Текст книги "Великие химики. В 2-х томах. Т. 1."
Автор книги: Калоян Манолов
Жанры:
Химия
,сообщить о нарушении
Текущая страница: 15 (всего у книги 25 страниц)
Статья Берцелиуса о повой номенклатуре была опубликована в 1813 году в журнале Томсона «Философские летописи». Год спустя в том же журнале Берцелиус опубликовал вторую статью, в которой сформулировал правила написания формул. Число атомов он обозначал цифрой, поставленной в верхнем конце знака. Если соединение содержало два атома данного элемента, он предлагал писать знак жирной буквой, а в формулах окислов обозначал атом кислорода точкой или запятой. Так, для воды вместо H2O он писал Н∙, а для окиси серы – S∙ вместо SO3. Новые обозначения химических элементов были довольно скоро приняты учеными: они оказались очень удобными, но вот формулы стали применять лишь в середине XIX века[346]346
Одновременно с Берцелиусом У. Хиггинс в «Опытах и наблюдениях по атомной теории» (Дублин, 1814 г.) предложил ввести аналогичные символы. В 1819 г. буквенную символику для химических элементов и соединений на основе их немецких названий предложил петербургский академик А. И. Шерер (1771–1824). См.: Быков Г. В., Куринной В. И. Вопросы истории естествознания и техники, вып. 5, 1957, с. 173; Джуа М., ук. соч., с. 195, 223–224; Становление химии как науки, ук. соч., с. 261–285; Соловьев Ю. И. История химии, ук. соч., с. 127–141.
[Закрыть]. Только Джон Дальтон и Томас Томсон[347]347
Томас Томсон (1773–1852) – шотландский химик и историк химии, врач по образованию. Стал известен благодаря своей двухтомной «Истории химии». В Глазго проводил определения атомных весов элементов, которые привели к усовершенствованию методов количественного анализа, был убежденным сторонником атомизма. В 1818–1841 гг. руководил одной из первых английских лабораторий. О Томсоне см.: Биографический словарь деятелей естествознания и техники, ук. соч., т. 2, с. 277–278; Становление химии как науки, ук. соч., с. 244 и сл.; Волков В. А. и др., ук. соч., с. 495.
[Закрыть] остались до конца своей жизни противниками новых знаков и продолжали обозначать элементы различными кружками.
Весной 1813 года к Берцелиусу приехал из Англии Уильям Мак-Майкл.
– Мне поручили передать вам свои наилучшие пожелания доктор Марсит, Уильям Уолластон и Джемс Уатт.
– Расскажите, как чувствует себя доктор Марсит? Как его исследования? – поинтересовался Берцелиус.
– Я учился у доктора Марсита, а к вам приехал по его настоянию изучать химию.
– Но ведь я сам был у него в прошлом году и изучал химию!
– Возможно, но доктор Марсит да и остальные английские химики считают вас одним из крупнейших представителей современной химической науки. Они убеждены, что именно у вас можно многому научиться.
Многие молодые исследователи мечтали работать в лаборатории Берцелиуса. Широта его познаний и интуиция, с которой он оценивал опытные данные, привлекали ученых, и многие начали свой путь в науку в лаборатории Берцелиуса.
Мак-Майкл стал работать у Берцелиуса, изучая методы количественного анализа. Никто другой не владел этим искусством лучше шведского химика. Берцелиус усовершенствовал старые методы и создал новые. Он никогда не скрывал своих достижений и с радостью передавал свои знания молодым. Он писал учебники, готовил критические обозрения опубликованных в Европе научных статей. И все это с единственной целью – облегчить работу исследователей. С 1820 года до конца своей жизни Берцелиус по поручению Академии наук издавал «Ежегодные обзоры». Этот журнал стал ценным справочником, все его номера переводились на немецкий язык и выходили в свет в Берлине, а последние 8 годовых комплектов были переведены на французский язык.
– Наука – огромный океан. Чтобы плавать в нем, надо быть опытным рулевым, надо иметь путеводную звезду, – не раз повторял ученый.
– Изучит ли когда-нибудь человечество полностью этот океан? – спросил его как-то Мак-Майкл.
– Быть может, через сто лет или еще больше в науке будут работать тысячи людей. Тогда они изучат не только поверхность океана, но и его глубины, тогда…
Берцелиус не закончил. В кабинет вошла женщина в траурном платье. Удивленный, ученый поднялся ей навстречу.
– Госпожа Экеберг! Что привело вас в Стокгольм?
– Приехала искать помощи, господин Берцелиус.
– Мак-Майкл, познакомьтесь: вдова недавно скончавшегося профессора Андерса Экеберга[348]348
Андерс Густав Экеберг (1767–1813) – шведский минералог и химик, профессор Упсальского университета, учитель Берцелиуса. Экеберг обнаружил в танталите новый химический элемент, по свойствам похожий на «Колумбии» (ниобий). Дальнейшие исследования показали, что на самом деле это были два новых элемента – ниобий и тантал (Фигуровский Н. А., ук. соч., с. 122–123; Меншуткин Б. Н., ук. соч., с. 136–137).
[Закрыть] из Упсалы, – сказал Берцелиус и, обратившись к госпоже Экеберг, продолжил: – а это господин Уильям Мак-Майкл из Лондона. – Она вежливо поклонилась.
– У нас денежные затруднения, господин Берцелиус. Пришлось продать даже кое-какие вещи за долги. Вам известно, конечно, о большой коллекции минералов мужа. Не откажите в любезности направить меня в какой-нибудь институт, который купил бы ее.
– Извините, что я вмешиваюсь в вашу беседу. Однако мне кажется, что коллекцией может заинтересоваться Британский музей, – сказал Мак-Майкл.
Вскоре Мак-Майкл получил полномочия купить у госпожи Экеберг коллекцию ее мужа. Минералы, приведенные в порядок и заботливо упакованные, прибыли в Стокгольм в нескольких десятках ящиков. Мак-Майкл пересмотрел их и решил отобрать только самые редкие и красивые экземпляры, остальные передал Берцелиусу.
– Минералы будут прекрасным пособием при демонстрациях опытов на лекциях химии, – сказал Мак-Майкл, объясняя причину столь щедрого подарка.
Берцелиус занялся приведением в порядок коллекции с особенным усердием и интересом. В то время уже существовали классификации, предложенные Ренэ Жюстом Гаюи, Гаусманом и другими учеными-минералогами. Согласно этим классификациям, очень часто два совершенно различных по химическому составу элемента ставили рядом, а близкие по составу минералы относили к различным группам. Естественно, требовалась новая, более совершенная классификация.
Берцелиус начал изучать минералы. Наряду с минералогическим исследованием он проводил и полный количественный анализ. С самого начала он установил, что большая часть минералов содержит «кремневое вещество» (кремнезем). Связываясь с другими окислами металлов, это вещество образует соединения, которые входят в состав минералов. «Кремневое вещество» играет огромную роль при минералообразовании. Содержащие его минералы Берцелиус назвал силикатами («силекс» по-латыни – «кремень»). Берцелиус установил, что соотношение остальных окислов металлов с «кремневым веществом» в силикатах различное – 1:1, 1:2, 1:3… В соответствии с этим он разделил силикаты на три большие группы. Для удобства он рассматривал каждый минерал как бы составленным из определенного числа окислов, связанных между собой в соответствующих пропорциях. Этот способ выражения состава минералов используют и ныне в минералогии и петрографии.
Свои результаты исследований минералов он опубликовал в 1814 году в статье, где впервые предлагал новую, чисто химическую классификацию минералов. Работа вызвала огромный интерес, и ее сразу перевели на английский и немецкий языки.
В том же году он опубликовал и первую таблицу атомных весов, которая явилась результатом его восьмилетней исследовательской работы.
Берцелиус продолжал заниматься минералогией и в дальнейшем. Побудил его вернуться к этому владелец шахт в Фалуне Юхан Готтлиб Ган[349]349
Юхан Цоттлиб Ган (1745–1818) – шведский горный химик, друг Шееле и помощник Берцелиуса в ряде аналитических исследований; в 1774 г. совместно с Шееле открыл марганец. О Гане см.: Волков В. А. и др., ук. соч., с. 126–127.
[Закрыть], который зашел как-то к Берцелиусу по Делу.
Ган лет сорок назад впервые выделил металл, который ныне называют марганцем. У него была собственная лаборатория, в которой он проводил химические исследования минералов.
Ган говорил размеренно, прислушиваясь к каждому произнесенному им слову:
– Вот уже год как я работаю с кварцевой жилой, но она остается для меня загадкой. Не поддается да и только.
– Чем же она так интересна? – спросил Берцелиус.
– Я убежден, что она содержит незнакомый минерал, а быть может, и новый элемент. Но, видимо, годы берут свое, и я уже не могу работать один, да и методы мои, судя по результатам, несовершенны. Эта задача только вам по силам, Берцелиус. Займитесь анализами.
– Ну что ж, давайте вместе изучать кварцевую жилу, господин Ган.
Через несколько дней они выехали в Фалун, где находилась великолепно оборудованная лаборатория Гана. Ган проводил анализ вещества в пламени паяльной трубки. Это была маленькая стеклянная трубка, изогнутая с одного конца под прямым углом. Этот конец Ган вносил в пламя спиртовой лампы и равномерно дул в другой конец. Воздушная струя отклоняла пламя и направляла его на кусочек древесного угля. В маленькое углубление в угле Ган помещал смесь порошкообразного минерала, соды и селитры. Под действием высокой температуры, а также соды и угля происходили изменения, по которым можно было судить о составе минералов.
Это был так называемый сухой анализ. Берцелиус усвоил этот удобный и незамысловатый способ работы. Параллельно с исследованиями, которые имели целью определить содержащиеся в жиле элементы, они начали анализ мокрым способом. Самые большие затруднения вызвало «кремневое вещество». Чтобы отделить его от остальной части пробы, им пришлось долго обрабатывать ее концентрированной соляной кислотой, отфильтровывать нерастворимый остаток, повторяя эту операцию несколько раз.
Недели упорной и напряженной работы – и одна за другой были определены составные части кварцевой жилы. Оставалось неразгаданным лишь одно вещество, по свойствам не похожее ни на одно соединение из известных тогда элементов. Это был белый порошок, который с водой соединялся, как негашеная известь, то есть с выделением тепла. Но окисью кальция это соединение не было, так как полученное студнеобразное вещество не растворялось в воде. На воздухе оно медленно высыхало, превращаясь в твердую, подобную фарфору, массу.
– В воде не растворяется, но, смешиваясь с ней, придает среде отчетливо выраженную щелочную реакцию, – отметил Берцелиус.
– Следовательно, мы имеем дело с основным окислом, – заметил Ган.
– Да, но это окисел незнакомого нам металла. Свойства его предположительно близки к свойствам кальция и алюминия, однако все это требует проверки.
С помощью паяльной трубки и угля им не удалось получить зерна металла.
– А может, нагревания недостаточно? Попробуем применить другой способ.
Исследователи неоднократно изменяли условия опытов, пытаясь выделить кислород из окисла и получить чистый металл, но безуспешно.
– Этот металл непобедим подобно богу-громовержцу Тору. – Берцелиус засмеялся. – Назовем его торием.
Но то, что открыли оба исследователя, не было торием. Тринадцатью годами позже, в 1828 году, Фридрих Вёлер успешно восстановил этот окисел и назвал полученный металл иттрием[350]350
Об истории иттрия см.: Трифонов Д. Н. Проблема редких земель. – М.: Госатомиздат, 1962; Джуа М., ук. соч., с. 151, 160; Фигуровский Н. А., ук. соч., с. 75; Меншуткин Б. Н. Курс общей химии. – Л.: Госхимтехиздат, 1933, с. 339–340; Трифонов Д. Н. Цена истины: Рассказ о редкоземельных элементах. – М.: Педагогика, 1977; Альтшулер С. В. и др. Открытие химических элементов: Специфика и методы открытия. – М.: Просвещение, 1980, с. 37–49; Трифонов Д. Н., Трифонов В. Д., ук. соч., с. 104–115.
[Закрыть]. И в том же году Берцелиус открыл в норвежском минерале, присланном в его лабораторию для анализа, другой новый элемент, который и назвал торием[351]351
Торий получил свое название за 15 лет до открытия. В 1815 г. при анализе редкого минерала из Фалуна Берцелиус решил, что в нем содержится новый элемент – торий. – Ошибка была установлена самим Берцелиусом: он привял за окисел нового металла основной фосфат иттрия. Когда в 1828 г. он проводил анализы норвежского минерала с острова Левен, то обнаружил, что тот состоит из кремнезема и окисла неизвестного металла, который вновь получил название «торий» (Фигуровский Н. А., ук. соч., с. 128–129; Менпгуткин Б. Н., ук. соч., с. 413–414).
[Закрыть].
Закончив работу в Фалуне, Берцелиус приступил к составлению учебника по химии, который был опубликован в 1816 году в трех томах. Почти одновременно печатались и его переводы на французский и немецкий языки. Еще при жизни Берцелиуса только в Швеции учебник выдержал пять изданий. Это был самый полный, самый систематизированный и самый популярный учебник химии, по которому в течение более трех десятилетий обучались сотни молодых химиков.
Несмотря на разницу в возрасте, Ган и Берцелиус стали большими друзьями. Старый ученый часто заходил в лабораторию своего молодого коллеги и любовался мастерством, с которым Берцелиус проводил опыты.
– Восхищаюсь тобой, Йене. Я всегда мечтал иметь такого сына. Ох, какой силищей мы были бы вместе, но…
– Милый, добрый Ган, ты сделал для науки все, что было в твоих силах. И за это мир благодарен тебе.
– Человек никогда не бывает доволен собой. Всегда хочется сделать больше, чем ты смог. Вот и сейчас – нет мне покоя. Андерсон, обанкротившись, решил продать свою фабрику. Если бы у меня был такой сын, как ты, я, не раздумывая, купил бы ее. На ней производят самые различные химикаты: серную кислоту, уксус, белый свинец[352]352
Свинцовый глет, окись свинца PbО.
[Закрыть] и многое другое.
– Я ничего не слышал о случившемся. Но как же все-таки разорился Андерсон? Ведь фабрика работала бесперебойно и давала доход.
– Послушай, Йене. Купим фабрику вместе? Я буду вести дело, а ты консультировать.
Берцелиус задумался. А может, действительно стоит купить фабрику? Это принесет ему дополнительные доходы, необходимые для его научной деятельности.
Новые владельцы быстро привели расстроенные дела в порядок, и работа наладилась. Берцелиус посещал фабрику редко, но Гаи бывал там неотлучно.
Цех по производству серной кислоты работал нормально, однако в двуокиси серы содержались какие-то примеси, потому что в камерах накапливался красно-бурый илистый осадок, который время от времени приходилось выбрасывать. Сваленный в кучу, этот осадок постепенно высыхал, превращаясь в рыхлую, похожую на глину массу. Берцелиус взял маленький комочек осадка, чтобы исследовать его в лаборатории с помощью паяльной трубки на угле. Как только вещество нагрелось, над углем стали появляться маленькие голубоватые язычки пламени, а потом потянулся вверх белый дымок. По всей лаборатории распространился неприятный запах.
– Неужели это сера? Вещество горит, подобно сере, но откуда белый дым? Ведь двуокись серы – газ бесцветный.
Берцелиус взял большую пробу и возобновил исследование. При кипячении с азотной кислотой вещество полностью растворялось, а после длительного отстаивания из раствора выкристаллизовывались великолепные белые игольчатые кристаллы[353]353
Двуокись селена SeO2.
[Закрыть].
От Берцелиуса не ускользнули и самые, казалось бы, незначительные подробности. Он установил, что эти бесцветные кристаллы являются окислом, весьма похожим на двуокись серы, так как с водой они образовывали кислоту, подобную сернистой. Исследователь сумел получить в свободном состоянии и элемент – красно-бурый порошок, горевший голубоватым пламенем, подобно сере. Стоит подумать над названием для нового элемента, решил Берцелиус. Он вспомнил, как лет десять назад немец Мартин Клапрот назвал открытый в Трансильвании элемент «теллур», в честь планеты Земля («теллус» по-гречески – «земля»). Свойства теллура похожи на свойства серы.
– Назову-ка я новый элемент в честь Луны – селениум.
Так в 1817 году был открыт селен. Берцелиус занялся определением его атомного веса и продолжил работу по определению атомных весов других элементов. Новые проблемы возникали одна за другой, и Берцелиусу уже трудно было справляться одному. Необходимость в помощнике стала очевидной. И Берцелиус нашел его. Это была Анна Бланк – молодая голубоглазая белокурая женщина. Она не только помогала ему по хозяйству, но была интересным собеседником и умела скрасить ученому часы одиночества после трудной, напряженной работы в лаборатории. Но самым большим достоинством Берцелиус считал ее влечение к науке. Она стала настоящим помощником ученому в его исследованиях.
– Вы переписали новую таблицу атомных весов, Анна? Дайте мне просмотреть еще раз.
– Рукопись тоже готова. Ее можно отсылать?
Это была вторая таблица атомных весов. В это время забота о химической фабрике целиком легла на плечи Берцелиуса, так как его старый друг Юхан Ган скончался.
В 1818 году Берцелиуса избрали секретарем Академии наук[354]354
В 1808 г. Берцелиус был избран членом Академии наук в Стокгольме, в 1810 г. – президентом, а в 1818 г. – непременным секретарем академии. В 1820 г. он стал почетным иностранным членом Петербургской Академии наук и состоял почетным членом Московского общества испытателей природы.
[Закрыть]. Это была большая честь, которая ко многому и обязывала. Прошло еще несколько лет, и Берцелиуса торжественно посвятили в рыцарский сан. Почести и слава теперь повсюду сопровождали ученого. Однако от напряженной работы и от постоянного соприкосновения с вредными химикатами его стали одолевать головные боли.
Врачи рекомендовали Берцелиусу уехать лечиться на юг, и он последовал их совету. По пути он посетил Англию, где встретился со своими старыми добрыми знакомыми, а потом поехал во Францию. В Аркёйе, имении Бертолле, ему оказали поистине королевский прием.
В большом зале в Аркёйе собрались самые выдающиеся французские ученые. Здесь были Доминик Франсуа Араго, Жан Батист Био, Пьер Луи Дюлонг[355]355
Пьер Луи Дюлонг (1785–1838) – французский химик и физик; научал удельные теплоемкости, кислородные соединения фосфора и азота, в 1811 г. открыл хлористый азот, получил фосфорноватистую кислоту (1816 г.). Был профессором химии в Альфоре, профессором физики и директором Политехнической школы в Париже. О Дюлонге см.: Lemav P., Oesper В. Chimia, 1, 171 (1948); Храмов Ю. А., ук. соч., с. 109; Сабадвари Ф., Робинсон А., ук. соч., с. 101; Волков В. А. и др., ук. соч., с. 181–482.
[Закрыть], Мишель Эжен Шеврель, Жорж Кювье[356]356
Жорж Леопольд Шретьен Фредерик Дагоберт, барон де Кювье 1769–1832) – французский естествоиспытатель, занимался в основном биологией развития и изменчивости видов. О Кювье см.: Krafft F., Меуer-Abich. Grosse Naturwissenschaftler: Biographisches Lexikon. – Frankfurt am Main und Hamburg: Fischer, 1970, S. 89–90; Канаев И. И. Жорж Кювье. – Л.: Наука, 1976.
[Закрыть], Пьер Симон Лаплас, Луи Жак Тенар, Жозеф Луи Гей-Люссак, Луи Никола Воклен, Андре Мари Ампер, а также немецкий естествоиспытатель Александр Гумбольдт.
Берцелиус выступил с обстоятельным докладом. Особый интерес вызвала у собравшихся электрохимическая теория. К его немалому удивлению во Франции о ней почти ничего не знали. Это побудило Берцелиуса немедленно подготовить новую рукопись на французском языке и опубликовать ее во время своего пребывания в Париже.
Химическая классификация элементов явилась предметом его беседы с Гаюи. Несколько дней Берцелиус с восхищением осматривал огромную минералогическую коллекцию ученого. Здесь были собраны многие из самых красивых, самых совершенных творений природы. В знак дружбы Гаюи подарил Берцелиусу несколько великолепных друз.
Повсюду в Париже Берцелиус был желанным гостем. Он посетил лекции Гаюи, Воклена, Тенара, Гей-Люссака, Био и Броньяра[357]357
Александр Броньяр (1770–1847) – известный французский геолог.
[Закрыть]. Особенно понравился ему Гей-Люссак. Французский химик излагал самые сложные вопросы так просто, что слушать его было истинным удовольствием; немало способствовала этому, быть может, и превосходная дикция ученого. Слушая его лекции, Берцелиус извлек для себя большую пользу. Даже достигнув самых высоких вершин в науке, он никогда не переставал учиться и совершенствовать свои знания. Он общался с широким кругом ученых, изучал труды по самым разнообразным проблемам, всегда пытаясь найти для себя что-то новое, еще не познанное. Его стремление к знаниям было поистине безграничным.
За работой Берцелиуса по определению атомных весов элементов с большим интересом следили многие ученые. Некоторые из них тоже проводили подобные исследования, иные пытались открыть закономерности, которые связывают атомный вес со свойствами элементов. Особенно интересными оказались исследования двух французских ученых – Пьера Луи Дюлонга и Алексиса Тереза Пти[358]358
Алексис Терез Пти (1791–1820) – французский физик, коллега Дюлонга по изучению атомной теплоемкости элементов. В 1819 г. ученые показали, что атомная теплоемкость всех простых тел в кристаллическом состоянии приблизительно постоянна (закон Дюлонга – Пти). В 1818 г. ими выведена общая формула для скорости охлаждения тел. О Пти см.: Храмов Ю. А., ук. соч., с. 224.
[Закрыть], которые определили количество тепла, необходимого для повышения температуры одного грамма вещества на один градус, и атомную теплоемкость элементов (количество тепла, необходимое для повышения температуры 1 грамм-атома вещества на один градус). Первые же исследования принесли желаемые результаты: атомная теплоемкость всех элементов оказалась одной и той же и равнялась приблизительно шести. Рукопись с описанием этих исследований должна была быть опубликована в журнале Парижской Академии наук. Берцелиус ознакомился с ней в кабинете Дюлонга.
– Ваше открытие может быть использовано и для определения атомных весов, – сказал Берцелиус.
– Каким образом? – удивился Пти.
– Обычно число атомов данного элемента, которые входят в состав соединения, не может быть определено непосредственно. Тогда мы ищем аналоги, обращаемся к косвенным методам, а часто используем и совершенно произвольные допущения. Теперь на основе вашего открытия мы сможем выбрать правильное число значительно легче и увереннее.
– А ведь и верно. Нужно только умножить удельную теплоемкость элемента на его атомный вес. Произведение должно дать цифру, близкую к шести, – подхватил мысль Берцелиуса Дюлонг.
– Я горю желанием тут же приступить к вычислениям, дорогой Дюлонг, но не для всех элементов известна удельная теплоемкость.
Дюлонг горько улыбнулся. Восемь лет назад при исследовании им хлорида азота произошел взрыв, в результате которого ученый лишился зрения и двух пальцев правой руки. Какое-то мгновение… но оно отняло у него самое дорогое, смысл всей жизни: работать во имя науки. Теперь он постоянно нуждался в помощниках. Но и слепой, Дюлонг продолжал упорно экспериментировать. Вопрос об атомных весах являлся краеугольным камнем, и поэтому Берцелиус и Дюлонг приступили к совместной работе. Берцелиус проводил эксперименты, а потом вместе с Дюлонгом обсуждали полученные результаты. Исследователи уточнили атомные веса водорода, азота и кислорода, определили плотности кислорода, азота и двуокиси углерода.
Атомный вес в системе Берцелиуса – Ренью
Символ | O = 100 | Н = 1 | Символ | O = 100 | H = 1l |
Ag | 675 | 108 | Li | 43,75 | 7 |
As | 408,75 | 75 | Mg | 150 | 24 |
N | 87,5 | 14 | Hg | 1250 | 200 |
Da | 856,25 | 137 | O | 100 | 16 |
Ca | 250 | 40 | K | 244,375 | 39,1 |
С | 75 | 12 | Cu | 396,25 | 63,5 |
Cl | 221,875 | 35,5 | Si | 175 | 28 |
Fe | 350 | 56 | Na | 143,75 | 23 |
Р | 193,75 | 31 | S | 200 | 32 |
Н | 6,25 | 1 | Za | 407,5 | 65,2 |
Перемена климата благотворно сказалась на здоровье Берцелиуса, и он решил поехать во Фрейберг. Он хотел познакомиться с работой Академии горного дела и металлургии[359]359
Фрейбергская горная академия – одно из первых горнотехнических высших учебных заведений, основана в 1765 г. (Шафрановский И. И. А. Г. Вернер. – М.: Наука. 1968, с. 11–24).
[Закрыть].
Во время своей поездки во Францию он побывал в некоторых геологических районах, имеющих немаловажное значение для экономического развития страны. И повсюду он завязывал знакомства, приобретая новых друзей.
В Швейцарии Берцелиус вновь встретился с доктором Марситом и познакомился с Теодором де Соссюром[360]360
Никола Теодор де Соссюр (1767–1845) – швейцарский естествоиспытатель, сын первого исследователя геологического строения Альп Ора«а Бенедикта Соссюра, автор капитального труда «Химические исследования растений», содержащего многочисленные опытные данные о различных сторонах жизнедеятельности растений, и прежде всего об их питании – воздушном и почвенном. О Соссюре см.: История биологии с древнейших времен до начала XX в. – М.: Наука, 1972. с. 219; Биографический словарь деятелей естествознания и техники, ук. соч., с. 236–237; Волков В. А. и др., ук. соч.. с. 473.
[Закрыть]. В Тюбингене у него состоялась встреча с Христианом Гмедином[361]361
Христиан Готтлоб Гмелин (1792–1860) – немецкий химик, профессор химии и фармации в Тюбингенском университете. О Гмелине см.: Волков В. А. и др., ук. соч.. с. 145.
[Закрыть], который когда-то был его учеником. Наконец, посетив Берлин, Берцелиус вернулся на родину.
Теперь ему предстояло начать новую проверку атомных весов. Закон Дюлонга и Пти и закон изоморфизма Эйльгарда Митчерлиха открыли ему новые возможности. Свои исследования Берцелиус проводил совместно с Митчерлихом и Генрихом Розе[362]362
Генрих Розе (1795–1864) – немецкий химик-аналитик, ученик Берцелиуса, профессор Берлинского университета, иностранный чл.-корр. Петербургской Академии наук с 1829 г. Впервые четко отделил качественный анализ от количественного, разработал сероводородный метод качественного анализа, в 1844 г. открыл химический элемент ниобий. Его двухтомный «Учебник аналитической химии» выдержал шесть изданий. О Розе см.: Становление химии как науки, ук. соч., с. 156–162 и др.; Волков В. А. и др., ук. соч., с. 435–436.
[Закрыть] – двумя молодыми немецкими учеными, приехавшими в Стокгольм для усовершенствования своих знаний и ознакомления с современными методами научной работы.
Это был период расцвета творческой деятельности Берцелиуса, пожалуй, самого крупного ученого первой половины XIX столетия. Его деятельность на протяжении последующих десяти лет сопровождалась частыми поездками в Европу. Однако работу в лаборатории он не оставлял. За это время он получил в свободном состоянии и изучил кремний, титан, цирконий и торий[363]363
Берцелиус открыл четыре новых химических элемента – цернй (1803 г.), селен– (1817 г.), кремний (1823 г.), торий (1828 г.), а титан, тантал и цирконий впервые получил в свободном состоянии (Трифонов Д. Н., Трифонов В. Д., ук. соч., с. 213–214).
[Закрыть]. Занимаясь классификацией минералов, Берцелиус установил, что «кремневое вещество» является окислом неизвестного элемента, соединения которого знал еще Карл Вильгельм Шееле. «Кремневое вещество» знакомо ученым с давних времен, но, к сожалению, никто не мог получить этот элемент в свободном состоянии.
Имея в виду исключительную активность калия, Берцелиус решил проверить, не отнимет ли этот металл фтор от фторида кремния. Он получил соединение по методу Шееле и подверг его действию металлического калия. Его предположения оправдались. По окончании реакции в сосуде остался коричневый порошок, который легко сгорал и превращался в «кремневое вещество». Это был новый элемент, который получил название «силициум» (кремний).
Метод оказался весьма удобным, и Берцелиус решил применить его к соединениям других элементов, еще не выделенных в свободном состоянии. И действительно добился успеха. В 1824 году при обработке двойной соли фторида калия – циркония металлическим калием был впервые получен цирконий. На следующий год таким же методом он получил титан. Много затруднений доставил ученому неизвестный элемент, который содержался в минерале, присланном ему из Норвегии. Берцелиус извлек этот элемент из горной породы с помощью фторида калия и подверг восстановлению металлическим калием. Процесс протекал легко, но новый металл обладал высокой активностью и почти мгновенно превращался в окисел. Приняв специальные меры для предохранения его от окисления, Берцелиус сумел получить новый металл, правда в весьма незначительном количестве. Этот элемент получил название «торий». Еще тринадцать лет назад, когда Берцелиус работал вместе с Ганом, он предложил то же самое название для элемента, окисел которого они тогда изолировали из минерала, полученного в шахтах Фалуна. Исследования Вёлера показали, что открытый ими окисел принадлежал элементу иттрию. Теперь, однако, сомнений не было: открытый Берцелиусом элемент – торий. Элемент получался в незначительных количествах, и это обстоятельство мешало изучению его свойств. Тогда Берцелиус решил подробно исследовать свойства окиси тория.
В этот период в лаборатории Берцелиуса работали и совершенствовали свои познания в химии многие исследователи, ставшие впоследствии известными учеными. Среди них были Фридрих Вёлер, Герман Гесс[364]364
Герман Иванович Гесс (1802–1850) – русский химик, академик, основатель термохимии; в 1840 г. открыл основной закон термохимии – закон постоянства сумм тепла. Установил катализирующее свойство мелкораздробленной платины, открыл и определил состав четырех новых минералов – вертита, уваровита, гидроборацита и фольбортита, а теллурид серебра назван в его честь гесситом. Его учебник «Основания чистой химии» переиздавался семь раз. О Гессе см.: Гесс Г. И. Термохимические исследования. – М.: Изд-во АН СССР, 1958. Серия (Классики науки); Соловьев Ю. И. Герман Иванович Гесс. – М.: Изд-во АН СССР, 1962; Мусабеков 10. С, Черняк А. Я., ук. соч., с. 133–137; Балезин С. А., Бесков В. Д. Выдающиеся русские ученые-химики. – 2-е изд., перераб. – М.: Просвещение, 1972, с. 41–45; История учения о химическом процессе. – М.: Наука, 1981, с. 14–23 и др. – (Всеобщая история химии).
[Закрыть], Густав Магнус[365]365
Генрих Густав Магнус (1802–1870) – немецкий химик, профессор физики и технологии в Берлине, ученик Митчерлиха, Берцелиуса и Гей-Люссака, иностранный чл.-корр. Петербургской Академии наук. Занимался анализом минералов, получил аммиакат платины (соль Магнуса) и несколько органических кислот, изучал содержание газов в крови, работал в области агрохимии. Впервые получил и описал пирофорное железо, изучал аэродинамику снарядов, световые явления; создал первую физическую лабораторию и организовал в 1843 г. первый физический коллоквиум, был одним из создателей Берлинского физического общества (1845 г.) и Немецкого химического общества (1868 г.). О Магнусе см.: Храмов Ю. А., ук. соч., с. 173; Волков В. А. и др., ук. соч., с. 317.
[Закрыть], Карл Густав Мосандер и другие.
В 1826 году Берцелиус полностью завершил работу по определению атомных весов элементов и опубликовал третью по счету таблицу атомных весов. Почти все значения в ней были точными, за исключением атомных весов серебра, калия и натрия; Берцелиус принимал, что формула их окислов MeО, а не Me2О, каковой она является в действительности.
Параллельно с лабораторными исследованиями Берцелиус занимался и научно-литературной деятельностью. Он систематически читал все публикации в области химии и готовил короткие резюме-доклады о каждой статье. Эти резюме печатались в известном тогда реферативном журнале «Яресберихте» – «Ежегодные обзоры»[366]366
«Обзоры успехов химии и физики»; всего вышло 27 томов, три первых ежегодника появились в переводе на немецкий язык X. Г. Гмелина, остальные выпуски переводил Ф. Вёлер. С 1840 г. «Обзоры» переводил на французский язык Ф. Плантамур (1816–1898), тоже ученик Берцелиуса (Джуа М.. ук. соч., с. 224).
[Закрыть].
Огюст Лоран
Время у ученого было уплотнено до предела. Лекции в университете, работа в журнале «Ежегодные обзоры», редактирование статей, проведение опытов в лаборатории… Все чаще Берцелиусу стала приходить в голову мысль отказаться от профессорской деятельности. Тогда он мог бы заниматься только исследовательской работой. Осенью 1832 года Берцелиус прочитал свою последнюю лекцию в Каролинском медико-хирургическом институте. Теперь его время принадлежало только науке. В лаборатории Берцелиуса по-прежнему трудилась Анна Бланк. Благодаря ее стараниям в лаборатории всегда была идеальная чистота и порядок. Она любила Берцелиуса. Однако любовь этой скромной женщины к ученому так и осталась неразделенной.
В 1832 году вместе с англичанином Уильямом Джонстоном, ставшим впоследствии профессором химии в Дархеме, Берцелиус исследовал соединения олова. Вот уже несколько раз они получали довольно странные результаты. Анализы окислов олова показывали, что по химическому составу должен быть только один высший окисел. В лаборатории, однако, исследователи получали два различных вещества.
– В чем же разгадка тайны? Ясно, что одному химическому составу отвечает только одно соединение, однако здесь опыт показывает обратное, – рассуждал Берцелиус.
– Может быть, это своего рода исключение? – заметил Джонстон.
– Исключения тоже надо уметь объяснить.
И все-таки Берцелиус нашел объяснение этому загадочному явлению. Оказалось, что и другие ученые столкнулись с подобными фактами. Вёлеру, например, удалось превратить цианат аммония в мочевину. Оба вещества обладали совершенно одинаковым количественным составом, но их свойства коренным образом разнились. И открытый Фарадеем газ бутилен представлял ту же загадку. Бутилен состоит из 85,7% углерода и 14,3% водорода. Этим же количественным составом обладает и «олефиновый газ» (этилен), по его удельный вес вдвое меньше, чем у бутилена. Берцелиус все больше убеждался в том, что существуют несколько веществ с одинаковым количественным составом, но различными свойствами. Это явление он называл изомерией. Позднее ученые установили существование многих видов изомерии, а когда ввели понятие «молекулярный вес» и получила развитие органическая химия, такое родство, как у бутилена с этиленом, стали называть гомологией.
В 1841 году Берцелиус предложил термин «аллотропия» для установленной им способности одного и того же элемента существовать в виде различных простых веществ. В то время уже были открыты и изучены аллотропные формы углерода, серы, фосфора.
Порой жизнь приносила Берцелиусу и разочарования, и, в частности, они были связаны с развитием органической химии. В это время ученые открыли и изучили реакции, которые не только не могли быть объяснены с помощью электрохимической теории, но, наоборот, полностью противоречили ей. Ученые открыли также новые реакции, при которых водород замещался хлором. Согласно теории Берцелиуса, это было невозможно, поскольку хлор отрицателен, а водород положителен. Но электрохимическая теория утверждала, что положительно заряженный водород связывается в соединения с отрицательно заряженным элементом, следовательно, хлор не может замещать его: в результате реакции соединились бы два отрицательных элемента.
Жан Батист Дюма
Они должны были отталкиваться, а не соединяться! Однако хлорирование органических соединений было фактом, хотя и противоречило теории Берцелиуса. Исследователи получали все новые и новые соединения и изучали их свойства.
Вопреки очевидности Берцелиус сомневался в подлинности получаемых учеными данных. Он обвинял авторов статей в фальсификации и не мог поверить, что монохлоруксусная кислота получается при замещении одного атома водорода уксусной кислоты хлором. Он подверг уничтожающей критике теорию ядер Огюста Лорана[367]367
Огюст Лоран (1808–1853) – французский химик; открыл фталевую кислоту и фталевый ангидрид (1836 г.), ряд других ароматических соединений, заложил основы теории замещения в органических соединениях и теории ядер (1836 г.). О Лоране см.: Джуа М., ук. соч., с. 233–234; Bloch M. In: Bugge G., ук. соч., т. II, с. 92; de Milt. Chimia, 4, 85 (1954); Мусабеков 10. С, Черняк А. Я., ук. соч., с. 145–149; Соловьев Ю. И. История химии, ук. соч., с. 170 и сл.; Волков В. А. и др., ук. соч., с. 310.
[Закрыть], согласно которой органические соединения образуются из одного основного углеводорода. Как считал Лоран, соединение органических веществ подчиняется закону, аналогичному закону Гей-Люссака о простых объемных отношениях: органические вещества связываются между собой в простых объемных отношениях.
Несмотря на все усилия Берцелиуса защитить электрохимическую теорию, дальнейшее развитие химии требовало новых, более совершенных идей.
Жан Батист Дюма[368]368
Жан Батист Андре Дюма (1800–1884) – выдающийся Французский химик-органик, иностранный чл.-корр. Петербургской Академии наук с 1845 г., открыл ряд органических соединений, особое внимание уделял изучению действия хлора на органические вещества. Установил эмпирический закон замещения в органических соединениях водорода хлором, дал определение химического типа и в 1840 г. выдвинул первую теорию типов. Вел обширную педагогическую и научно-популяризаторскую деятельность, был непременным секретарем Парижской Академии наук. О Дюма см.: Джуа М., ук. соч., с. 231–233; Мусабеков Ю. С, Черняк А. Я., ук. соч., с. 122–126; Быков Г. В. История органической химии: Открытие важнейших органических соединений. – М.: Наука, 1978, с. 30 и сл.; Становление химии как науки, ук. соч., с. 219–222 и др.; Сабадвари Ф., Робинсон А., ук. соч., с. 183 и сл.; Волков В. А. и др., ук. соч., с. 182.
[Закрыть] полностью опроверг теорию Берцелиуса. Времена менялись, накапливались новые факты, появлялись новые ученые. Наука неуклонно развивалась.
Работы нового поколения химиков невольно приносили все больше и больше огорчений великому ученому. Он чувствовал себя от этого еще более одиноким и только теперь всерьез стал подумывать о женитьбе. Его избранницей стала дочь государственного канцлера Швеции Попиуса, старого друга Берцелиуса. Приготовления к свадьбе были долгими и торжественными. Предварительно Берцелиусу был пожалован титул барона. Наконец была сыграна пышная свадьба. В то время ему было пятьдесят шесть лет, а его жене, Иоанне, – двадцать четыре года. Разница в возрасте, однако, не помешала этому браку быть счастливым.
Деятельность Берцелиуса как ученого продолжалась до конца его дней[369]369
Только в течение 10 лет, с 1807 по 1817 г., Берцелиус получил, очистил и проанализировал более 2000 соединений 43 элементов. В общей сложности он опубликовал около 250 статей, несколько книг и множество рефератов.
[Закрыть]. В частности, в 1836 году в журнале «Летописи по физике и химии» он опубликовал очень важную статью, в которой обращал особое внимание на весьма загадочное явление. Многие ученые наблюдали и изучали химические реакции, скорость которых значительно увеличивалась в присутствии другого вещества, по-видимому не принимавшего непосредственного участия в реакции. В своей статье Берцелиус привел несколько таких примеров. Вещество, изменяющее скорость реакции и остающееся неизменным после ее окончания, он назвал катализатором.
С особой тщательностью Берцелиус готовил теперь доклады для «Ежегодных обзоров». Это была одна из самых больших заслуг перед наукой в последние годы жизни ученого[370]370
Берцелиус умер 7 августа 1848 г. в Стокгольме и похоронен недалеко от шведской столицы.
[Закрыть].
Йене Якоб Берцелиус – крупнейший ученый первой половины XIX века. Его заслуги в развитии химической науки огромны. Им проделана исполинская работа по определению атомных весов; ему принадлежит открытие и получение в чистом виде новых элементов – церия, селена, тория, кремния, титана, тантала, циркония и ванадия; его большая педагогическая деятельность дала мощный толчок развитию химии. Дело великого шведского химика было продолжено плеядой молодых ученых – его учеников, работавших в Швеции, России, Германии, Англии, Франции.