать, какая сила заставляет кружиться этих танцоров. Вряд ли он догадается, что и здесь работает сила реакции!

Глава седьмая. КРУТИТСЯ, ВЕРТИТСЯ…

Как поставить спичку?

В главе «Рельсы в небесах» ты научился ставить предметы, которые, казалось бы, должны лежать и только лежать. Ты ставил на острие заточенный карандаш. Ты ставил на край стола перочинный ножик.

Но как поставить заостренную спичку? Как сделать, чтобы она стояла головкой вверх?

Для этого есть очень простой способ. Вырежь из картона кружочек, проткни его точно в центре и надень на спичку. Получилась хорошо известная тебе игрушка – волчок.

Закрути его между пальцами и поставь на стол. Пока волчок крутится, он стоит.

Этот опыт настолько прост, что ты едва ли будешь его делать. Ведь и так все ясно. Интереснее сделать деревянный волчок в форме конуса, или кубарь, как его еще называют. Но хороший кубарь вручную не выстругаешь, его нужно выточить на токарном станке в школьной мастерской. Чтобы кончик не так быстро тупился, забей в него граммофонную иглу. Ее тупой конец послужит прекрасным основанием для кубаря. Только забивать иглу нужно точно по оси. Скосишь – волчок будет вертеться очень плохо.

Кубарь интересен тем, что его можно все время подгонять, подстегивать кнутиком. И пока кубарь вращается, он будет стоять на острие.

Даже подпрыгнув от удара кнутика, он не наклонится и, опустившись, будет вращаться все так же прямо. А если ты его толкнешь в бок, он все равно не наклонится, а отскочит.

Вывод ясен. Вращающийся волчок сохраняет направление своей оси.

Немножко цирка

Тр-р-р-рр! Тра-та-та-тах-трр! Грохоча и стреляя двигателями, мчатся мотоциклы по вертикальной стене. Ты уже знаешь – их держит центробежная сила.

А вот выбегает на арену другой цирковой артист. Поклон публике… Оркестр заиграл веселый, бодрый марш… И вот уже над головой у артиста на легкой палочке завертелась тарелка. Узнаешь артиста? Жонглер! Узнаешь закон физики? Волчок! Тарелка подперта палочкой не в центре, а ближе к краю. Так удобнее раскручивать. И все же она держится на палочке. Держится, потому что сохраняет направление своей оси.

Продолжая вращать тарелку, жонглер умудряется перекувырнуться через голову или лечь на пол и перекатиться, перехватывая палочку из руки в руку. Потом он перебрасывает тарелку другому жонглеру. Тот подхватывает ее на свою палочку и продолжает вращать.

Иной раз жонглеры крутят не одну тарелку, а несколько, держа две палочки в руках, третью – на носке ноги, а на лбу удерживая шест, на котором вращается целое блюдо или поднос, уставленный рюмками.

Вот какие чудеса вытворяет в цирке волчок! Но, конечно, одного только чудесного свойства волчка тут недостаточно. Чтобы стать жонглером, надо несколько лет учиться этому искусству. И даже выучившись, артисты цирка каждый день тренируются, каждый день тратят часы на повторение своих номеров, чтобы потом с замечательной легкостью, с беспечной улыбкой исполнить их на манеже.

Поэтому я не советую тебе пытаться повторить опыт с вращением тарелки на палочке. Во всяком случае, не делай его ни с фарфоровой тарелкой, ни с фаянсовой, ни даже с тарелкой из пластмассы. Пластмассовая тарелка тоже треснет, если ее хорошенько уронить. А за этим дело не станет!

Если уж очень хочется попробовать свои силы, вырежь круг размером с тарелку из толстого картона, или выпили из фанеры. Он-то не разобьется! Но помни, что учиться жонглировать можно только в таком месте, где ты ничего не заденешь, не зацепишь, не опрокинешь. Подальше от зеркал, шкафов, окон, от полок с посудой!

Фокус с тарелкой едва ли у тебя получится. Гораздо легче другой фокус – с широкополой шляпой. Его часто проделывают цирковые клоуны, набрасывая шляпы на головы своим партнерам. Попробуй и ты набросить шляпу на голову товарищу. Это не так уж трудно. Важно только, бросая шляпу, закрутить ее вокруг вертикальной оси. Тогда она не будет кувыркаться в воздухе. Ну, а остальное уже зависит от твоей меткости!

Танцующее яйцо

Если у тебя есть поднос с совершенно гладким дном, можешь сделать этот интересный опыт. Перевернув поднос, положи на его донышко крутое яйцо. Води поднос по кругу, все ускоряя и ускоряя вращение. Яйцо, лежащее на середине донышка, будет увлечено этим движением и начнет вращаться вокруг собственной оси все быстрей и быстрей. Понемногу оно поднимется и остановится на одном конце, вращаясь, как волчок.

Для того чтобы лучше удавался этот опыт, яйцо нужно варить с хитростью. Оно должно не лежать в кастрюле, а стоять в ней вертикально. Добиться этого можно, например, надев на яйцо проволочную спираль, расширяющуюся книзу. Дело в том, что под скорлупой у тупого конца яйцо имеет воздушную камеру. При варке в вертикальном положении эта камера расположится точно по оси яйца, так что во время опыта легче будет добиться равновесия.

Если тебе все же не удастся заставить яйцо танцевать по подносу, вот уловка, которая облегчает этот опыт. Положи поднос на стол так, чтобы край выступал и его можно было сразу подхватить. Яйцо поставь посредине, придерживая его большим пальцем левой руки и указательным пальцем правой. Быстрым движением рук заставь яйцо вращаться. Потом подхвати поднос и поддерживай вращение яйца легкими толчками.

Какое крутое, какое сырое!

Почему пущенный волчок продолжает вращаться и после того, как ты убрал руку? Здесь действует еще один вид инерции – инерция вращения. На инерции вращения основан интересный опыт с яйцами – сырым и сваренным вкрутую.

Натяни на каждое из этих яиц по длине резиновое колечко. Повесь оба яйца на проволочные крючки, привязанные к ниткам. Теперь каждое яйцо поверни несколько раз так, чтобы нитки закрутились на равное число оборотов.

Когда отпустишь яйца, крутое быстро завертится в одном направлении, потом в обратном, снова и снова… Так оно будет вертеться довольно долго, прежде чем окончательно остановится. А вот сырое яйцо остановится почти сразу. Почему? Да потому, что крутое яйцо вращается как одно целое. А у сырого содержимое полужидкое, оно слабо связано со скорлупой.

Нитка, раскручиваясь, приводит во вращение скорлупу. Скорлупа «набирает обороты», но полужидкое содержимое из-за инерции покоя отстает от вращения скорлупы и тормозит.

Можно сделать похожий опыт и проще, не подвешивая яйца, а крутнув их пальцами на донышке тарелки или на гладком столе. Крутое будет вертеться долго, сырое остановится почти сразу. Кстати сказать, это надежный способ отличить крутое яйцо от сырого, не разбивая скорлупы.

У этого опыта есть интересное продолжение. Пустив крутое яйцо вертеться волчком по тарелке, на мгновение положи на него руку, чтобы остановить. Ты тут же отнимешь руку, но все будет уже кончено. Вращение не возобновится. Это понятно.

А вот сырое яйцо ведет себя более загадочно. Если, остановив его, ты отнимешь руку достаточно быстро, вращение возобновится! В чем здесь дело? Конечно же, в инерции вращения. Ведь содержимое, хоть и отставая и тормозя, все-таки тоже вращалось. И когда ты остановил скорлупу, вращение содержимого еще продолжалось по инерции. Убрал руку – роли переменились. Теперь уже содержимое увлечет в своем вращении скорлупу!


    Ваша оценка произведения:

Популярные книги за неделю