Текст книги "Когда физики в цене"
Автор книги: Ирина Радунская
Жанры:
Биографии и мемуары
,сообщить о нарушении
Текущая страница: 13 (всего у книги 26 страниц)
ЭЛЕКТРОНЫ НЕ ОДИНОКИ
В послевоенные годы изучение эффекта Черенкова возобновилось. Успеху способствовали два обстоятельства. Во– первых, изобретение и создание ускорителей заряженных частиц, способных создавать гораздо большее количество быстрых частиц, чем их можно было получить от радиоактивных препаратов. Это позволило получать сравнительно яркое черенковское излучение. Во-вторых, создание фотоумножителей – приборов, достаточно чувствительных для регистрации отдельных фотонов. Теперь ученые не сидят часами в темноте. Электронные приборы автоматически ведут подсчет фотонов черенковского излучения, замечая и то, чего не мог бы заметить самый натренированный глаз.
В 1951 году было обнаружено черенковское излучение, вызванное прохождением через дистиллированную воду мюмезонов космических лучей.
В том же году было обнаружено черенковское излучение от пучка быстрых протонов, полученных с помощью ускорителя. Свечение было столь сильным, что его легко можно было фиксировать с помощью фотографической пластинки. Обработка результатов эксперимента привела к блестящему совпадению с теорией Тамма – Франка. Еще через год было обнаружено черенковское излучение, вызванное протонами, входящими в состав космических лучей.
Постепенно черенковское излучение перестало быть только объектом изучения. Оно оказалось изученным настолько, что, в свою очередь, превратилось в инструмент в руках ученых.
Вспомним о волнах, разбегающихся по воде от движущегося катера. Если бы на катере вышли из строя приборы для измерения скорости, капитан смог бы определить его скорость, измеряя угол, под которым расходится носовая волна. Физики, изучавшие черенковское излучение от протонов, полученных с помощью ускорителя, показали, что таким же образом можно очень точно измерять скорость, а значит, и энергию протонов. Тщательно измеряя угол, под которым видно излучение, и свойства среды, в которой оно наблюдалось, они определяли скорость протонов с ошибкой меньше чем 0,1 %. Этим способом может измеряться и скорость других быстрых заряженных частиц.
На основе эффекта Черенкова созданы крайне чувствительные счетчики, позволяющие регистрировать отдельные быстрые частицы. Такие счетчики обладают огромным преимуществом. Они позволяют просто определять направление прихода частиц. Ведь черенковское излучение может наблюдаться только в виде узкого конуса, смотрящего вдоль направления полета частицы.
Черенковские счетчики обладают еще одним важным преимуществом – они не замечают медленных частиц. Ученые называют это пороговым эффектом. Ведь частицы, скорость которых меньше скорости света в веществе, из которого сделан счетчик, не дают в нем черенковского излучения, а значит, счетчик их не считает. Изготовляя счетчики из различных веществ, можно изменять величину пороговой скорости, то есть регистрировать частицы с различной энергией.
Со временем удалось наблюдать черенковское излучение не только в жидкостях и твердых телах, но и в газах. Несмотря на то, что свет распространяется в воздухе лишь немногим медленнее, чем в пустоте, оказалось, что в составе космических лучей имеются частицы, обгоняющие свет в воздухе. Черенковское излучение от этих частиц имеет вид очень острого конуса с углом всего в один градус, что позволяет определить направление прихода космических частиц с недоступной для других методов точностью.
Физики всего мира были недавно взволнованы двумя важными открытиями. На крупнейшем американском ускорителе– бэватроне, дающем частицы с энергией 6,8 млрд. электроновольт, были открыты новые частицы – антипротон и антинейтрон. При открытии обеих новых частиц существенную роль сыграло применение черенковских счетчиков. Черенковские счетчики будут применяться и при исследованиях на крупнейшем в мире ускорителе-синхрофазотроне на 10 млрд. электроновольт, построенном советскими учеными в городе Дубна.
ВТОРАЯ ЖИЗНЬ ОТКРЫТИЯ
Гинзбург, теоретически изучивший еще перед войной черенковское излучение в твердых телах, предложил использовать это излучение для генерации миллиметровых и субмиллиметровых радиоволн. В 1946 году он, рассматривая различные возможности получения миллиметровых радиоволн, указал, что эффект Черенкова позволяет использовать для этой цели равномерно движущиеся электроны.
При этом Гинзбург развил мысль академика Мандельштама, высказанную им задолго до того, еще при обсуждении докторской диссертации Черенкова.
Мандельштам указал, что для наблюдения эффекта Черенкова не обязательно пропускать электроны через вещество, где они довольно быстро тормозятся встречными атомами. Достаточно, указал он, пропустить пучок быстрых электронов через канал, проделанный в диэлектрике. Важно лишь, чтобы сечение этого канала было меньше, чем длина электромагнитной волны в этом диэлектрике. Эффект может быть получен и в том случае, когда пучок электронов просто пролетает достаточно близко к поверхности диэлектрика.
Электроны при этом летят в пустоте и поэтому, конечно, не могут лететь быстрее света. Но достаточно, чтобы они летели быстрее, чем электромагнитная волна, бегущая внутри диэлектрика. В этом случае волны, возникающие в диэлектрике под воздействием пролетающего электрона, будут складываться в черенковскую волну, которая распространяется внутри диэлектрика, а затем может быть излучена в пространство.
Особенно мощные радиоволны можно получить этим способом, используя не сплошной поток электронов, а предварительно сгруппировав электроны в небольшие сгустки.
Однако это не единственный способ получения радиоволн с помощью эффекта Черенкова. Ведь мы знаем, что для возникновения этого эффекта достаточно уменьшить скорость электромагнитной волны до величин меньших, чем скорость электрона, и излучение начнется.
Оказывается, скорость электромагнитных волн можно уменьшить, не только пропуская их через диэлектрик. Во многих случаях сантиметровые и миллиметровые волны передаются с помощью специальных металлических труб – волноводов. Если внутри такой трубы установить ряд перегородок с отверстиями, то скорость распространения волны по такой трубе сильно уменьшится.
Значит, выбрав подходящие размеры трубы и перегородок, откачав из нее воздух и пропустив через нее пучок быстрых электронов, сгруппированных в сгустки, можно получить таким образом мощное черенковское излучение миллиметровых волн. Оно будет образовываться здесь в результате взаимодействия электронов с отдельными отсеками волновода и сложения образующихся при этом электромагнитных волн.
Так, эффект, открытый советским ученым и казавшийся ранее лишь интересным физическим явлением, постепенно становится на службу человечества.
В ЛАБОРА ТОРИИ И В ЖИЗНИ
Молодые люди, впервые приходящие на лекции профессора Черенкова, обычно не знают, что лекции по экспериментальной физике им будет читать человек, открывший эффект Черенкова. Ведь для молодежи эффект Черенкова так же стар, как и эффект Допплера и многие другие известные людям явления.
Но вот звонок, и в аудиторию входит спортивного вида человек. Лекция его увлекает студентов так, как может увлечь лишь рассказ активного участника интересных событий.
Черенков не ограничивается научной работой, чтением лекций и подготовкой физиков в своих лабораториях. Он активный общественный деятель, пользующийся большим авторитетом и в вопросах, не связанных с физикой.
«Техника молодежи» № 8, 1957 г.
На дно материи
В конце двадцатых годов XX века возникло творческое содружество тогда мало кому известных ученых: Гейзенберга, Шредингера, Бора, де-Бройля, подаривших миру новую физику, физику квантовую, которая стала трамплином для мощного скачка в знаниях человечества. И это произошло в двадцатом веке, когда физика как наука, казалось, полностью сложилась. Известный английский ученый на вопрос одного из молодых своих коллег, чем заняться, ответил, что теоретической физикой заниматься не стоит, эта наука в основном завершена, остались, может быть, один-два неясных вопроса и подчистка некоторых деталей.
Вот эта-то пара неясных вопросов и толкнула ученых на переоценку ценностей, накопленных классической физикой.
Ученые обратили пристальное внимание на кирпичики, из которых сложена система мироздания. Атом материи. Что это такое? Древние считали, что атомы неделимы. Они учили, что теплота и огненность возникают из различий в форме, положениях и порядке атомов; теплота и огненность вызываются наиболее острыми и тонкими из них, а тупыми и толстыми вызываются сырость и холод; первые порождают свет и яркость, вторые – сумрак и темноту.
Демокрит в своем воображении наделял атомы величиной и формой, Эпикур щедро добавлял им тяжесть. А Резерфорд в начале двадцатого века разбил атом на части: полюбуйтесь, атом – это мир, это Вселенная со своими головокружительными, ошеломляющими тайнами! Эти тайны оказались перчаткой, брошенной природой ученым.
Одним из самых молодых физиков, поднявших перчатку, был советский ученый Игорь Тамм. Он начал свой творческий путь в 1919 году как преподаватель Крымского университета. Ему было тогда 23 года. Кто знает, как сложилась бы его судьба, если бы ему не пришлось через два года перейти в Одесский политехнический институт, где в то время преподавал профессор, а впоследствии академик Мандельштам. Эта встреча определила всю дальнейшую деятельность Игоря Евгеньевича. Мандельштам ввел его в сферу самых актуальных задач физики. И вот с 1924 года в научных журналах рядом с работами Гейзенберга, Шредингера, Бора начали регулярно появляться статьи Тамма, относящиеся к самым сложным вопросам теоретической физики.
Первые работы молодого ученого были посвящены пересмотру с точки зрения теории относительности различных сложных разделов физики. Затем он включается в величайшее дело нашего века – в построение нарождающейся в это время квантовой физики.
Тамм попал в число тех, на чью долю выпали счастье и трудности, которые и не снились старшему поколению физиков. Они должны были разрешить то, что не смог бы разрешить ни один из их гениальных предшественников – ни Аристотель, ни Галилей, ни Ньютон, которые писали целые поэмы в формулах и уравнениях о течениях жидкостей, о работе механизмов, о движении планет.
Все вокруг было зримо, осязаемо, материально. Атом же жил по неведомым еще людям законам. И эти законы нужно было установить. И новая физика разоблачила тайны атома. Многое прояснилось и в таких с древности, казалось бы, знакомых явлениях природы, как свет, магнетизм, электричество.
В 1929 году выходит первый том уникального учебника Тамма «Основы теории электричества», выдержавшего десятки изданий и распространившегося по всему миру в качестве одного из авторитетнейших полпредов советской науки. В этом же году он разработал сложный вопрос о связи теории относительности и квантовой механики, устанавливая мост между этими двумя китами, на которых зиждется современная физика.
Уже в следующем году Игорь Евгеньевич закончил квантовую теорию рассеяния света в кристаллах. В этой работе он отважился на беспримерную дерзость, он стал квантовать звук так же, как в свое время Эйнштейн квантовал свет.
Вслед за этим Игорь Евгеньевич прокладывает новый путь в теории, проделав первый расчет, в котором объединена квантовая электродинамика и теория относительности. При этом он узаконил понятия античастицы и «отрицательной энергии», не поддававшиеся в то время (до открытия позитрона, первого представителя антимира) физической интерпретации. Он не остановился на этом и высчитал (одновременно с Дираком и Оппенгеймером) вероятность аннигиляции электрона с позитроном – удивительного и непонятного тогда процесса, во время которого электрон исчезает, порождая квант электромагнитной энергии.
Следующие годы Игорь Евгеньевич отдал главным образом квантовой теории металлов. Здесь он, помимо прочего, открыл «уровни Тамма», попав на которые электрон остается на поверхности металла, не имея возможности ни выйти наружу, ни войти во внутрь.
Эти труды позволили ученому перебросить мостки между самыми отдаленными друг от друга областями физики.
Новая физика раскрывала одну тайну атома за другой, и постепенно вырисовывался силуэт причудливого, но уже во многом понятного микромира. Однако, углубляясь в мир атома, ученые снова приближались к тупику. Они уже твердо знали, что атом состоит из ядра и вращающихся вокруг него электронов, могли с помощью простых и сложных формул описать жизнь этих электронов, но об атомном ядре они ничего не знали. Здесь их ждал орешек потверже, чем тот, что разгрызла квантовая физика.
Если раньше ученые верили, что атом неделим, то потом они предположили, что неделимо ядро атома. Но затем и это оказалось заблуждением. И вот мы являемся свидетелями споров о том, существуют ли вообще в природе элементарные частицы и каковы они. Вопрос о том, какие силы действуют в ядре, стал злобой дня, но всесильная в те времена теория относительности и квантовая физика ответить на него не могли.
Уже в работах тридцатых годов Тамм выдвинул идею о том, что ядерные частицы удерживаются внутри ядра, несмотря на огромные силы взаимного электрического отталкивания, за счет особых ядерных сил.
Он предположил, что совершенно необычные свойства этих сил, проявляющихся только на очень малых расстояниях, обусловлены тем, что они вызваны дотоле неизвестным процессом – обменом частицами.
Для того чтобы представить себе, как это происходит, говорил Тамм, следует вообразить, что каждый протон и нейтрон непрерывно излучает и поглощает электроны и нейтрино. Если же они находятся очень близко друг от друга, то их электронно– нейтринные облака перекрываются, что и приводит к взаимному притяжению двух протонов, перевешивающему даже взаимное отталкивание их зарядов.
Однако расчеты, проведенные Таммом, показали, что силы, возникающие при обмене электронами и нейтрино, недостаточны для объяснения устойчивых ядер. Это можно было бы считать неудачей, если бы японский физик-теоретик Юкава не показал правильности основной идеи Тамма и не доказал, что ядерные силы могут быть следствием обмена частицами, примерно в двести – триста раз более тяжелыми, чем электроны. Юкава назвал эти частицы мезонами, и они со временем были обнаружены при экспериментах.
В это же время Игорь Евгеньевич совместно с одним из своих учеников на основе анализа известных опытных данных пришел к парадоксальному с точки зрения тех лет заключению о том, что нейтральная тяжелая частица – нейтрон – должна обладать свойствами небольшого магнитика. Он даже рассчитал величину и знак этого магнетизма, впоследствии полностью подтвержденные экспериментаторами. В изучении свойств частиц это было важной деталью.
Примерно к этому времени (1937–1939 годы) относится одна из наиболее важных работ Игоря Евгеньевича, выполненная им совместно с И. М. Франком. Это теория черенковского излучения, возникающего, когда электрон движется в каком– нибудь веществе быстрее, чем в нем распространяется свет. Странное, казалось бы, ничем не вызванное свечение веществ долго оставалось таинственным, пока Тамм не дал ему объяснения. За открытие И. Тамм, И. Франк и П. Черенков были награждены Нобелевской премией.
Шли годы. Одна работа сменяла другую, и многие из них были продиктованы временем.
В период Отечественной войны и после нее Тамм сочетал сложные теоретические исследования с решением важнейших задач, связанных главным образом с потребностями народного хозяйства.
После войны Игорь Евгеньевич возобновил исследования ядерных сил. В первой работе нового цикла он создал метод, который нашел применение в сотнях работ, посвященных ядерным силам и теории элементарных частиц. Этот цикл, успешно развиваемый Игорем Евгеньевичем и его учениками в течение двадцати лет, выдвинул его на одно из первых мест в современной теоретической физике.
По-разному сложились судьбы ученых, начавших свою творческую жизнь в двадцатые годы, в канун рождения новой физики. Гейзенберг мечтает создать новую теорию элементарных частиц, квантуя расстояния, как квантуют время. Де-Бройль лелеет надежду, что все-таки в микромире не так все парадоксально, как кажется, что там все привычнее, обыденнее и больше похоже на порядки, царящие в большом мире.
Тамм же убежден, что «безумность» микромира еще глубже, еще принципиальнее. Он часто приводит критерий, которым пользовался Бор для оценки мощи новой теории: а достаточно ли она дерзка, «безумна», не слишком ли «приземлена», чтобы быть правильной, чтобы оказаться способной вырвать физику из тупика сомнений? Достаточно ли далеко искал ученый, не слишком ли близок район его «раскопок» от уже разрытых другими учеными курганов?
Неизвестно, прячется ли тайна элементарных частиц где-то далеко, за пределами района современных поисков… Или она подстерегает ученых где-то рядом, близ «ущелья», где они роют уже много лет…
Кто будет первым в этом удивительном кроссе? Один ли из корифеев, участвовавших в штурме атома и создавших квантовую физику, или это будет кто-то из молодых, для которых взгляды учителей уже кажутся консервативными? Несомненно, школа советских физиков, возглавляемых академиком И. Таммом, способна подарить миру еще не одно открытие.
«Экономическая газета», август 1966
Вблизи абсолютного нуля
Математический институт имени Стеклова Академии наук СССР. Небольшое уютное здание, узкие коридоры, тишина. За дверьми рабочих кабинетов – ряды столов и классные доски. Многие из комнат пусты: математики в основном работают дома, а затем собираются, чтобы обсудить результаты. Вот и сегодня такой «сбор» в отделе теоретической физики, которым руководит академик Николай Николаевич Боголюбов.
Пока идет совещание, один из учеников академика, кандидат математических наук В. В. Толмачев, рассказывает…
…Незадолго до первой мировой войны, вскоре после того, как ожижили последний из благородных газов – гелий, было открыто замечательное явление сверхпроводимости. До этого считалось твердо установленным, что все вещества оказывают сопротивление проходящему через них электрическому току – одни меньше, другие больше. В результате существенная часть электрической энергии, вырабатываемой электростанциями всего мира, тратится на преодоление сопротивления проводов, вызывает их нагревание и безвозвратно рассеивается в пространстве.
Каково же было удивление голландского ученого Г. Каммерлинг-Оннеса, когда он, охладив ртуть с помощью жидкого гелия до температуры, близкой к абсолютному нулю, не обнаружил в ней никакого сопротивления электрическому току! Такое состояние металлов ученые назвали состоянием сверхпроводимости. В настоящее время известны 23 чистых металла и большое количество сплавов, обладающих сверхпроводимостью при очень низких температурах, приближающихся к – 273 градусам Цельсия. Если сделать кольцо из какого-либо сверхпроводящего металла, то ток, возбужденный в нем, будет продолжать течь сколь угодно долго, не испытывая потерь. Это явление, своей загадочностью увлекшее ученых, до недавнего времени было необъяснимо.
И вот благодаря работе академика Н. Н. Боголюбова тайна сверхпроводимости перестала существовать. Толмачев показывает толстую рукопись. На ней написано:
«Объединенный институт ядерных исследований. Математический институт АН СССР имени Стеклова. Н. Н. Боголюбов, В. В. Толмачев,
Д. В. Ширков. Новый метод в теории сверхпроводимости. Январь 1958 года».
– Над этой проблемой трудились не только мы, – вступает в беседу только что вошедший в комнату Николай Николаевич Боголюбов – Большой вклад в нее внесли английский ученый Фрёлих, американские ученые Бардин, Купер, Шриффер, австралийцы Шаффрот, Батлер и Блатт. Нас же подхлестнула одна заманчивая идея… Это было летом прошлого года, когда царило отпускное настроение. Дискуссия наша протекала довольно бурно, ведь у физиков-теоретиков, как известно, никогда ни по какому вопросу не бывает единого мнения. И тут мы внезапно переключились на самый жесткий рабочий режим из-за неожиданно мелькнувшей мысли…
…Слышали ли вы о явлении сверхтекучести, не менее загадочном и интересном, чем сверхпроводимость? Его впервые наблюдал в 1938 году академик П. J1. Капица. Жидкий гелий при температуре, близкой к абсолютному нулю, вдруг полностью терял свою вязкость и без всякого сопротивления начинал проходить сквозь самые узкие щели…
Долго ученым не удавалось разобраться в причинах такого явления. В 1947 году академик Боголюбов и коллектив его учеников блестяще решили эту проблему математическим путем.
Но ведь и явление сверхпроводимости тоже заключается в том, что электрический ток без сопротивления проходит через металл! Вот ученые и решили использовать для анализа сверхпроводимости математический аппарат, созданный для объяснения сверхтекучести. Результаты подтвердили: идея была правильной. Оказалось, что между этими явлениями существует глубокое внутреннее сходство. Что же происходит в металле, когда он перестает «сопротивляться» электрическому току?
Все, конечно, замечали, как вода просачивается сквозь песок. Так и электрический ток, представляющий собой движение электронов, просачивается между атомами металла. Электроны тормозятся атомами, которые сами находятся в непрестанном тепловом движении, колеблются. На эти столкновения и уходит энергия электронов, полученная ими от электрической батареи. Атомы металла, получив дополнительную энергию, «раскачиваются» еще больше и мешают продвижению электрического тока. Но если металл охлаждать, то тепловые колебания атомов становятся меньше, и они меньше «мешают» электрическому току. При очень низкой температуре, почти равной абсолютному нулю, когда тепловые колебания атомов крайне ослаблены, электроны тоже начинают вести себя несколько иначе. Они все сильнее связываются между собой и в некоторых металлах вблизи абсолютного нуля образуют «электронную сверхтекучую жидкость», свободно протекающую внутри металла без всякого сопротивления. Наступает состояние сверхпроводимости…
Если металл снова нагреть, атомы начнут колебаться сильнее и снова разобьют «сверхтекучую жидкость» на отдельные электроны, которые в одиночку будут затрачивать большую энергию, чтобы пробираться в металле.
Конечно, картина, которую мы нарисовали, не может отобразить все детали сложного явления сверхпроводимости. Но математическая теория, созданная советскими учеными под руководством академика Боголюбова, по общему признанию, объясняет весь сложный и интересный механизм этого явления.
– Многих интересует вопрос, каково практическое значение сверхпроводимости. Конечно, мы пока еще далеки от внедрения этого явления в промышленность и технику. Но не в таком ли положении была наука об атомном ядре в первые годы после открытия радиоактивности? – спрашивает академик Боголюбов.
– Представьте себе, что ученые, опираясь на достижения науки сегодняшнего дня, сумеют получить сверхпроводящее состояние металлов при обычных температурах, а не только вблизи абсолютного нуля. Какой это произведет переворот в электротехнике! Вся колоссальная мощность ГЭС сможет быть передана по тонким телефонным проводам. А теория сверхпроводимости создает предпосылки для расчета состава сверхпроводящих сплавов. Она поможет также пересмотреть теорию металлов в свете новых достижений физики и математики. Она, возможно, даст ключ для создания теории атомного ядра. Кто знает, может быть, и материя, из которой состоят ядра атомов вещества, тоже сверхтекуча? Как раз над этим вопросом сейчас и работает наш коллектив.
«Огонёк» № 19, 1958 г.
Радиодвойник луны
КОКТЕЙЛЬ ИЛИ ГОЛОВКА СЫРА?
Четыреста лет назад французский писатель Рабле шутя говорил, что многие принимают Луну за головку зеленого сыра. Как это ни удивительно, но даже в наши дни о Луне возникают самые странные предположения. Пожалуй, ни об одном небесном теле не спорят так много, ни об одном не складывалось столько противоречивых мнений, сколько о нашем древнем, остывшем спутнике.
Американский исследователь Гордон Макдональд, наблюдая за движением Луны и сделав вывод, что плотность ее наполовину меньше земной, недавно высказывал мысль о том, что она… полая.
А Томас Гоулд из Корнельского университета объяснил низкую плотность Луны тем, что ее недра содержат большое количество льда и воды. По его мнению, Луна – это «коктейль с замороженными фруктами». Есть исследователи, которые всерьез утверждают, что Луна – гигантская «булка», начиненная, правда, не изюмом, а металлическими и каменными метеорами, В общем, целый набор гастрономических сравнений.
Доктор Уильям Пикеринг, пять лет – с 1919 по 1924 год – наблюдавший Луну с Ямайки, уверял, что пятна, перемещающиеся по дну кратеров, – это полчища насекомых, питающихся лунной растительностью.
По сей день существует множество подобных «теорий». Впрочем, возникновение их в какой-то степени объяснимо. Ведь почти все, что ученые знают о Луне, рассказал им свет, а это отраженный солнечный свет, и лишь в последнее время кое-что добавили ее собственные инфракрасные лучи. Но и те и другие не могут ничего сказать о внутреннем строении Луны.
Даже рассмотреть Луну хорошенько астрономам пока не удается. Через самые сильные телескопы видны объекты размером не менее сотен метров. Вот почему лунный пейзаж знаком людям лишь в общих чертах. Подробности каждый представляет себе по-своему. Одни из исследователей доказывают, что Луна покрыта хрупким веществом, напоминающим застывшую пену. Они предупреждают, что если человек ступит на нее, то может глубоко провалиться. Доктор Дольфюс из Парижской обсерватории считает, что Луна одета порошком, похожим на вулканический пепел.
Может быть, и вправду на Луне есть действующие вулканы? О такой возможности говорят наблюдения советского астронома Н. Козырева, который несколько раз видел свечение газов, выделявшихся в кратере Альфонс. Именно в этом кратере и ранее происходили странные изменения цвета. Некоторые астрономы пытались объяснить это развитием растительности в течение двухнедельного лунного «дня».
Сравнивая степени яркости различных частей Луны, советский астроном академик В. Фесенков пришел к выводу, что Луна изрезана глубокими трещинами с вертикальными стенками и острыми краями. Но доктор Джон Ивэнс из Линкольнской лаборатории оспаривает это и уверяет, что Луна ровная и гладкая, лишь десятая часть ее поверхности покрыта валунами, но они остаются незамеченными просто потому, что слишком малы.
Бытует и такое мнение: темные участки Луны, которые называются морями, действительно моря, но наполненные не водой, а пылью, в которой (осторожно!) может навеки утонуть космический корабль.
Поистине трудно разобраться в этой разноголосице мнений.
Литератор может позволить себе выбрать лунный пейзаж по своему вкусу. Он может одеть Луну в гранит или пепел, зажечь потухшие вулканы, окутать атмосферой и даже населить ее. Но ученым нужны факты. Только факты.
Казалось, споры может разрешить лишь сама Луна, когда на ней высадится первый человек. Но многие сомнения разрешились гораздо раньше. Новую лазейку на Луну открыли радиоволны.
К началу исследования радиоизлучения Луны астрономы располагали одной вполне надежной характеристикой Луны – температурой ее поверхности. Ее измерили еще в тридцатых годах астрофизики Петит и Никольсон методом простым, остроумным и настолько точным, что до сих пор никто не смог превысить эту точность. Основываясь на показаниях инфракрасных лучей, ученые установили поразительную вещь. Раскаленная в лунный полдень до + 120 °C поверхность нашего спутника лунной ночью скована морозом в – 150 °C. Колебания температуры Луны неслыханны: двести семьдесят градусов! Ничего подобного на Земле никто никогда не наблюдал.
В 1939 году Петит повторил свои исследования, но уже во время лунного затмения, когда Земля полностью закрыла от Луны Солнце. Оказалось, что за один час температура Луны упала с +120 °C до – 100 °C.
Поэтому, когда радиоастрономы Пиддингтон и Миннет в 1949 году впервые направили свои приборы на Луну, они ожидали обнаружить не меньшее изменение ее «радиояркости». И что же показали приборы? При смене лунного дня лунной ночью радиоизлучение почти не изменилось…
Выходило, если верить радиоастрономам, температура Луны почти не меняется! Это изрядно взволновало ученых: как объяснить различие в показаниях инфракрасных и радиолучей, как увязать столь противоречивые данные?
Напрашивался единственно правильный вывод: радиоволны излучает не сама поверхность Луны, температура которой подвержена сильным колебаниям, а более глубокий слой почвы, в котором сохраняется постоянная температура. Мысль эту подкрепляло и то всем знакомое обстоятельство, что на Земле зиму и лето фактически «чувствует» лишь поверхностный слой, а на глубине в несколько метров температура меняется мало.
Но как только был разрешен первый вопрос, возник следующий: из чего же состоит поверхностный слой Луны, который, как шубой, укрывает ее недра от резких колебаний температуры?
Академик Фесенков подсчитал, что теплопроводность лунной почвы должна быть почти в тысячу раз меньше, чем у земных пород. Такой материал – давняя мечта строителей, теплотехников и специалистов холодильного дела. Но ничего подобного на Земле нет. И ученые справедливо усомнились в том, что такая идеальная теплоизоляция может существовать в природе, даже на Луне. Вряд ли возможно такое огромное отличие между лунными и земными породами.
Но вскоре удалось нащупать возможную причину такой разницы. Сравнивая земные и лунные породы, скептики не учитывали того обстоятельства, что вещество на Луне находится фактически почти в полной пустоте, в вакууме. Очутись земные породы на Луне, их поры оказались бы пустыми, и они резко снизили бы свою теплопроводность. Правда, опыт показал, что теплопроводность земных пород и в безвоздушном пространстве остается в сотню раз большей, чем теплопроводность лунных.
Какой же земной материал, гадали ученые, может соперничать с лунным? Пожалуй, только пыль. Соприкасаясь одна с другой в немногих точках, пылинки плохо передают друг другу тепло. Если же откачать из промежутков между пылинками воздух, то передача тепла через слой пыли станет ничтожной.
Пыль в качестве поверхностного слоя Луны «устраивала» и сторонников метеорной гипотезы, которая утверждает, что лунный покров создан постоянной бомбардировкой миллиардами крупных и мельчайших метеоритов. Они падают на Луну со скоростью в несколько десятков раз большей, чем скорость пули или снаряда. Сторонники этой гипотезы утверждают, между прочим, что та же участь постигла бы и Землю, если бы она не была надежно укутана своей атмосферой. Пыль удовлетворяла и приверженцев вулканической точки зрения. По их мнению, прошлая бурная деятельность лунных вулканов могла породить достаточное количество пыли и похожего на нее пепла. На Луне нет воды, которая смыла бы эти наносы. Нет ветра, который бы их развеял. Со временем пыль и пепел могли покрыть всю поверхность нашего спутника.








