355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Карл Циммер » Микрокосм. E. coli и новая наука о жизни » Текст книги (страница 4)
Микрокосм. E. coli и новая наука о жизни
  • Текст добавлен: 29 сентября 2016, 01:26

Текст книги "Микрокосм. E. coli и новая наука о жизни"


Автор книги: Карл Циммер



сообщить о нарушении

Текущая страница: 4 (всего у книги 24 страниц) [доступный отрывок для чтения: 9 страниц]

Прыжок с обрыва

E. coliпривлекла к себе внимание Теодора Эшериха благодаря быстрому размножению – один – единственный микроорганизм может всего за несколько часов дать обильный, роскошный прирост. Если бы бактерии, открытые Эшерихом, продолжали размножаться такими стремительными темпами, они очень быстро заполнили бы все его колбы сплошной микробной массой. Да что там – за несколько дней они захватили бы всю Землю! Но E. coliпоступает иначе. Она замедляет свой рост, а затем, всего через сутки, вообще прекращает размножаться.

Теоретически любой вид живых существ мог бы заполонить собой Землю. Но на практике нам не приходится пробираться через бескрайние леса дождевиков или океаны блох. Экспоненциальный рост численности вида быстро наталкивается на суровую реальность нашего конечного мира. По мере увеличения плотности популяции E. coliбактерии начинают расходовать кислород быстрее, чем он может поступать извне. Токсичные отходы скапливаются в окружающей колонию среде.

Такое столкновение с реальностью может оказаться фатальным. Когда у E. coliзаканчиваются необходимые питательные вещества, ее метаболизм начинает сбоить. Рибосомы производят деформированные белки, способные напасть на другие молекулы бактерии. Катастрофические изменения могут охватить весь микроорганизм. Продолжать рост в условиях такого стресса было бы самоубийством – это как, не снижая скорости, гнать машину к обрыву.

Вместо этого E. coli,как разумный водитель, нажимает на тормоза. В течение нескольких секунд она прекращает считывать гены и уничтожает все белки, строительство которых уже началось. Микроорганизм входит в состояние зомби – так называемую стационарную фазу роста. Он начинает производить белки, необходимые для защиты от излишнего тепла, кислот и других поражающих факторов, и одновременно прекращает синтез ферментов, необходимых для питания. Чтобы не пропустить внутрь опасные молекулы, E. coliзакрывает в своей мембране большую часть пор, а чтобы защитить ДНК, складывает ее в очень компактную структуру. Все эти приготовления требуют немало энергии, которую бактерия уже не может получить из пищи, поэтому E. coliприходится поедать саму себя, расщепляя богатые энергией молекулы. Она разбирает на части даже некоторое количество рибосом, теряя при этом способность производить новые белки.

Надо сказать, что E. coliпри голодании ожидают примерно те же проблемы, с какими по мере старения организма сталкиваются наши собственные клетки. В стареющих человеческих клетках гены и рибосомы получают повреждения, похожие на те, которые встречаются у E. coli,когда у нее заканчиваются питательные вещества. У людей, страдающих болезнью Альцгеймера, в мозгу образуется множество белков, деформированных примерно так же, как у голодающей E. coli.Вообще, жизнь умеет не только расти и размножаться. Помимо этого она увядает и гибнет.

И человек, и бактерия сталкиваются с разрушительным действием времени, но только бактерия умеет выходить из этой схватки победительницей. Если взять единичную E. coliв стационарной фазе и поместить в бутыль со свежим бульоном, она распакует ДНК, синтезирует новые белки и с царственным достоинством возобновит прежнюю жизнь. Можно оставить колонию E. coliв стационарной фазе на пять лет и после этого обнаружить в ней жизнеспособные микроорганизмы. Это мы, люди, никогда не получаем второго шанса.

Глава 3. Система включение гена

Однажды в июле 1958 г. Франсуа Жакоб сидел в парижском кинотеатре и изнывал от беспокойства. Его жена Лиз по опыту знала, что у мужа вот – вот родится какая‑то неожиданная идея. Они вышли из зрительного зала и направились домой.

– Кажется, я только что придумал кое‑что важное, – сказал Франсуа жене.

– Расскажи! – попросила она.

В тот момент Жакобу, как он позже писал, казалось, что ему удалось добраться «до самой сути вещей». Он вдруг понял, как гены взаимодействуют между собой и как они делают жизнь возможной.

Надо сказать, что Жакоб давно мечтал о подобном озарении. Хирург по образованию, он бежал из Парижа после прихода нацистов и следующие четыре года служил в медицинской роте союзников, участвовал в боях в Северной Африке. Ранение и контузия положили конец его планам стать хирургом, и после войны, вновь оказавшись в Париже, молодой человек просто не знал, как ему распорядиться своей жизнью. Он поступил на работу в лабораторию по разработке антибиотиков и неожиданно почувствовал интерес к научным исследованиям. Но Жакоб хотел не просто найти новое лекарство, он решил посвятить себя изучению «сути жизни». В 1950 г. Жакоб пришел на работу в Институт Пастера и присоединился к команде биологов, упорно работавших в мансарде института с E. coliи другими бактериями.

Жакоб пришел в науку, не имея собственного плана исследований, но в конце концов он занялся двумя кусочками глобальной биологической головоломки: вопросом о том, почему гены иногда активны, а иногда нет. Несколько лет Жакоб изучал умеренных бактериофагов – вирусы, которые умеют «растворяться» в клетке хозяина – бактерии, а потом, спустя несколько поколений, появляться вновь. Вместе с Эли Вольман Жакоб продемонстрировал, что такие бактериофаги на самом деле встраивают свои гены в ДНК E. coli.Ученые позволяли инфицированным бактериофагами бактериям вступить в конъюгацию с неинфицированными, а затем их разделяли. Если конъюгация прекращалась слишком быстро, передачи профага [11]11
  Профаг – геном умеренного бактериофага, встроенный в бактериальную хромосому. Это латентная (скрытая) неинфекционная форма бактериофага. Он реплицируется одновременно с репликацией бактериальной хромосомы. – Прим. ред.


[Закрыть]
не происходило. Эксперименты показали, что профаг стабильно встраивается в одно и то же место хромосомы E. coli.Гены вируса уютно устраивались между генами клетки – хозяина и «молчали» в течение нескольких поколений.

E. coliпредоставила Жакобу еще одну возможность изучить гены, которые иногда работают, а иногда нет. Чтобы утилизировать определенный вид сахара, E. coliнеобходимо производить определенные ферменты. Так, чтобы расщеплять лактозу, бактерии необходим фермент бета – галактозидаза, способный разрезать молекулу лактозы на кусочки. Коллега Жакоба по Институту Пастера Жак Моно обнаружил, что, если давать E. coliглюкозу (а это гораздо более эффективный источник энергии для бактерии, чем лактоза), она производит бета – галактозидазу в очень малых количествах. Если добавить в питательную среду лактозу, производство фермента увеличится незначительно. Только после того, как глюкоза закончится, синтез бета – галактозидазы начнется всерьез.

Никто в то время не мог вразумительно объяснить, как гены E. coliили ее профагов могут то включаться, то выключаться. Прежде многие ученые считали, что синтез белков в клетке идет постоянно и непрерывно. Чтобы объяснить реакцию E. coliна лактозу, они выдвинули предположение, что на самом деле бактерия вырабатывает бета – галактозидазу постоянно, но только при реальном контакте с лактозой фермент меняет форму и приходит в то состояние, которое позволяет ему ее расщеплять.

Стремясь выяснить, что происходит на самом деле, Моно, Жакоб и их коллеги из Института Пастера начали серию экспериментов. Они выделили мутантные формы E. coli,которые по каким‑то причинам не могли утилизировать лактозу. К примеру, один из мутантов не расщеплял лактозу, хотя у него присутствовал нормальный ген, отвечающий за производство бета – галактозидазы. Ученые поняли, что E. coliиспользует для утилизации лактозы несколько генов. Один из них кодирует образование белка пермеазы, который встраивается в мембрану микроба, соединяется с молекулой лактозы и переносит ее внутрь клетки.

Но самыми странными среди обнаруженных мутантных форм оказались бактерии, которые производили бета – галактозидазу и пермеазу непрерывно, вне зависимости от того, имелась ли в окружающей питательной среде лактоза. Стало ясно, что у E. coliесть еще какая‑то молекула, которая в обычных условиях не допускает активации генов, отвечающих за производство бета – галактозидазы и пермеазы. Этот белок ученые назвали репрессором. Но Жакоб и его коллеги ничего не могли сказать о том, каким образом репрессор подавляет работу генов.

И вот в темном зале кинотеатра Жакоба осенило. Репрессор, решил он, – это белок, который связывается с ДНК E. coliи блокирует считывание соответствующих генов (в данном случае генов бета – галактозидазы и других, отвечающих за расщепление лактозы). По определенному сигналу, как по щелчку выключателя, репрессор прекращает блокировать гены.

Возможно, подумал Жакоб, профаги тоже блокируются каким‑нибудь репрессором. Не исключено, что эта система универсальна и работает во всех живых организмах. «Я больше не чувствую себя посредственностью и даже смертным», – писал Жакоб.

Но попытка рассказать в общих чертах о новых идеях жене принесла одно только разочарование.

– Ты мне уже об этом рассказывал, – сказала Лиз. – Это же давно известно, разве не так?

Идея Жакоба была настолько проста и элегантна, что любому человеку, не связанному с биологией, казалась самоочевидной. Тем не менее она представляла новый подход к проблеме жизни. Гены работают не по одному, а блоками.

Следующие несколько недель Жакоб пытался обсудить свои новые идеи с коллегами – биологами, но особого интереса вызвать не сумел. Благодарный слушатель у него появился только осенью, когда в Париж вернулся Моно. Вдвоем они начали рисовать на доске блок – схемы генетического механизма, обозначать стрелками входы и выходы.

Осенью 1958 г. Моно и Жакоб запустили новую серию экспериментов для проверки гипотезы Жакоба. Эксперименты дали ожидаемый результат. Но для подробного изучения работы генов, отвечающих за утилизацию лактозы, потребовались годы труда множества ученых. Оказалось, что эти гены располагаются на хромосоме E. coliобщим кластером, один за другим. Белок – репрессор связывается со специальным участком ДНК в начале группы генов и блокирует работу ферментов, считывающих их. Когда репрессор связан с этим участком, E. coliне может использовать лактозу в качестве источника питания.

Лучший способ удалить репрессор, блокирующий работу генов, отвечающих за расщепление лактозы, заключается в том, чтобы добавить ее в питательную среду, на которой растут колонии E. coli.Попав внутрь бактериальной клетки, молекулы лактозы взаимодействуют с закрепившимся на хромосоме белком – репрессором. Они изменяют его форму так, что он теряет сродство к соответствующему участку ДНК, открывая доступ ферментам РНК – полимеразам, считывающим гены, которые участвуют в метаболизме лактозы. В результате E. coliполучает возможность синтезировать ферменты, необходимые для утилизации лактозы.

Но E. coliнужен второй сигнал, чтобы запустить производство бета – галактозидазы на полную мощность: бактерии необходимо знать, что запасы глюкозы исчерпались. Таким сигналом служит комплекс двух молекул – циклического аденозинмонофосфата (цАМФ) и белка под названием САР. В бактериальной клетке происходит накопление цАМФ, когда сильно падает уровень глюкозы.

САР связывается с цАМФ, и получившийся комплекс прикрепляется к ДНК перед генами, отвечающими за метаболизм лактозы. Этот комплекс изгибает ДНК и тем самым облегчает связывание с ней фермента РНК – полимеразы, осуществляющей считывание генов, – в результате начинается синтез РНК на матрице ДНК. Стоит комплексу цАМФ – САР связаться с ДНК, как производство ферментов, участвующих в метаболизме лактозы, разворачивается полным ходом. Получается, что репрессор выключает, а комплекс цАМФ – САР включает этот процесс.

Жакоб с коллегами окрестили гены, отвечающие за расщепление лактозы, опероном lac.Оперон – это группа функционально связанных генов, которые регулируются одними и теми же факторами. Жакоб подозревал, что опероны олицетворяют общий принцип работы генов. Сотни генов E. coliобъединены в опероны, каждым из которых управляют собственные переключатели. У некоторых оперонов переключателей несколько, и для запуска производства белков все они должны сработать. Иногда одного – единственного белка оказывается достаточно, чтобы запустить целый каскад реакций, включить гены, отвечающие за производство еще каких‑нибудь переключателей, и в конечном итоге позволить E. coliизготовить сотни новых типов белков.

Вообще, включатели и выключатели встречаются в природе повсеместно. Профаги спят внутри бактерии благодаря репрессорам, которые не позволяют их генам активироваться. При воздействии стрессовых факторов репрессоры освобождают ДНК, и профаги начинают производство новых вирусов. Опероны можно обнаружить и в других бактериях. В клетках животных, таких как мы с вами, опероны, судя по всему, встречаются гораздо реже. Но даже гены, расположенные в нашем геноме не по соседству друг с другом, иногда включаются в результате действия одного и того же регуляторного белка.

Только за счет включения и выключения генов наши клетки могут вести себя по – разному – ведь геном во всех клетках организма одинаковый. Этот механизм дает им возможность стать клетками печени или частью кости, обрести чувствительность к свету или теплу. Выяснив, как E. coliпьет молоко, Жакоб и его коллеги открыли путь к пониманию того, почему мы с вами люди, а не просто амебы.

Живые схемы

Для инженера схема – это совокупность проводов, резисторов и других электронных компонентов, организованных таким образом, чтобы получить из входного сигнала выходной. Счетчик Гейгера, зарегистрировав пролетающую через него радиоактивную частицу, производит щелчок. Нажатие на клавишу выключателя погружает комнату в темноту. Гены работают в соответствии с той же логикой. У генетической схемы тоже есть входы и выходы. Lac – оперон срабатывает лишь при получении на вход двух сигналов: сигнала о том, что у E. coliзакончилась глюкоза, и сигнала о наличии лактозы. На выходе этой схемы – белки, необходимые E. coliдля расщепления лактозы.

У E. coliнет проводов, которые ученые могли бы разомкнуть, чтобы посмотреть, как работают ее схемы. Вместо этого им приходится ставить эксперименты вроде тех, что проводили Моно и Жакоб. Экспериментаторы наблюдают, как быстро микроорганизмы откликаются на изменение окружающей среды, с какой скоростью они способны произвести тот или иной белок или, наоборот, избавиться от него. Они объединяют результаты множества экспериментов в модели и с их помощью предсказывают, как поведет себя E. coliв следующем эксперименте. Фундаментальные открытия, сделанные Моно, Жакобом и их коллегами на E. coli,позволили другим ученым разобраться в схемах разных видов, в том числе и нашего. Но в течение всех 50 лет, что прошли с того памятного вечера в кинотеатре, исследователи продолжали всерьез изучать E. coli.Им удалось обнаружить в генетическом аппарате бактерии интереснейшие структуры, а позже составить его карту – самую подробную из всех обитающих на Земле видов живых существ; попутно выяснилось, что генетические схемы во многом напоминают схемы электронные, которые сегодня можно обнаружить в цифровых камерах или спутниковых радиоприемниках.

Чтобы доказать, что это не пустое сравнение, я хочу разобрать работу всего лишь одной из множества схем E. coli.Эта схема управляет биосинтезом и сборкой жгутиков. Ученые потратили немало лет на то, чтобы выяснить, какие гены в нее входят. А в 2005 г. Ури Алон и его коллеги из Института Вейцмана определили наконец, что эта схема делает. Она работает как противопомеховый фильтр.

Инженеры используют подобные фильтры для блокирования атмосферных помех в телефонных линиях, борьбы с размыванием изображений и другими внешними воздействиями, затрудняющими прием сигнала. В случае E. coliв роли помех выступает лишняя, несущественная информация об окружающей среде, а противопомеховый фильтр позволяет бактерии обращать внимание только на те факторы, которые имеют принципиальное значение. Для E. coliпри сборке жгутика крайне важно отсекать помехи, потому что его сооружение во многом напоминает строительство собора.

Бактерия должна включить около 50 генов, синтезирующих десятки тысяч белков, причем белки эти синтезируются и действуют в строго согласованном порядке. Сначала мотор встраивается в клеточную оболочку. Затем стержень с центральным каналом, работающий наподобие шприца, пройдя сквозь центр мотора, выталкивает наружу тысячи белковых молекул. Белки проходят через полую трубочку и появляются с другой стороны, наращивая жгутик. Весь процесс занимает один – два часа, что для E. coliможет означать несколько поколений. При делении клетки новая бактерия наследует частично выстроенный жгутик и передает его, по – прежнему в незавершенном виде, своим потомкам.

К моменту окончания синтеза жгутиков проблема, заставившая микроорганизм отращивать их, может разрешиться сама собой. Вся затраченная на эту работу энергия пропадает впустую. Поэтому E. coliвнимательно следит за тем, что происходит вокруг, и как только дела начинают идти на лад, останавливает сборку жгутика. Единственная причина, из‑за которой эта стратегия способна привести к неудаче, заключается в том, что наступление лучших времен может обернуться мимолетным миражом. Если E. coliпрекратит сборку жгутика при первом проблеске надежды – скажем, случайно проплывающей мимо молекулы кислорода, – она может застрять там, где ее жизни грозит опасность. Такие сигналы играют для E. coliроль помех, которые она должна отсекать.

Чтобы объяснить, как E. coliотфильтровывает из сигнала помехи, я нарисую блок – схему соответствующей системы. Стрелка со знаком «плюс» означает, что данный сигнал или ген стимулирует активность другого гена.

Знак «минус» означает, что ген подавлен. Первая стрелка на этой схеме ведет из внешнего мира внутрь клетки E. coli.Почувствовав, что условия окружающей среды стали неблагоприятными, бактерия в некоторых случаях производит в ответ белки FlhD и FlhC, которые формируют тетрамерный комплекс, состоящий из двух молекул FlhD и двух молекул FlhC.

Этот комплекс – один из главных переключателей E. coli.Он способен закрепляться в разных местах бактериальной хромосомы и включать разные гены, которые отвечают за производство многих белков, необходимых для синтеза жгутика.

Именно здесь кроется основной недостаток механизма, отвечающего за синтез жгутика. В ответ на стрессовое воздействие этот механизм может включить соответствующие гены, но ему же придется их выключать, когда кризис завершится. Без воздействия стрессового фактора бактерия прекращает производить новые молекулы FlhD/FlhC. Старые молекулы постепенно исчезают, и контролируемые FlhD/FlhC гены теряют способность производить свои белки. В результате сложный процесс синтеза жгутика начинает давать сбои и вообще прекращается при малейшем, хотя и недолгом, улучшении ситуации. Когда же условия вновь ухудшатся, бактерии придется паскочегапивать свою жгутикостпоительную машину практически с нуля. Понятно, что в критических обстоятельствах любая задержка может оказаться фатальной.

На самом деле E. coliне страдает и не гибнет от ложных сигналов тревоги, потому что в ее генетическом аппарате имеются дополнительные системы регуляции. При включении генов, отвечающих за синтез жгутика, комплекс FlhD/FlhC запускает резервный ген fliA.

Кодируемый им белок FliA тоже может включать гены, отвечающие за синтез жгутика.

Но fliA,помимо всего прочего, находится под контролем еще одного белка, получившего название FlgM. Этот белок захватывает молекулы белка FliA сразу же, как только E. coliих синтезирует, и не позволяет им включать гены синтеза жгутика. Вот как выглядит схема с участием FlgM:

Однако FlgM не способен долго подавлять работу fliA,потому что E. coliвыбрасывает его наружу через ту же шприцеподобную структуру, через которую подается строительный материал для жгутика. По мере того как число молекул FlgM снижается, высвобождается все больше молекул белка FliA, которые начинают включать гены синтеза жгутика один за другим.

Вот, наконец, полная схема противопомехового фильтра E. coli,составленная Алоном и его коллегами:

Этот элегантный генетический механизм делает E. coliцарицей в лучшем из миров. В начале процесса синтеза жгутика бактерия сохраняет высочайшую чувствительность к любым признакам улучшения ситуации, потому что за работу соответствующих генов в этот момент отвечает только FlhD/FlhC. Но когда «шприц» построен и E. coliначинает выкачивать FlgM наружу, в дело вступает противопомеховый фильтр. Если теперь стрессовые факторы ослабевают, снижается и уровень FlhD/FlhC. Но к этому моменту E. coliуже успевает выработать достаточное количество свободных молекул белка FliA, чтобы удерживать гены синтеза жгутика в рабочем состоянии более часа. Затем, если улучшение ситуации окажется временным, E. coliвозобновит производство FlhD/FlhC, и синтез жгутика продолжится без сбоев.

E. coliспособна отфильтровывать помехи и шум, но она отнюдь не глуха. Если обстановка значительно улучшится, бактерия прекратит синтез жгутика. Дело в том, что запаса FliA надолго не хватит. Молекулы белка одна за другой получают повреждения, и молекулярные мусорщики E. coliих уничтожают. Если стрессовое воздействие не возобновится в течение определенного времени, запасы белка FliA закончится и схема перестанет действовать. Видно, и правда вернулись сытые времена, и пора отказаться от строительства бесполезного жгутика.

Сейчас ученые пытаются разобраться в генетических схемах других биологических видов так же тщательно, как Алон и его коллеги разобрались в схемах E. coli.Но этот процесс займет немало времени. Знаний ученых о том, как работают в этих схемах гены и белки, пока недостаточно, чтобы строить хорошие, достоверные модели. Во многих случаях нам известно лишь, что ген А включает гены В и С; мы не представляем, что заставляет его «щелкать выключателем» и что происходит после этого.

Но Алон сумел извлечь замечательный урок даже из такого крохотного объема информации. Вместе с коллегами он тщательно исследовал гены E. coliи нескольких других хорошо изученных видов – дрожжей, уксусных нематод, плодовых мушек, мышей и человека. Соединение отдельных блоков этих схем стрелками происходит в соответствии с неким шаблоном намного чаще, чем можно было бы ожидать при их случайном формировании. Противопомеховый фильтр E. coli,к примеру, принадлежит к классу схем, которые инженеры называют схемами регулирования с прямой связью или схемами непосредственного регулирования. (Цепочка связей в противопомеховом фильтре идет от FlhDC к FliA и далее к генам синтеза жгутика.) Как показали Алон и его коллеги, схемы непосредственного или прямого регулирования необычайно популярны в живых системах. Кроме того, природа демонстрирует склонность к использованию еще нескольких типов схем, которые, судя по всему, также дают жизни возможность извлекать выгоду из таких инженерных решений, как противопомеховые фильтры. E. coliи слон, похоже, не просто построены на базе одного и того же генетического кода. Вдобавок, они скомпонованы с использованием одних и тех же стандартных схемотехнических приемов.


    Ваша оценка произведения:

Популярные книги за неделю