Текст книги "Путеводитель по истории Искусственного Интеллекта"
Автор книги: Леонид Черняк
Жанр:
Научпоп
сообщить о нарушении
Текущая страница: 3 (всего у книги 5 страниц)
Как забытый было AI снова оказался в центре общественного внимания
Забегая вперед, скажем, что к началу XXI века, пережив два цикла подъема и падения символьного подхода, AI впал состояние близкое к анабиозу. Те немногие, кто сохранил веру в него, скрылись в своего рода академических окраинах, они трудились над тем, что представляло интерес для них самих и еще небольшого числа близких им единомышленников. На фоне нынешнего хайпа вокруг AI человеку, не знающему об этом мрачном периоде, трудно поверить, однако реальность была такова.
Неожиданный воскрешение AI, точнее выход из состояния многолетней летаргии случилось в интервале с 2007 по 2012 год. За этот короткий период сложились необходимые и достаточные условия для интеллектуального и технологического взрыва в ограниченной области Слабого AI (ANI). По динамике взлета, по приятию происходящего в разных слоях общества случившееся с AI можно сравнить разве с событиями, имевшими место в авиации в первом десятилетии XX века. Принято считать, что первый аппарат тяжелее воздуха «Флайер-1» построили братья Орвилл и Уилбур Райт, он взлетел 17 декабря 1903 года, а уже к концу десятилетия сотни страны-участники Первой мировой войны использовали авиацию в боевых действиях.
К создание летательных аппаратов тяжелее воздуха приложили руку не только братья Райт, оно стало возможным благодаря успехам в нескольких областях, прежде всего, в появлении легких двигателей внутреннего сгорания и в успехах в изучении основ аэродинамики крыла. Примерно то же самое можно сказать о современных достижениях в области ANI. Подчеркнем, только лишь ANI без каких-либо проекций в будущее на AGI и тем более на ASI. Нынешний взрыв ANI вызвала синергия трех факторов: первый – достижения в работе с большими данными, второй – успехи в области глубокого машинного обучения, и третий – адаптация для процессов обучения ускорителей на графических процессорах GPU.
В данном случае на роли братьев Райт жребий выбрал трех профессоров – Фей-Фей Ли, Джефри Хинтона и Эндрю Ына, каждый из них внес свою лепту в становление этих трех научно-технических направлений. Стоит сказать, что на их месте могли бы оказаться любые другие ученые, все это игра случая, существенно то, что сложились необходимые предпосылки, а кому досталась не столь важно.
• Профессору Фей-Фей Ли из Стэнфордского университета принадлежит идея использования машинного обучения для извлечения полезной информации из больших объемов данных. В своих экспериментах она использовала базу данных аннотированных изображений ImageNet. Большинство коллег применяли для подобных задач традиционные модели и алгоритмы AI, но Фей-Фей Ли решила нарушить традицию и применить для отработки и распознавания образов мало востребованные к тому времени методы машинного обучения.
• Из всех существовавших методов машинного обучения наилучшие результаты показали методы глубокого обучения, разработанные группой математиков из Университета Торонто, возглавляемой профессором Джефри Хинтоном.
• Универсальные компьютеры оказались слишком медленны для решения задач обучения, выход нашел работавший в Стэнфорде профессор Эндрю Ын. Он предложил использовать графические процессоры GPU для моделирования ANN.
Так возникла технологическая триада, являющаяся базисом современного AI – большие данные, машинное обучение и GPU. Она является альтернативой двум компонентами действующей компьютерной парадигмы, состоящей из программирования и фон-неймановских компьютеров (CPU). Обучение на больших данных заменяет программирование, что же касается GPU, то сегодняшний день кластеры из эти процессоров, ядра которых остаются фон-неймановскими, позволяют создать обучаемую, а не программируемую инфраструктуру. Этот путь создания тела для AI далеко не совершенен, но действующей альтернативы нет, ведутся активные исследования и разработки иных нежели GPU процессоров, но они пока на уровне экспериментов.
Нынешнюю волну AI нередко называют третьей, это так, но надо отдавать себе отчет, что это лишь порядковый номер, ни теоретически, ни технологически эта волна никак не связана с предшествующими. Представленная выше группа весьма харизматичных ученых оказалась в центре внимания масс-медиа, однако необходимые и достаточные условия для возникновения этой волны ANI были созданы более широким научным сообществом.
Новые скептики
Подъем интереса к AI немедленно вызвал обратную волну, с критикой выступили люди, далекие от понимания сути происходящего. Неизгладимое впечатление на общественность произвел ныне покойный британский физик и космолог Стивен Хокинг, заявивший в 2017 году: «Развитие искусственного интеллекта может стать как наиболее позитивным, так и самым страшным фактором для человечества. Мы должны осознавать опасность, которую он несет». Хокинг выразил опасения относительного того, что новейшие технологии могут привести к деградации человека, сделав его беспомощным перед лицом природы, что в условиях естественной эволюции и борьбы за выживание означает верную гибель.
Среди тех, кто добросовестно заблуждается и выступают в прессе, не имея серьезного представления об AI, есть и вполне достойные люди, например, великий дипломат Генри Киссинджер. Его статья с эпохальным на первый взгляд названием «Конец Эпоха просвещения» (How the Enlightenment Ends) опубликована не где-нибудь, а в журнале The Atlantic.
Квинтэссенция позиции Киссинджера такова: «Просвещение началось с философских размышлений, которые распространялись с помощью новой технологии. Мы движемся по противоположному пути. Разработана потенциально доминирующая технология AI, которая нуждается в направляющей философии. Но разработкой таковой никто даже не занимается». Статья завершается выводом: «Создатели AI, некомпетентны в политике и философии, точно так же, как я в сфере технологий, поэтому они должны задаться вопросами, которые я поднял в этой статье, чтобы встроить ответы в свои инженерные разработки. Правительству США стоит подумать о создании президентской комиссии из признанных экспертов-мыслителей, которые помогут разработать национальный подход. Очевидно одно: если мы не начнем эту работу в ближайшее время, очень скоро мы поймем, что уже опоздали».
Однако это контрволна незаметно стихла, не успев как следует подняться, в 2018–20 годах поток «провидческих» выступлений заметно ослаб. В средствах массовой информации и в социальных сетях, где все чаще звучит призыв к трезвому отношению к AI под лозунгом демистификации AI (Demystification AI). В эти годы активно развивался AI-бизнес, связанный с производством средств автоматизации в самых разных сферах.
Особености третьей волны
В чем новизна очередной волны AI, что делает ее отличной от предшествующих, и не ждет ли ее такая же печальная судьба? Для этого сравним их исходные позиции. Напомним, авторы первых двух волн шли по пути, названному Тьюрингом «сверху-вниз» в сочетании с действующей по сей день двухзвенной компьютерной парадигмой, стоящей на двух китах: универсальное аппаратное обеспечение и программное обеспечение, служащее для решении конкретной задачи. В рамках этой парадигмы решение любой задачи, какой бы сложной она ни была, сводится написанию программы для компьютера, главное, чтобы он обладал необходимой производительностью. При этом упускались из виду ограничения этой парадигмы – программируемый компьютер по природе своей не может делать ничего помимо того, что в него вложил человек. Следовательно, нет такого момента, где бы он проявить свой собственный тот самый искусственный интеллект и породить что-то «от себя». Он действует строго по программе, даже при выполнении таких, казалось бы, сложных действий, как доказательство теорем, написание музыки или игра в шахматы.
Качественное отличие третьей волны от первых двух в том, что она реализует схему «снизу-вверх» по Тьюрингу, в ее основе лежит коннекционистский подход, альтернативный символьному. В отличие от процессора нейронная сеть не может быть запрограммирована, но ее можно «обучить» тем или иным образом, после чего она способна моделировать простейшие процессы, происходящие в мозге. На данный момент многообразие методов обучения, сводится к предъявлению нейронной сети большого объема данных с тем, чтобы она смогла настроиться на них и находить решения. По большей части все, что называют AI-приложениями третьей волны ограничено компьютерным зрением (Computer Vision, CV) и обработкой текста на естественном (Natural Language Processing). В отличие от первых двух волн эти приложения относятся не просто к просто узкому или слабому AI (Narrow, Weak AI), а являются сугубо специализированным AI-решениями, которые называют AI, скорее, как дань традиции.
То, что многочисленные рассуждения о возможностях AI на практике пока свелись к сугубо специализированным решениям, имеет вполне понятное объяснение. Возможности моделирования средствами искусственных нейронных сетей ограничены существующими компьютерными технологиями, для сравнения даже самые мощные GPU кластеры, совершенно ошибочно называемые суперкомпьютерами (компьютеры универсальны, а GPU-кластеры специализированы), насчитывают десятки тысяч, максимум сотни тысяч ядер. При этом мозг таракана состоит из 1 миллиона нейронов, лягушки – 16 миллионов. У более сложных существ мозг насчитывает миллиарды нейронов, что касается человека, то в его мозге примерно 85 миллиардов. На сотни тысяч ядер кластеры потребляют мегаватты энергии, а человеческий мозг – 20 ватт. Каким же надо быть безудержным оптимистом, чтобы говорить о реальной возможности сильного AI, превосходящего возможности человека? А ведь находятся!
До того, когда AI обретет потенциал, хотя бы как-то сопоставимый с самым примитивным живым мозгом еще очень далеко, на нынешнем уровне развития электроники просто не о чем говорить. Поэтому схема работы современной обучаемой AI-системы на нейронных сетях в некотором роде искусственна, в отличие от мозга даже простейших. Она разделена на два этапа, первый – training, как следует из названия на нем тренирует или обучает искусственную нейронную сеть, являющуюся грубой моделью мозга, а на втором обученная нейронная сеть переносится в другую сеть, этот процесс называется inference, что можно перевести логическим выводом иди умозаключением. В то же время мозг простейшего живого совмещает training с inference.
О компьютерах и AIДаже при такой упрощенной схеме реализации AI классические компьютеры, построенные по ФНА с ограниченным количеством центральных процессоров (Central Processing Units, CPU) с задачей training не справляются. Фундаментальная причина заключается в том, что они строятся на процессорах, состоящих из ядер типа SISD (Single Instruction, Single data), то есть задуманы для обработки одного потока данных одним потоком инструкций, для распараллеливания число ядер может достигать нескольких десятков. Даже собранные вместе десятки мощных процессоров оказывается неспособными к моделированию работы мозга нейронной сетью с тысячами узлов, требуемой при решении задач CV и NLP. Временный выход из положения совершенно случайно нашелся в виде Graphics Processing Units (GPU), эти созданные для работы с графикой компьютерных игр процессоры относятся к типу SIMD (Single Instruction, Multiple Data), они состоят из тысяч небольших ядер, на них проще воспроизвести нейросеть и специализированный компьютер будет обладать большей производительностью. Сегодня большая часть задач training решается на GPU. Для inference обученная чаще всего переносится на CPU или GPU, а также на программируемых матрицах (Field Programmable Gate Array, FPGA).
По оценкам аналитиков до 95 % всей процессорной нагрузки, связанной с AI, приходится на inference, то есть на решение прикладных задач с использованием обученных нейросетей, сюда же входит Edge AI, так называют класс автономных систем, реализующих AI на оконечных устройствах. Как следствие, эта область является наиболее привлекательной для разработчиков новых процессорных архитектур. Преодолеть нынешнюю монополию GPU в задачах training если и удастся, то нескоро.
Есть несколько альтернативных разработок, часть из них попадает в категорию умных процессоров (Intelligence Processing Unit, IPU). Одну из них ведет компания GraphCore, пытающаяся создать аппаратными средствами графовую модель представления знаний. Компани Mythic стремится к объединению в памяти работы с цифровыми и аналоговыми данными. Значительное внимание привлекает к себе разработка компании Wave Computing, она дала своему процессору название DPU (Dataflow Processing Unit), из чего следует стремление революционизировать обработку потоковых данных.
О реальных перспективах AIКак мы видим, реальные достижения не дают основания для избыточного оптимизма в оценке перспектив создания AI, сравнимого с человеческим или превосходящего его. До тех пор, пока компьютер остается программируемым устройством, он не сможет стать в полном смысле этого слова «умной машиной». Поэтому какой бы изощренной ни была программа, полученная с использованием машинного обучения, она останется всего лишь программой, вложенной в нейросеть, и найти в ней даже признаки сильного AI принципиально невозможно.
Удивительно то, что среди ученых, и менее удивительно, что среди футурологов, все же сохраняются убеждения в возможности создания AI за счет роста производительности компьютеров, что ошибочно связывается ими с законом Мура. В 2009 Генри Макграм, руководитель известного проекта Blue Brain прогнозировал, что в 2020 году будет создан «сильный AI», но в наступившем 2021 прогноз не оправдался. Пожалуй, самый известный из современных футурологов Рей Курцвейл в книге «Сингулярность близка» (The Singularity is Near, 2005) делал тот же прогноз на 2025 год, осталось недолго ждать.
Реальные перспективы применения AI связаны с автоматизацией, причем в большей степени с автоматизацией рутинных процессоров умственного труда и с созданием промышленных, транспортных, военных систем с повышенной степенью автономности.
AI и автоматизацияНастороженность, вызываемая в обществе перспективами внедрения AI, заставляет вспомнить, что с давних времен отношение людей к механизации, а в последующем и к автоматизации было сложным, ярчайший пример восстание луддитов в начале XIX века, они препятствовали внедрению машин в ходе промышленной революции в Англии, они считали, что машины станут причиной безработицы и выражали протест в погромах. На деле происходит обратное, с внедрением машин растет производство, что ведет к увеличению числа рабочих мест, однако страх перед автоматизацией не исчез. Противники нового утверждают: «Автоматизация это плохо, она убивает рабочие места и лишает нас будущего», на что сторонники отвечают: «Автоматизация это хорошо, она создает качественно новые рабочие места и это наше будущее», при этом и те, и другие понимают, что автоматизация неизбежна. За 200 лет область автоматизации распространилась от замены человека в простейших физических операциях до управления сложными системами, где требуется определенный интеллект. Внедрение AI – очередной шаг в этом направлении.
Слово «автоматизация» происходит от греческого «автоматос», значащего «действующий самостоятельно». Автоматизацию в ее традиционном индустриальном понимании связывают с наличием образной связи в контуре управления. Первый шаг в этом направлении сделал Джеймс Уатт, заменивший в 1788 году изобретенным им центробежным регулятором мальчика с веревкой, приставленного к паровой машине. За последующие два с половиной века было создано множество машин и систем, различающихся по степени вложенной в них разумности или интеллектуальности (intelligence). Сегодня сложилась следующая трехуровневая классификация автоматизированных систем по уровню их интеллектуальных способностей:
• Assisted Intelligence – системы со вспомогательным интеллектом, обладающие ограниченными способностями, могущие делать только то, что им предписано, они широко используются в многочисленных встроенных системах в диапазоне от простых бытовых устройств до крупных промышленных объектов. В эту же категорию попадают и умные вещи, и так называемые Smart Products, и умная окружающая среда (Smart Environment). Эти системы полностью или частично избавляют человека от физического труда.
• Augmented Intelligence – системы, интеллект которых служит вспомогательным средствам для человека, они могут избавлять от наиболее рутинной части умственного труда.
• Autonomous Intelligence – системы с автономным управлением, способные к самостоятельной деятельности. Это пока еще гипотетический класс систем, возможность создания такого типа остается недоказанной.
Внедрение AI существенно расширит применение систем уровня Augmented Intelligence, открывается хорошая перспектива для появления систем поддержки приятия решений (Decision Support Augmentation, DSA) в самых разных областях – в науке, инженерии, медицине, системах обеспечения безопасности. Для таких систем появилось специальное название AI-coworker, то есть AI-коллега.
История интеллектуальных помощниковИдея интеллектуального помощника не нова, ее можно найти в классической статье «Как мы можем думать». В ней Ванневар Буш (Vannevar Bush, 1890–1974), которого за его научную и административную деятельность называли Царем Науки (Science Tsar), описал гипотетическую машину MEMEX (MEMory EXtender). Подобно Алану Тьюрингу, использовавшему придуманную им машину для доказательства вычислимости, Буш предложил свою виртуальную машину, чтобы показать, как техника могла бы помочь человеку при работе с большими объемами документов. Машину MEMEX Буш рассматривал как инструмент для совмещения способностей человека и машины, он оставил за человеком творческий подход, ассоциативное мышление и другие присущие ему качества, а на машину переложил рутинные операции с документами.
Продолжателем дела Буша стал Даг Энгельбарт (Douglas Engelbart, 1925–2013), он известен большинству изобретением манипулятора-мышки, но его попутное достижение, а реальный вклад – системы для совместной (коллаборативной) работы NLS (oN-Line System) и средства для презентаций, используемых для поддержки публичных выступлений. Сегодня для оформления презентаций широко используют Microsoft Power Point или Apple Key Note, а в 1968 году презентация была открытием. Менее известно создание Энгельбартом концепции, названной им Augmented Intelligence (AuI), что можно перевести как «усилитель интеллекта». Идею усиления человеческих возможностей при помощи компьютера Даг Энгельбарт высказал в 1962 году в работе «Усиление человеческого интеллекта, концептуальная схема» (Augmenting Human Intellect: A Conceptual Framework).
AI и бизнесСистемы с AuI, предназначенные для расширения интеллектуальных способностей человека, становятся серьезным сегментом AI-бизнеса. Об этом свидетельствует недавний отчет Gartner «Победить в AI с опорой на AuI» (Leverage Augmented Intelligence to Win With AI). В нем Gartner считает наиболее перспективной модель партнерства человека с машиной и человеком, в центре которой находится человек, деятельность которого поддержана технологиями AI. Авторы считают, что сочетание человеческих способностей со способностями AI позволит создавать более эффективные технологии. При этом отмечается: «Цель внедрения AI заключается в создании условий, при которых человек стал бы умнее и счастливее, а не ради построения какого-то утопического «машинного мира» ради него самого. Это подход нацелен на получение преимуществ от внедрения AI, он позволит получать все лучшее и от людей, и от машин».
Другой перспективный сегмент – внедрение AI непосредственно в производственные процессы, что выведет автоматизацию на уровень гиперавтоматиации (Hyperautomation). Под гиперавтоматиацией в Gartner понимают интеграцию уже известных направлений автоматизации (роботизированная автоматизация процессов (Robotic process automation, RPA), интегрированный менеджмент бизнес-процессов iBPMS и других) с методами AI. Примерно в том же направлении рассуждают и другие аналитики, в IDC используют термин интеллектуальная автоматизация процессов (Intelligent Process automation), а Forrester – цифровая автоматизация процессов (Digital Process Automation).