Текст книги "Коснуться невидимого, услышать неслышимое"
Автор книги: Инна Вартанян
Соавторы: Ефим Цирульников
сообщить о нарушении
Текущая страница: 8 (всего у книги 11 страниц)
Электро– и другие виды рецепции
Со времен греческих мыслителей принято насчитывать у человека пять чувств: слух, зрение, осязание, обоняние и вкус. Каждое чувство располагает своим органом – соответственно ухом, глазом, кожей, носом и языком.
Эта в сущности более житейская, чем научная, классификация построена по принципу адекватного стимула, к которому данный орган наиболее чувствителен, на который настроен. Ухо настроено на распространяющиеся воздушным путем механические волны, глаз – на световые, кожа – на восприятие контактирующих с ней источников механических колебаний, нос – на опознание химических агентов в воздухе, язык – в пище. Каждый из органов чувств имеет основную, наиболее важную часть – рецепторный аппарат и другую, вспомогательную. Вспомогательный аппарат для рецепторов глаза составляют глазное яблоко, хрусталик и другие образования. Рецепторный аппарат уха находится в окружении так называемого звукопроводящего аппарата, включающего ушную раковину, наружный слуховой проход, барабанную перепонку, полость среднего уха со слуховыми косточками и т. д. В коже, в носу, на языке также имеются структуры, выполняющие вспомогательную функцию, которая состоит главным образом в повышении чувствительности специфического рецепторного прибора к адекватному стимулу или в преобразовании стимула в адекватный.
С современной точки зрения, указанная классификация нестрога н неполна (см. главу 1). Например, в коже содержится аппарат не только для осязания (тактильной чувствительности), но также для температурной чувствительности и боли, а в ухе – не только для слуха, но и для чувства равновесия – так называемый вестибулярный аппарат. С каждым органом чувств, вернее с каждым специализированным рецепторным аппаратом, связывают определенное ощущение. Однако имеются ощущения, для которых не обнаружено специальных рецепторов, например ощущения вибрации, щекотки, зуда.
У животных имеются сходные с человеческими рецепторные структуры, однако есть и такие, которые у человека лишь отдаленно похожи или вообще отсутствуют. Например, у моллюсков аппаратом равновесия служат рецепторы, заключенные в маленькие образования – пузырьки-статоцисты. Считается, что эволюционно эти образования являются предшественниками более сложно устроенного вестибулярного и слухового аппаратов высших позвоночных животных и человека. У рыб и земноводных животных имеется рецепторный аппарат боковой линии, служащий для восприятия механических стимулов. У земноводных этот аппарат менее развит, чем у рыб, а у высших позвоночных и человека вообще отсутствует.
В последние десятилетия подробно изучали электро-рецепторный аппарат рыб. Подобного аппарата или его аналогов у высших животных и человека пока не найдено. Следовательно, в изучении электрорецепции не может быть использован психофизический метод исследования с измерением характеристик ощущения. Применение ультразвука для изучения функции статоцистов моллюсков, рецепторов боковой линии и электрочувствительного аппарата рыб позволило составить более ясное представление об их функции. В частности, плодотворным оказалось изучение электрорецепции.
Типичным электрорецептором некоторых рыб, например черноморского ската – морской лисы, являются ампулы Лоренцини. Каждое рецепторное образование действительно напоминает ампулу, связанную с расположенным под кожей каналом. Канал начинается на коже рыбы маленьким отверстием – порой, открывающейся непосредственно в воду. Заканчивается канал в теле колбообразным расширением. Это и есть собственно ампула. Скопления ампул покрыты соединительнотканной капсулой. Каналы разных ампул веерообразно сходятся к капсуле. Ампулы Лоренцини обладают высокой чувствительностью к изменениям электрического потенциала в морской воде, а также чувствительны к температурным и механическим воздействиям. От капсулы к мозгу идут нервные волокна, которые вместе образуют нерв. В электрофизиологических исследованиях доктора биологических наук Г. Р. Броуна и других ученых удалось зарегистрировать электрическую активность отдельных волокон нерва и ее изменения под влиянием разнообразных воздействий как на собственно ампулы, так на каналы и поры. Если фокальную область ультразвукового излучателя совместить с порой ампулы, то при действии ультразвука частотой около 2 МГц, импульсами длительностью 1 мс в одиночном нервном волокне можно зарегистрировать ответную электрическую активность. Однако реакция возникает лишь в тех случаях, если пору расположить над водой, а ультразвук пропускать через тело рыбы, и отсутствует при погружении поры в воду. Это наблюдение позволило сделать предположение, что действующим фактором ультразвука является механический, связанный с радиационным давлением. Известно, что механическое действие радиационного давления проявляется на границе сред с разными акустическими свойствами, в данном случае – на границе тела рыбы и воздуха. Ткани рыбы и вода более акустически однородны, поэтому действие радиационного давления незначительно и не вызывает ответной реакции, если пора находится в воде. В этом случае ответную реакцию вызывал механический стимул, например прикосновение к поре стеклянной палочкой.
Специальными исследованиями установлено, что механическое воздействие на пору вызывает появление в канале электрического потенциала, и последний, уже как адекватный стимул, выступает причиной импульсной электрической активности нервных волокон. Выдвигавшееся ранее предположение о прямой чувствительности ампулы к механическим воздействиям не получило подтверждения.
Непрерывное действие ультразвука на пору не вызывало эффекта, действие на скопление ампул в капсуле сопровождалось уменьшением и даже полным прекращением импульсации в нервных волокнах. В этом случае действующим фактором ультразвука оказалось выделение тепла. Эффект полностью воспроизводился при нагревании капсулы с ампулами естественным источником тепла.
Следовательно, электрорецепторные образования оказались чувствительными к электрическим и механическим воздействиям в области поры и тепловым – в области собственно ампул. Чувствительность электрорецептора к механическому стимулу можно в известной степени рассматривать как модификацию электрорецепции, поскольку стимул преобразуется в электрический сигнал. А каков смысл температурной чувствительности ампул? Наиболее вероятно, что она играет роль регулятора уровня электрорецепции, а не участвует в терморецепции как таковой. В пользу такого предположения служат данные о низкой теплопроводности тканей, отделяющих ампулы от водной среды, впрочем, как и вообще всех тканей холоднокровных животных. Эти данные получены опять-таки с помощью ультразвука. Вот один из примеров. Снижение температуры кожи скатов, искусственно повышенной воздействием фокусированного ультразвука (животное находилось в воде, температура которой была около 13 °C), продолжалось около 60 с, в то время как аналогичное снижение температуры кожи человека (при температуре воздуха около 20 °С) происходило за время, не превышавшее 1.5—2 с.
Таким образом, постепенно проясняется функциональная роль специализированных электрорецепторных структур, чувствительных к действию разномодальных стимулов.
Что касается действия фокусированного ультразвука на обонятельную, вкусовую, зрительную системы, наши знания весьма скудны. Про ультразвук и обонятельную систему пока просто нет сведений. При действии непрерывным ультразвуком на вкусовые области языка человека можно вызвать ощущение, очень сходное с «электрическим вкусом» – такое возникает, если замкнуть через язык разноименные полюса батарейки карманного фонарика. Попытки активации фокусированным ультразвуком рецепторных структур глаза пока не увенчались успехом. В чем тут дело, не найден нужный режим воздействия или в принципе активация зрительной системы ультразвуком невозможна, – пока неясно. Решение этого вопроса было бы весьма полезным как для дальнейшего изучения функции зрительной системы, так и для углубления наших знаний о возможностях и механизмах функционального действия фокусированного ультразвука.
Глава 4. Действие фокусированного ультразвука на нервные проводники и центры мозга
Исключительно разнообразный поток стимулов и соответствующих им ощущений можно классифицировать и тем самым ограничить определенными «измерениями», или «параметрами». Обычно рассматривают четыре измерения: качество (модальность, субмодальность или особенность в пределах одной модальности), силу (интенсивность), протяженность (пространство) и длительность (время). Каждый стимул и соответственно каждое ощущение могут изменяться в любом измерении, независимо от трех остальных. Именно поэтому вполне приемлемо представление сенсориума (чувственного восприятия) в виде матрицы (N×4), где N – основные сенсорные модальности, каждая из которых имеет четыре измерения. Собственно сама модальность ощущения является основным качеством стимула. Именно в пределах этого качества отличается свет от звука, запах от прикосновения, горечь от тепла и т. д. В пределах каждой модальности заключено огромное количество градаций (особенностей) по качеству стимула; градации эти, характеризуемые ощущением, и дают возможность получения представлений о свойствах стимулов и в конечном счете – о внешнем мире. Некоторые исследователи считают целесообразным выделять в пределах одной модальности так называемые субмодальности. Качество каждой субмодальности также имеет множество градаций. Например, тактильное ощущение может характеризоваться как прикосновение, давление, удар, вибрация.
Нетрудно заключить, что из всех перечисленных выше измерений только одно, а именно «качество», определяется видом воздействующей энергии, типом воспринимающей ее рецепторной поверхности и внутримозговыми связями этой поверхности, центральными сенсорными проекциями в мозге. Остальные три – интенсивность, пространственная протяженность и длительность – могут отражаться в проводниках, по крайней мере в проводниках первого порядка, идущих от рецепторов, при действии неадекватного раздражителя (например, электрического тока) так же точно и количественно определенно, как и при действии адекватного стимула. Известно, что увеличение силы и длительности воздействия электрического тока на нервные волокна вызывает увеличение частоты и длительности разрядов в них.
В главе 3 было показано, что импульсы фокусированного ультразвука при действии на различные рецепторные поверхности вызывают все виды ощущений, в основе возникновения которых лежит раздражение механическими видами энергии. Экспериментальные и расчетные данные свидетельствуют в пользу предположения о том, что основным действующим фактором фокусированного ультразвука является смещение частиц среды или тканей, окружающих рецепторные образования в фокальной области излучателя. Неудивительно, что, будучи механическим по своей физической сущности раздражителем, фокусированный ультразвук представляется достаточно универсальным и адекватным способом изучения деятельности различных механорецепторных систем.
А если фокусированным ультразвуком воздействовать непосредственно на проводниковые и центральные структуры сенсорных систем, может ли он вызывать те формы активности, которые характерны для данной сенсорной системы, может ли он стать раздражителем нейронных структур? Какие эффекты, характеризуемые типичными ощущениями, показателями электрической или двигательной активности, связанные с определенными зонами центральной нервной системы, могут быть зарегистрированы? Возникают ли структурные изменения в зоне действия такого стимула? Поставленные вопросы имеют принципиально важное значение для решения ряда фундаментальных и практических задач. К их числу относятся, например, развитие представлений о сенсорной специфичности раздражителя и зависимости ощущения от места воздействия стимула, выяснение возможности компенсации утраченных сенсорных функций, поиски подходов к определению регулирующего и управляющего воздействия на структуры мозга, обусловливающие различные формы поведения. В качестве важных проблем должны быть также названы исследования развития определенных состояний центральной нервной системы под влиянием внешних высокочастотных акустических полей и изучение контролируемых разрушений в центральной нервной системе, полученных бесконтактным воздействием ультразвука на заданные структуры мозга. Решение последней задачи необходимо как для нейрофизиологии и нейроморфологии, так и для нейрохирургической практики.
Даже далеко не полное перечисление аспектов применения ультразвука и возможных результатов исследований, находящих практическую реализацию, свидетельствует о необходимости проведения широкого фронта научных изысканий в этом направлении. Следует, однако, отметить, что большинство имеющихся к настоящему времени данных получено в результате изучения повреждающего действия ультразвука на биологические ткани. Значительно меньший материал получен в связи с изучением действия ультразвука на проводниковые структуры двигательных систем. Считанное число исследований посвящено обратимым изменениям функций при облучении центральных мозговых структур. Проблема активации периферических сенсорных структур в условиях выключения рецепторного аппарата изучалась только в наших работах.
Характеризуя деятельность нервной системы в условиях воздействия любого стимула, можно выделить следующие основные эффекты активация, угнетение, модуляция и повреждение. В основе трех первых эффектов лежат основные нервные процессы (возбуждение и торможение). Они выражаются в двух видах электрической активности – импульсной передаче по типу «все или ничего», характерной для нервных клеток и аксонов, и медленных электрических потенциалах в зонах соединений и взаимодействий между нейронами. Факторы, приводящие к повреждению, многообразны.
Активация и угнетение
Для оценки активирующего действия раздражителя, в нашем случае фокусированного ультразвука, можно использовать ряд показателей: возникновение специфического ощущения, характерного для исследуемой сенсорной системы в условиях отсутствия рецепторного аппарата, появление электрического ответа проводниковых или центральных структур, связанных с данной системой, усиление под воздействием раздражителя электрических ответов проекционных зон и, наконец, возникновение или усиление реакций двигательной эффекторной системы. Активация может изучаться как при прямом действии раздражителя на центральные нервные структуры, так и при опосредованном действии, а именно в тех случаях, когда воздействие наносится на одни участки нервной системы, а эффекты активации регистрируются от других ее участков. Рассмотрим те доказательства активирующего воздействия фокусированного ультразвука, которые получены экспериментально.
В первую очередь речь пойдет о реакциях, вызванных действием фокусированного ультразвука на ушной лабиринт человека и животных, если их рецепторный аппарат разрушен и не функционирует. Разнообразные формы патологии слуха представляют собой печальные модели частичной или полной утраты сенсорной слуховой функции в результате различной локализации повреждения, вызванного патологическим процессом. Среди разных заболеваний можно выделить те, при которых тугоухость обусловлена повреждением рецепторного аппарата – волосковых клеток внутреннего уха. Подобные виды патологических поражений волосковых клеток встречаются, в частности, при некоторых формах тугоухости в результате применения ототоксических антибиотиков.
В процессе исследований, проведенных совместно с Ленинградским институтом болезней уха, горла, носа и речи МЗ РСФСР, направленных на выяснение диагностических возможностей применения фокусированного ультразвука, было отмечено, что в ряде случаев слуховые ощущения появляются не только у больных, которые страдают поражением звукопроводящего аппарата среднего уха, но и у больных с повреждением рецепторного аппарата внутреннего уха. Значит ли это, что фокусированный ультразвук вызывает к жизни немногочисленные сохранившиеся рецепторы, или же слуховое ощущение определяется прямой активацией волокон слухового нерва? Этот вопрос стал предметом нашего специального экспериментального изучения на животных.
Представлялось необходимым вначале ответить на вопрос: если рецепторы разрушены или выведены из нормального режима работы, можно ли зарегистрировать реакцию слуховых центров животного на воздействие ультразвука, сфокусированного на поврежденную рецепторную часть слуховой системы? Ведь даже при разрушении рецепторов, а тем более нарушении нормальных условий их функционирования значительная часть нервных окончаний, иннервирующих рецепторы, остается неповрежденной, а следовательно, может быть объектом прямой активации. В качестве экспериментального животного, была выбрана лягушка – по тем же причинам, о которых говорилось в главе 3.
Рис. 22. Строение левого слухового лабиринта травяной лягушки (схема).
А – вид снизу, Б – с латеральной стороны. Стрелки – направление вперед; площади, заполненные точками, – места рецепторных образований, ап – амфибиальная папилла, бп – базилярная папилла, бк – базилярный канал, кк – клиновидная кость, л – лагена, с – саккулюс. Папиллы, саккулюс и лагена – рецепторные образования лабиринта.
Модель рецепторной патологии создавалась путем механического нарушения целостности гидродинамической системы лабиринта. Пространственная разобщенность различных структурных образований лабиринта лягушки (рис. 22) при общности их гидродинамической системы давала достаточно надежную гарантию того, что фокусировка ультразвука на одно из этих рецепторных образований даст возможность подвергать действию раздражителя именно это образование в зоне тонких дендритных терминалей (волокон), подходящих к рецепторным клеткам. В то же время нарушение целостности гидродинамической системы лабиринта выводило из нормального режима работы все рецепторные клетки. Из методических соображений: локализации, возможности точно сфокусировать ультразвук, доступности гистологического и визуального контроля разрушений, вызванных механическим вмешательством, и данных об участии в анализе звуков нами был выбран саккулюс.
В соответствии с собственными и литературными данными саккулюс имеет непосредственное отношение к восприятию звука, вибраций. Максимальная чувствительность слуха животного, оцениваемая на основании электрической реакции слухового центра среднего мозга на звуковые стимулы разной частоты, ограничена так называемой частотно-пороговой кривой (рис. 23). Из этого ограниченного диапазона были выбраны две частоты – 200 и 1200 Гц, характерные для функции саккулюса, к которым слух оказывается наиболее чувствительным, и в дальнейшем использовались для контроля величины и формы электрической реакции слухового центра.
Критерием оценки действия на саккулюс фокусированного ультразвука служила электрическая реакция того же центра. Ультразвук подавался в форме коротких, длительностью 1 мс, импульсов, а интенсивность его менялась в широких пределах – от порога возникновения реакции до 60 дБ над порогом. Путем сравнения реакций на звук и ультразвук при неповрежденном (интактном) лабиринте с реакциями, возникающими после его механического повреждения, устанавливались сходство и различие в действии этих двух типов раздражителей, а также возможность получения слуховых ответов на ультразвук при нарушении деятельности рецепторного аппарата.
Рис. 23. Частотно-пороговые кривые нейронов травяной лягушки из слуховых центров среднего мозга.
По оси абсцисс – частота звука, Гц, по оси ординат – интенсивность звука, дБ относительно уровня 2·10 Н/м2. Римскими цифрами обозначены три группы нейронов. Арабские цифры соответствуют номерам представленных нейронов из всех обследованных.
Эксперименты на животных с неразрушенными, неповрежденными рецепторными образованиями позволили выявить особенности реакций слухового центра среднего мозга на звук и ультразвук и высказать предположения о месте действия фокусированного ультразвука. Оказалось, что характеристики центральных слуховых реакций идентичны только в диапазоне интенсивностей звука и ультразвука – до 18—30 дБ над порогом возникновения вызванных ответов структур среднего мозга. При увеличении интенсивности обоих стимулов отмечались изменения вызванных ответов на ультразвук. Последние имели значительно более крутой фронт начального электрического отклонения и более короткую длительность, чем при действии звуков той же надпороговой интенсивности. Изменялась, хотя и менее значительно, форма последующего, более медленного негативного колебания. При интенсивности сигналов порядка 35—40 дБ над порогом различия реакций становились очень заметными и приобретали свое окончательное выражение. Длительность ответа на ультразвуковой стимул еще более укорачивалась как по позитивному, так и по негативному электрическому колебанию, крутизна начального отклонения возрастала, а форма последующего негативного отклонения усложнялась. Оно становилось двойным, содержащим быстрое и следующее за ним более медленное колебания.
После достижения указанного уровня интенсивности ответ на ультразвук мало зависел от интенсивности раздражителя, хотя некоторое возрастание амплитуды при увеличении еще на 5—10 дБ могло быть зарегистрировано. После достижения уровня 40—50 дБ над порогом ответа на стимул фокусированного ультразвука дальнейшего увеличения реакции не отмечалось. Более того, при таких и больших величинах интенсивности ультразвука величина ответа на раздражитель начинала уменьшаться, причем иногда значительно – на 20—25%. В то же время реакции на звук в том же надпороговом диапазоне интенсивностей плавно увеличивались по величине, а форма ответа сохранялась до максимальных интенсивностей звука. Лишь в отдельных опытах при больших интенсивностях звука (более 60 дБ) реакция обнаруживала тенденцию к уменьшению.
Результаты опытов позволили предположить, что сходное действие звука и фокусированного ультразвука возможно лишь в ограниченном околопороговом диапазоне интенсивностей. Анализ физических факторов, действующих на ушной лабиринт при амплитудной модуляции ультразвука (а импульсы, вызывающие слуховое ощущение у человека и вызванную реакцию у животного, являются одной из форм амплитудной модуляции), показал, что при прохождении через среду существенную роль играет акустическое давление излучения (радиационное давление), переменная составляющая которого определяется частотой модуляции. Измерения величин демодулированного давления низкочастотных колебаний, определяемых огибающей (в нашем случае – импульса), показали их зависимость от интенсивности и звукового давления высокочастотных (мегагерцовых) колебаний. Результаты измерения в среде хорошо согласуются с теми зависимостями, которые характеризуют явление демодуляции амплитудно-модулированных ультразвуковых колебаний за счет давления излучения, а также с зависимостью слухового ощущения от глубины модуляции. Следовательно, механорецепторное преобразование при действии ультразвука по сути своей сходно с механорецепторным преобразованием звука, но минует систему звукопроведения наружного и среднего уха. В тоже время мы видим, что при выходе из околопороговой зоны интенсивностей картина центрального представления стимулов на периферии принципиально изменяется. Что-то новое прибавляется при уровне интенсивности порядка 15—20 дБ и начинает превалировать при 30—40 дБ над порогом центрального вызванного ответа.
После механического разрушения сред внутреннего уха действие фокусированного на ушной лабиринт ультразвука вызывает электрический ответ в слуховых центрах среднего мозга. Ответ возникает при значительно больших – на 35—40 дБ – интенсивностях, чем при действии тех же ультразвуковых импульсов на лабиринт с нормальными рецепторами, но все-таки он возникает. И есть еще запас интенсивностей, при которых ответ возрастает, – в наших конкретных экспериментальных условиях он составлял около 20 дБ. Звук максимальной в экспериментах интенсивности – 110 дБ над уровнем стандартного звукового давления 0.00002 Па – ответной реакции не вызывает. Значит, ультразвук раздражает те структуры, на которые звук не действует.
Какие же это структуры? На их роль могли претендовать или неразрушенные рецепторные клетки, или тонкие немиэлинизированные дендритные терминали слухового нерва, расположенные в зоне разрушенных (и неразрушенных) рецепторов. Против участия неразрушенных рецепторных клеток свидетельствовали те опыты, в которых звук максимальной интенсивности ответа не вызывал. Кроме того, если бы в генерации центрального ответа на ультразвук играли роль рецепторы, которых во всех опытах после механического вмешательства могло остаться немного, то амплитуда вызванного ответа была бы существенно меньше, чем в условиях нормального раздражения – при интактном лабиринте. Да и форма ответа должна была быть сходной с формой ответа на звуковое или ультразвуковое воздействие при неразрушенном лабиринте – по крайней мере в околопороговом диапазоне интенсивностей.
В наших опытах амплитуда суммарного электрического ответа не оказалась существенно меньшей при разрушенном лабиринте, чем при отсутствии повреждения. А вот форма и крутизна переднего фронта электрического отклонения резко отличались от тех же показателей вызванного потенциала, возникавшего как на звук, так и на ультразвук интенсивностью до 40 дБ в условиях неповрежденного лабиринта. Главное отличие состояло в том, что длительность реакции была значительно меньше, а крутизна нарастания больше, чем при раздражении теми же стимулами неразрушенного лабиринта. Обращало на себя внимание и то, что даже небольшое увеличение интенсивности – всего на 7—10 дБ над порогом реакции – приводило к резкому возрастанию амплитуды ответа. И наконец, скрытый период реакции был очень небольшим – в 1.5—3 раза меньшим, чем при стимуляции с неразрушенным рецепторным аппаратом.
Складывалось впечатление, что когда лабиринт поврежден, то фокусированный ультразвук «бьет по нерву». Об этом свидетельствовали и малый скрытый период, и короткая длительность ответа, и большая крутизна переднего фронта отклонения, и достижение максимума амплитуды реакции при небольшом увеличении интенсивности раздражителя. Именно так ведет себя нерв, если на один его конец прикладывается раздражение, а от другого конца ведется регистрация электрического потенциала. Значит, все-таки активируются тонкие волокна? Но раньше исследователи показали, что ультразвук не вызывает распространяющегося возбуждения в нервах или одиночных нервных волокнах, а лишь меняет функциональное состояние или функциональные свойства этих волокон. В работах, о которых идет речь, облучению ультразвуком подвергались либо весь ствол крупного нерва (например, седалищного), либо выделенные пучки волокон. Не останавливаясь на деталях методик, следует подчеркнуть два обстоятельства. Во-первых, во всех случаях речь идет о миэлинизированных волокнах, во-вторых, обычно использовался ультразвук достаточно большой длительности, при которой возникали, например, тепловые эффекты, а не импульсные режимы, при которых тепловые эффекты сводятся к минимуму.
В тех случаях, когда больные с пораженным рецепторным аппаратом внутреннего уха при действии фокусированного ультразвука испытывали слуховые ощущения, порог этих ощущений оказался на 30—40 дБ выше, чем порог слуховых ощущений человека с нормальным слухом. Это величины того же порядка, что и повышение порога, полученное в опытах на животных после повреждения гидродинамической системы внутреннего уха.
Уместно также вспомнить о разнообразных кожных ощущениях, возникающих в участках кожи, обильно снабженных свободными нервными окончаниями (см. главу 3). Различия в порогах реакций рецепторов ушного лабиринта и тактильных ощущений человека составляют также величины порядка 35—40 дБ. Эти данные делают более вероятным предположение о том, что фокусированным ультразвуком активируются тонкие немиэлинизированные волокна.
Дополнительные факты, свидетельствующие об активации фокусированным ультразвуком тонких волокон слухового нерва, были получены нами также в опытах на животных с применением специальных морфологических методов. В слуховой лабиринт лягушки вводился фермент пероксидаза, растительного происхождения. Это биологически активное вещество, которое транспортируется по нервным волокнам. В условиях активной работы нервных элементов транспорт усиливается. Схема наших экспериментов включала ряд возможностей.
Просмотрев различные варианты сочетаний, мы отметили, что наибольшее количество прокрашенных волокон и максимальная длина, на которую транспортировался фермент, регистрируются в тех опытах, в которых применялся фокусированный ультразвук при разрушенном лабиринте. В этом случае транспорт фермента достигал клеток ганглия VIII нерва. В контроле (без раздражения) прокрашивались волокна только в непосредственной близости к рецепторной зоне на расстоянии 100—150 мкм и количество прокрашенных волокон было наименьшим из всех возможных вариантов опытов.
Придя к выводу о том, что фокусированный ультразвук активирует волокна слухового нерва при определенной интенсивности раздражителя, мы столкнулись с двумя существенно важными вопросами. Во-первых: что происходит с рецепторами в диапазонах интенсивностей ультразвука, активирующих нерв; как рецепторные клетки реагируют на увеличение интенсивности фокусированного ультразвука? Это фактически вопрос безопасности воздействия раздражителя, особенно важный, когда рецепторы или часть их сохранена. Во-вторых: что происходит в центральных отделах слуховой системы при больших интенсивностях ультразвукового стимула; каково соотношение периферических и центральных процессов при оценке таких показателей, как суммарный ответ центрального отдела?
Для того чтобы ответить на вопрос о том, что происходит в рецепторах при увеличении интенсивности фокусированного ультразвука, рассмотрим две группы фактов, полученных разными методами – электронно-микроскопическим и гистохимическим. Было проведено специальное исследование, посвященное оценке электронно-микроскопических показателей функционального и деструктивного действия различных режимов облучения ультразвуком рецепторных клеток саккулюса лягушки. Показано, что пороговая интенсивность, вызывающая центральную электрическую реакцию в среднем мозге животного, более чем на порядок ниже, чем интенсивность ультразвука, приводящая к структурным изменениям в рецепторных клетках, причем структурные изменения носят функциональный характер – они обратимы. Деструктивные изменения уже явно патологического свойства наблюдаются лишь при интенсивности ультразвука почти на три порядка большей, чем его пороговые дозы. А это значит, что между пороговыми возбуждающими и пороговыми деструктивными интенсивностями фокусированного ультразвука есть интервал, в котором происходят лишь функциональные сдвиги в рецепторных клетках.