Текст книги "Предчувствия и свершения. Книга 1. Великие ошибки"
Автор книги: Ирина Радунская
Жанр:
Физика
сообщить о нарушении
Текущая страница: 17 (всего у книги 19 страниц)
Мина замедленного действия
Ньютон и не беспокоится. Он просто отбрасывает декартов туман. Ему не нужна наука, описывающая нереальный мир и не дающая ответов на вопросы о реальном мире. Он не хочет верить в фантастические романы кумира эпохи. Переболев непоследовательностью Декарта, он решает прежде всего выработать твёрдую позицию. Он хочет строить физику подобно тому, как излагал геометрию Евклид.
Из Опыта с большой буквы, то есть из наблюдений и практической деятельности людей, следует формулировать «положения» или «принципы», играющие роль аксиом геометрии. Это трудная задача, но Ньютон считал её важнейшей задачей науки. Далее эти принципы следует изложить на языке математики и из них, как из аксиом, выводить следствия – теоремы.
На основе теорем ставятся новые задачи, и найденные решения обязательно должны быть проверены опытом.
Таким образом, теория вытекает из опыта и предсказывает неизвестные ранее явления, подлежащие проверке опытом. Так, по мысли Ньютона, можно построить здание физической науки, подобно тому как в древности Евклид, исходя из опыта, построил совершенное здание геометрии.
Ньютона привела к такому намерению инстинктивная потребность выбраться из хаоса неопределённости и домыслов, и он безошибочно выбрал самый безукоризненный метод познания.
Вооружённый этим методом, Ньютон мог выступить против попыток словесного объяснения сути явлений, объяснения, не покоящегося на эксперименте и не допускающего экспериментальной проверки. Он был солидарен с девизом Английской академии наук: «Слова – ничто».
Надо сказать, что, провозгласив свое кредо и стараясь следовать ему, он, как мы сможем убедиться, всё же следовал ему не всегда. Он настойчиво пытался реализовать свою программу. Но каким непосильным бременем, каким удивительным источником прозрений и заблуждений стала она для него и для науки его времени! Прежде всего ему пришлось развенчать своих кумиров – Декарта и Кеплера. Первыми же научными результатами Ньютон оспорил их мнения, которые ранее считал непогрешимыми.
Решительный бой Ньютон дал учителям по вопросу цвета. Оба они внесли свою лепту в решение проблемы цвета. Кеплер до конца жизни пронёс убеждение в том, что свет, по существу, бесцветен. А то, что цвет одного предмета отличается от другого, – результат свойства самих предметов. Цвет дан телам от природы. Свет – одна ипостась. Цвет – другая. Что такое цвет, Кеплер объяснить не пытался. Это, считал он, дело философов. Физик же должен изучать свет как таковой, а о цвете он может даже не думать.
Ньютон знал точку зрения Кеплера. До своего опыта с призмой он, вероятно, и сам разделял её.
Разумеется, он не мог не интересоваться и мнением философов. А философы того времени со свойственной им расплывчатой терминологией говорили на этот счёт самые странные и неубедительные фразы. Например, что цвет – это нечто, сконцентрированное на поверхности непрозрачных тел. Что «он существует в предвидении, видим в потенции и становится видимым в действии внешнего света».
«Из всего этого едва можно понять, каким способом свет преломляется, почему цвета различны, в чём причина их появления…» – резонно замечает Ньютон.
«Учившие доселе о цветах, – констатирует он, – делали это на словах, как перипатетики, либо стремились исследовать природу их и причины, как эпикурейцы и другие, более новые авторы. Однако же, чтобы не излагать этой дурной философии, покажем, что такие рассуждения, как, например, у форм существуют другие формы и у качества – другие качества, глупы и смешны». И Ньютон ставит себе целью изучить оптические явления при помощи опытов и математики.
«Я не буду смешивать домыслов с достоверностью», – пишет он и многократно повторяет эту мысль.
Пропустив белый луч через призму и расщепив его на семь составляющих, он пропускает одноцветную часть радужной полоски через вторую призму. И видит, что цвет при этом не меняется, лишь изменяется направление луча. Вывод: не призма, не вещество создаёт цвета, раз они не способны изменить «простой цвет».
Он собирает воедино радужную полоску при помощи второй призмы и видит снова белый цвет. Значит, белый цвет состоит из смеси цветных лучей. Он может быть на них разложен призмой и снова получен из них.
Итак, свет и цвет – это две ипостаси, но иные, чем думал Кеплер. Цвет не порождается окрашенными телами. Как же установить его сущность?
Ньютон понимал, что ощущение различия цветов как-то связано со свойствами человеческого глаза. И он особенно внимательно вчитывался в места декартовых «Метеоров», где тот писал:
«Природа цвета заключается в том, что частицы тонкой материи, передающей действие света, стремятся с большей силой вращаться, чем двигаться по прямой линии: таким образом те, которые вращаются с гораздо большей силой, дают красный свет, а те, которые вращаются лишь немного слабее, дают желтый…»
Влияние Декарта на Ньютона ещё настолько сильно, что он тоже заговорил о разной величине цветных частиц! Он, вослед древним атомистам и Декарту, не опираясь ни на какой непосредственный опыт, предположил, что свет есть поток частиц, испускаемых светящимися телами. Красные частицы, по его мнению, самые большие, а фиолетовые – самые маленькие. И Ньютон счёл, что, попадая на сетчатку глаза, в силу своей разной величины, частицы света производят разное, но вполне определённое для каждого цвета ощущение. Это значит, что он не в силах удержаться на гордой позиции отрицания гипотез и, уподобясь Декарту, создал гипотезу.
Итак, оба говорят о частицах света, недвусмысленно связывая их со свойствами самого света и с ощущениями глаза, дифференцирующего цвета. Оба – и Ньютон, отрицающий гипотезы, и Декарт, превозносящий их, – оба стоят при этом на зыбкой почве гипотез.
Но… Слова у обоих одинаковы, а смысл их совершенно различен.
Декартовы частицы света – это, как пишет он, «частицы тонкой материи». Декарт не сомневался, что свет есть не что иное, как передача давления от источника через особую среду, заполняющую всё мировое пространство. Мы уже знаем, что очень давно древние учёные придумали слово, подходящее для названия такой среды, – эфир. Декарт верил в него и считал, что свет и есть толчки эфира, и эти толчки передаются от одной частицы эфира к другой с бесконечной скоростью на любые расстояния.
Ньютон же, говоря о том, что светящееся тело испускает мельчайшие частицы, которые, попадая на сетчатку глаза, производят ощущение цвета, подразумевает под частицами света совсем иное.
Нет, свет – это не частицы эфира. Недвусмысленно и чётко он формулирует: частица света – это «наименьший свет или часть света, которая может быть оставлена одна, без остального света, или же распространяется одна, или совершает или испытывает одна что-либо такое, чего не совершает и не испытывает остальной свет».
Ньютон бросает в научный мир XVII века потрясающую идею: «Под лучами света я разумею его мельчайшие частицы». Это чёткая, корпускулярная трактовка сущности света как самостоятельной субстанции.
Корпускулы Ньютона – реальны. Они по существу атомы света или даже то, что сегодня мы подразумеваем под элементарной частицей материи.
Интуиция Ньютона позволила ему, добавляя одну гипотезу к другой, согласовать корпускулярную теорию света со всеми экспериментальными фактами, известными до него и полученными им самим в результате многих тщательно продуманных опытов и точных измерений.
В итоге корпускулярная теория, включающая теорию цвета, изгнала из пределов оптики фантастические построения Декарта, оставив лишь в уточнённом виде его теорию радуги. Эта же участь постигла теорию цвета Кеплера…
Корпускулярная теория света была миной замедленного действия, которая ожидала удобного момента, чтобы взорваться революцией в мировоззрении людей следующих поколений. К чему привёл этот взрыв, мы, люди ХХI века, знаем. Ньютон же не подозревал о необычной судьбе своей идеи, о всех тех катаклизмах на пути учения о свете, которые произошли за следующие три века.
Ньютон был занят насущной для него заботой – защитой корпускулярной теории от её противников: Гука, Гримальди и Гюйгенса, лидеров волновой теории света.
Истина пополам
В начале 1672 года Ньютон посылает в Королевское общество свои мемуары «Новая теория света и цветов», в которых впервые высказал мысль о том, что свет – поток частиц. В ответ – резкие и необоснованные возражения. Прославленный Гук, секретарь Королевского общества, выступает против молодого члена Королевского общества. Отдавая должное тщательности и изяществу опытов Ньютона с разложением белого света, он возражает против его гипотезы, утверждая, что всё может быть объяснено при помощи его, Гука, волновой теории света. В результате – бурный спор, скандал, эхо которого распространилось далеко за пределы Англии.
Особенно обидело Ньютона то, что Гук назвал гипотезой его теории, построенные, как он считал, в строгом соответствии с провозглашёнными им принципами. Дискуссия длится несколько лет, до 1676 года. В пылу обиды Ньютон клянётся никогда при жизни Гука не печатать никаких работ по оптике. Это не было пустым обещанием. Гук умер в 1703 году, и лишь в 1704-м по настоянию друзей Ньютон выпускает свой большой труд «Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света». При жизни Ньютона вышли три английских издания и один латинский перевод этой книги.
Именно этот перевод стал достоянием научного мира, ибо тогда латынь была языком науки, а английским за пределами «Островов» не владел почти никто.
Гении обидчивы ничуть не меньше обыкновенных людей. Но гении, наверно, более упорны – жизнь Ньютона подтверждает это. Он перестал спорить с Гуком, которого не уважал и считал научным вором. Он больше не хотел публичных споров с Гуком, но работать над проблемой света не переставал…
… Другие противники корпускулярной теории света были людьми иного плана.
Франческо Гримальди, необычайно трудолюбивый человек и талантливый учёный, был иезуитом и профессором математики в Болонье. Он доверял лишь фактам,
а не авторитетам. А иезуитский орден требовал безусловного подчинения высшим духовным авторитетам. Может быть, поэтому замечательный труд Гримальди «Физико-математический трактат о свете, цветах и радуге» был опубликован лишь после смерти автора. Но многие его коллеги по науке были наслышаны об удивительном явлении, которое наблюдал математик-иезуит на стене в своей комнате, затемнённой ставнем.
В ставне он проделывал малое отверстие, впускал в комнату луч света и на его пути ставил то непрозрачный стержень, то нить, то птичье перо, а то и просто кусок ткани. То, что получалось на стене, поражало своей непредвиденностью. Какой бы предмет ни ставил исследователь на пути света, тень от него на стене была не там, где полагалось быть его геометрической проекции, а смещалась в сторону. Более того, силуэт предмета был очерчен цветными полосами – синими со стороны тени, красными со стороны света! Гримальди наблюдал до двух-трех групп таких цветных полос, бледнеющих в сторону тени…
Впоследствии Гримальди назвал отклонение лучей света вблизи препятствий дифракцией. Но пока он ничего не понимал.
Он убирал с пути лучей палки и перья и снова глядел на стену: луч света рисовал систему концентрических колец. Светлые кольца чередовались с тёмными… Гримальди проделывал в ставне второе отверстие, близкое к первому. Картина менялась: на стене возникали две пересекающиеся системы колец. Причём там, где пересекались светлые кольца, образовывались тёмные места. Свет, шедший из одного отверстия, гасил свет, исходящий из другого…
Гримальди описал это удивительное явление такими словами: «Освещённое тело может сделаться темнее, если к получаемому им свету прибавить новое количество света». Несомненно, Гримальди первым наблюдал и зафиксировал явление интерференции. Но он не комментирует свои открытия. Возможно, он не хочет конфликтовать с авторитетами. Он лишь указывает на внешнюю аналогию с волнами, возбуждаемыми на поверхности воды. Впрочем, о природе цвета он высказывается вполне опредёленно, считая, что различия цветов должны объясняться различной скоростью колебания светоносного вещества.
Если Гримальди предпочитал не высказываться прямо в пользу волновой теории света, то Христиан Гюйгенс делал это со всей решительностью и с такой убеждённостью, что не колебался вступать по этому поводу в острую полемику с более молодым, но уже уважаемым им Ньютоном.
Гюйгенс был авторитетом в вопросах оптики. Чуть ли не с детства о нём говорили как о гении. В шестнадцать лет он поступил в Лейденский университет. В двадцать два года опубликовал свой первый труд по математике, а затем целый ряд сложных математических трактатов. Он занимался усовершенствованием зрительных труб. В результате ему посчастливилось сделать сенсационное наблюдение. Он открыл спутник Сатурна и его кольца.
Но особенно Гюйгенс прославился конструкциями часов, не боящихся качки. Устойчивые хронометры – давняя забота мореплавателей. Во времена Гюйгенса для целей мореплавания применялись маятниковые часы. Но даже лучшие из них, идущие с завидной точностью на суше, сбивались с темпа в каюте качающегося корабля. Это приводило к ошибкам в навигационных расчётах и к гибели кораблей.
Британское адмиралтейство объявило конкурс на конструкцию часов, нечувствительных к качке. Задачу решил Гюйгенс. Он изобрёл балансир – вращающийся маятник, колёсико, удерживаемое пружинкой, основу всех судовых хронометров, всех механических карманных и наручных часов – словом, большинства часов, используемых нами.
Изобретение часов прославило Гюйгенса. В 1663 году он был избран членом Королевского общества, а в 1666-м – членом вновь организованной Французской академии наук. Он поселяется в Париже, но в 1681 году из-за религиозных преследований возвращается в Гаагу. Здесь его основные интересы сосредоточиваются на оптических исследованиях.
Начиная свои главные оптические работы, Гюйгенс уже знал «Новую теорию света и цветов» Ньютона и некоторые его мемуары, поступившие в Королевское общество, членом которого он был избран за шесть лет до Ньютона.
Гюйгенс восхищался экспериментальным искусством Ньютона, он верил результатам его опытов в отношении теории цветов, но… не понимал их существа. Его волновая теория тоже не могла объяснить явление цветности, и он писал, что «явление окрашивания остаётся ещё весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма».
В своём «Трактате о свете» он яростно полемизирует с Ньютоном. Он ставит вопросы, на которые тому не так-то просто ответить.
Гюйгенс спрашивает: допустим, свет – это действительно частицы, тогда как объяснить тот факт, что луч света, проходя сквозь вещество, не отклоняется от прямолинейного пути? Частицы света, сталкиваясь с частицами вещества, должны были бы отклоняться в стороны. А ведь луч света издавна слывёт символом прямой линии…
Ньютон, противник гипотез, отвечал на это дополнительной гипотезой о пористости материи и о «приступах»: материя состоит из крупинок, погружённых в пустое пространство, и частицы света, пробираясь сквозь вещество, вступают с этими крупинками в особые взаимодействия. Они испытывают приступы – притягиваются крупинками материи или отталкиваются ими. В одном случае луч света проходит сквозь вещество беспрепятственно, в другом отражается от него.
Все это казалось Гюйгенсу неправдоподобным и неубедительным. И не только Гюйгенсу. Теория приступов – странная, запутанная, противоречивая – так и осталась тёмным пятном в оптических исследованиях Ньютона…
Гюйгенс ставил другие вопросы: допустим, навстречу друг другу мчатся два луча света. Если стать на точку зрения Ньютона, то два луча, состоящие из частиц света, должны столкнуться и смешаться, как два стада овец.
Но этого не случается. Каждый луч идёт своей дорогой беспрепятственно. Как объяснить этот парадокс?
Корпускулярная теория не давала разумного ответа. Гюйгенс с точки зрения волновой объяснил ситуацию блестяще: как две волны на воде, сталкиваясь, не мешают друг другу, так же и волны эфира, движение которых Гюйгенс считал светом, прекрасно ладят между собой.
Эфир оказался удобным союзником Гюйгенса и всех учёных, которые в него поверили. Это был путь наименьшего сопротивления. Ньютон не хотел идти по такому пути. Поэтому он спотыкался, блуждал в темноте, но не соглашался с Гюйгенсом. Он ещё не чувствовал истины, но неправду он чуял безошибочно.
Особенно импонировал физикам другой аргумент Гюйгенса, приводимый им в защиту волновой теории света. Речь идёт о способности сфокусированного зеркалом луча света сжигать предметы. В этом явлении Гюйгенс видел доказательство того, что свет есть движение особой среды. Сжигание может быть только следствием «разъединения, что служит убедительным признаком движения». Гюйгенс подчёркивает: «Нельзя сомневаться в том, что свет состоит в движении какого-либо вещества».
Он защищает, пропагандирует, внедряет идею эфира. И, объясняя распространение света колебаниями эфира, Гюйгенс применяет геометрический приём, который принёс его имени бессмертие.
Гюйгенс вводит в оптику понятие огибающей волны. Она помогает ему наглядно нарисовать чёткую модель распространения света, объяснить любому оппоненту, даже не физику, механизм движения световой волны.
Удивительная ситуация – эфира в природе никто не наблюдал, доказано, что свет – это электромагнитные волны, о чём Гюйгенс даже не подозревал, но именно то, что он почувствовал свет волнами, помогло ему открыть часть истины, ту часть, которая касалась волновых свойств света. Вот почему волновая оптика, восходящая к Гюйгенсу, работает полноценно и в научном механизме ХХI века.
Что же это за огибающая волна, построение которой можно встретить в современных учебниках физики?
Гюйгенс рисует свечу и окружает её целым набором окружностей – каждая точка пламени сообщает движение частицам эфира. Каждая точка пламени создаёт свою собственную волну. А затем идёт цепная реакция – следующая частица эфира, которой достигла волна, становится центром другой волны. Движение идёт от частицы к частице так же, как распространяется пожар.
Такое движение передаётся на огромные расстояния – и на нашей Земле, и от звезды к звезде, и от самой далёкой звезды к Земле.
И происходит это потому, что «бесконечное число волн, исходящих из разных точек светящегося тела, на большом расстоянии от него соединяются только в одну волну».
Так учил Гюйгенс. И эта точка зрения остаётся справедливой по сей день, ибо геометрическое построение Гюйгенса в равной мере применимо к электромагнитным волнам и даже «волнам вероятности», определяющим, где следует ожидать появление квантов света – фотонов в каждом конкретном опыте.
В 1678 году Гюйгенс читает перед Французской академией наук «Трактат о свете». Волновая теория света встречает полное одобрение и поддержку академиков. С их лёгкой руки эта теория становится как бы официальной и вводится во все учебники физики как единственно верная.
Но, как ни удивительно открытие Гюйгенсом волновой сущности света и предчувствие Ньютона корпускулярной его природы, каждый из учёных уловил лишь часть истины.
В другой части ошибались оба. Ньютон хотел объяснить все оптические явления, считая свет частицами, Гюйгенс – считая свет волнами. И лишь изучение ошибок и прозрений двух великих учёных (на что потомки потратили несколько веков) привело обе точки зрения к слиянию. Только XX век пришёл к пониманию истинной природы света, к пониманию того, что свет – это и частицы, и волны одновременно. Оказалось, что Ньютон и Гюйгенс поделили истину пополам… Как две стороны медали, их учения представляют собой одно целое.
Только в нашем веке корпускулярно-волновой подход к природе света помог людям нарисовать более полную (но всё ещё не исчерпывающую!) картину оптических процессов.
Неудивительно, что, познав лишь часть истины, Ньютон и Гюйгенс преуспели лишь в отдельных частных вопросах. Больше проблем поставили, чем решили, не дав – да и не имея в XVII веке возможности дать – единого учения о свете.
Величие и ничтожество
День 28 апреля 1686 года стал днём величайшей сенсации в чопорном Королевском научном обществе Англии. Острота сенсации определялась отнюдь не неожиданностью, а, напротив, нетерпеливым, более чем годовым ожиданием манускрипта, в котором британский оракул – Ньютон обещал объяснить законы движения планет.
Интерес к этому событию подогревался и той закулисной борьбой вокруг великого труда, которая не осталась тайной для академиков.
В одну из сред января 1684 года (мы знаем день, но дата не сохранилась) в скромной лондонской кофейне встретились два известных учёных: Роберт Гук, прославившийся работами в области механики и оптики, Кристофор Рен, математик и архитектор, строитель знаменитого собора св. Павла в Лондоне, и третий, ещё молодой Эдмунд Галлей, ставший членом Королевского общества в 22 года. Их беседа коснулась великой загадки движения планет.
Галлей сказал, что в минувшем году ему выпала удивительная удача: он вывел из третьего закона Кеплера, что тяготение между небесными телами убывает так же сильно, как растёт квадрат расстояния между ними. Он хотел также определить формы планетных орбит, но не смог.
Гук хвастливо заявил, что давно знает закон обратных квадратов. И ему ничего не стоит вывести из него и формы орбит. Причём он уверен, это будут эллипсы.
Сэр Кристофор, зная цену этим речам, предложил в качестве приза тому, кто определит форму орбит за два месяца, книгу стоимостью в 40 шиллингов.
Излишне говорить, что приз остался невостребованным. Гук не мог не знать, что планеты движутся по эллипсам. Астрономы давно определили это путём тщательных наблюдений. Но математических познаний Гука не хватило, чтобы это доказать конкретным расчётом.
Величайшей заслугой Галлея было то, что он не успокоился, не счёл застольную беседу завершённой. Он решил обратиться к всеведущему Ньютону. В мае того же года Галлей посетил его в Кембридже. Ньютон сказал, что знает, как доказать эллиптичность орбит, но не может воспроизвести вычислений по памяти. Галлей попросил прислать ему вычисления, и Ньютон обещал.
По-видимому, Ньютон не спешил, ибо, посетив его снова в августе, Галлей уехал без рукописи. Он получил её лишь в ноябре. Это был трактат «О движении», в котором в полном согласии с провозглашёнными Ньютоном принципами построения науки в виде последовательности аксиом и теорем великая задача была решена.
Трактат произвёл на Галлея столь сильное впечатление, что он немедля приехал в Кембридж, чтобы получить разрешение автора на публикацию.
Зная Ньютона, можно угадать его ответ. Он не согласился. Трактат предназначен только для Галлея и не может увидеть свет. Он не завершён. Это лишь решение частной задачи. В черновых студенческих тетрадях Ньютона уже два-двадцатьлет хранятся более общие и более важные результаты.
Никто не знает, к каким аргументам прибегал Галлей и что отвечал ему Ньютон. Известен лишь результат: Ньютон принялся за написание большого труда, в основе которого лежал трактат «О движении». Название труда – «Математические начала натуральной философии» – выдавало желание автора указать натуральной философии (физике) новый путь, отличный от содержавшегося в «Началах философии» Декарта.
Второй победой Галлея было согласие Ньютона представить трактат «О движении» в Королевское общество для закрепления авторского приоритета, но без опубликования. Об этом Галлей с согласия Ньютона сделал заявление 10 декабря 1685 года.
В феврале следующего года копия трактата «О движении» была получена Обществом и запротоколирована. По современной терминологии она была депонирована.
Эта работа была многообещающа – немудрено, что все интересующиеся проблемами мироздания, а они обсуждались тогда не только в учёных собраниях, но и в гостиных, с нетерпением ждали появления всего труда в виде книги.
И наконец… В протоколе заседания Общества записано: «28 апреля 1686 г. д-р Винцент передал манускрипт Ньютона под заглавием «Математические начала натуральной философии», где даётся математическое доказательство гипотезы Коперника в том виде, как она была предложена Кеплером, и все небесные движения объясняются на основании единственного предположения о тяготении к центру Солнца, обратно пропорциональном квадрату расстояния».
Академия наук решила отпечатать труд Ньютона чётким шрифтом и даже оплатить связанные с этим расходы. Но выход книги задерживался как из-за отсутствия средств, так и вследствие претензий Гука. Он претендовал не менее чем на открытие закона квадратичного убывания силы тяжести…
Галлей пишет об этом Ньютону 22 мая 1686 года: «Он утверждает, что вы заимствовали это понятие у него, хотя и соглашается, что доказательства кривой, образующейся вследствие этого, вполне Ваше собственное…». И далее: «Гук, по-видимому, надеется, что в предисловии, которое, может быть, Вы предпошлёте Вашему труду, Вы упомянете его имя».
Гнев Ньютона, в котором ожили обиды, нанесённые ему Гуком в связи с оптическими работами, был безмерен. В ответе Галлею он утверждал, что этот «сапожник Гук» заимствовал свои утверждения у Борелли или даже из писем его, Ньютона, к Гюйгенсу, которые шли через Общество и которые Гук мог видеть.
«Из собственных слов Гука следует, – писал Ньютон, – что он не знал пути решения задачи».
Раздражение Ньютона было столь велико, что он хотел отказаться от печатания третьей части «Начал», содержащей применение физико-математических результатов к небесным движениям.
Галлей оказался блестящим дипломатом. Ему удалось смягчить гнев Ньютона – тот даёт обещание упомянуть имя Гука в «Началах» в одном из «поучений» наряду с именами Рена и Галлея.
Ньютон настолько не уважает Гука, что (в письме к Галлею) с иронией соглашается даже засвидетельствовать в своём труде «открытие» Гука – его ошибочное толкование одного из следствий вращения Земли.
Как известно, если с башни сбросить какой-нибудь предмет, он упадёт не строго по вертикали, а уйдёт чуть в сторону. Направление отклонения зависит от месторасположения башни. Так, в Северном полушарии предмет отклонится к востоку. Это – следствие вращения Земли, и, как мы уже знаем, многие энтузиасты пытались измерить величину отставания падающего тела. Но оно очень мало, и поверхностным экспериментаторам проще было считать, что его вовсе нет. А следовательно, нет и вращения Земли. Чтобы положить конец кривотолкам, Ньютон вычислил траекторию свободно падающего тела. Результат сообщил секретарю Королевского общества – Гуку.
Гук, докладывая Королевскому обществу об этой работе Ньютона, оспаривает её и заявляет, что тело будет падать «по эксцентрическому эллиптоиду», причём не к востоку, а больше к югу. До сих пор неизвестно, что такое «эксцентрический эллиптоид». Ньютон не ответил Гуку публично, а ограничился письмом с корректным, но сухим возражением.
Разумеется, свою досаду Ньютон выразил лишь в письме к другу, к Галлею. В таком серьёзном труде, как «Начала», не могло найтись места для рассмотрения чванливой и глупой претензии Гука.
… Фрэнсис Бэкон, который умер за девять лет до рождения Гука, писал: «Наука часто смотрит на мир взглядом, затуманенным всеми человеческими страстями». Это полностью относится к Гуку, талантливому учёному, но склочному человеку.
Ньютон, отличавшийся скромным достоинством, как-то заявил: «Если я видел дальше других, это потому, что я стоял на плечах гигантов».
Если бы он включил эту фразу в книгу и адресовал потомкам, то, возможно, избежал бы многих неприятностей. А он написал эти слова в письме к Гуку, скрюченному человеку маленького роста… Гук никогда не смог простить этой фразы своему великому сопернику…
После многих задержек книга Ньютона вышла в 1687 году и разошлась в невиданно короткий срок. Известно, что в 1691 году её уже невозможно было купить.
Великое творение
Успех «Начал» определяется, конечно, прежде всего их выдающимся содержанием. Но Ньютон много поработал и над тем, чтобы сделать книгу доступной современникам, – он поступил так же, как и Галилей в «Диалогах».
Великий труд состоит из трёх книг. Его цель – построение общей картины мира, основанной на законах механики; доказательство всемирного тяготения как следствия из применений механики к движениям небесных тел. Для этого вводятся определения основных физических понятий, затем идут аксиомы или законы движения.
В первой книге изучается движение материальных точек и твёрдых тел. Материальные точки – идеализированные модели реальных тел, движения которых описываются ясно и наглядно. Твёрдые тела – более реальные модели, но всё ещё модели, не способные к деформациям, но имеющие определённые формы и размеры. В этой книге изложена, по существу, вся кинематика и динамика. Её и в наши дни изучают студенты, ею пользуются и всегда будут пользоваться учёные и инженеры.
Цель второй книги – покончить с декартовой теорией эфира. Здесь на основе кинематики и динамики, изложенных в первой книге, строится гидростатика, основы которой заложили Архимед и Стевин; гидродинамика, включая движение твёрдых тел в жидкостях; волновое движение и даже простейшие случаи вихревых движений. Но не эфемерных эфирных вихрей Декарта, а реальных вихрей, подобных смерчам в атмосфере и водоворотам в реках и прибрежных водах морей.
Венец всего труда – третья книга, она называется
«О системе мира». Именно её Ньютон не хотел публиковать, опасаясь новых споров с Гуком. Именно ей он предпослал свои замечательные «Правила философских умозаключений», на которых надо остановиться подробнее: они привели Ньютона к закону всемирного тяготения.
Чёткость вех, которые Ньютон расставляет ищущей мысли своими «правилами», составляющими основу книги, кажется и сегодня незыблемой.
Вот правила, которыми должен руководствоваться учёный, чтобы верным и кратчайшим путём прийти к истине.
Первое правило – не принимать иных причин явлений, кроме тех, что достаточны для их объяснения.
Второе правило – всегда относить аналогичные явления к одной и той же причине.
Третье правило – считать свойством тел такие свойства, которые присущи всем телам, над которыми мы можем экспериментировать и которые не могут быть ни ослаблены, ни усилены.
Прозрение универсального закона тяготения было подарено Ньютону третьим правилом: раз тела притягиваются к Земле, море – к Луне, а планеты – к Солнцу, то можно смело считать, что все тела притягиваются друг к другу.
Правила рассуждений, сформулированные Ньютоном, послужили ему и его последователям верой и правдой. Они имели самые различные полезные следствия; и одно из главнейших – помогали понимать процессы, которые не поддавались непосредственному эксперименту. Помогали изучать сложные явления на экспериментах с аналогичными, но более простыми явлениями, доступными для воспроизведения в лаборатории.








