355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Инна Вартанян » Коснуться невидимого, услышать неслышимое » Текст книги (страница 6)
Коснуться невидимого, услышать неслышимое
  • Текст добавлен: 26 марта 2017, 08:30

Текст книги "Коснуться невидимого, услышать неслышимое"


Автор книги: Инна Вартанян


Соавторы: Ефим Цирульников

Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 11 страниц)

Ультразвуковое воздействие и безопасность

В зависимости от режима и места воздействия ультразвуком у животных и человека можно вызвать строго определенные функциональные реакции, угнетение этих реакций и разрушение тканей. В связи с этим особое значение приобретают вопросы не только оптимальных режимов, но и безопасности.

Фокусированный ультразвук частотой несколько мегагерц – неспецифический стимул, поскольку в организме животных и человека отсутствуют органы чувств, способные производить или улавливать механические колебания такой частоты. Даже «классические ультразвуковые животные» – летучие мыши и дельфины – способны излучать и воспринимать ультразвук лишь до сотен килогерц. Речь идет, таким образом, о неспецифических режимах облучения ультразвуком, причем с целью не только получить определенный эффект, но и многократно его воспроизвести без какого-либо вредного влияния на облучаемую структуру или организм в целом.

Фокусированный ультразвук большой интенсивности впервые стали использовать в технике для смешивания нерастворимых друг в друге жидкостей, очистки загрязненных деталей, для нагревания ограниченных объемов среды и т. д. В биологии и медицине подобные режимы воздействия, только при меньшей интенсивности ультразвука, использовали для разрушения биологических тканей, в частности патологически измененных структур мозга. Эта наиболее очевидная область применения ультразвука получила признание не только в эксперименте, но и в клинике, например в нейрохирургии. Другая, сравнительно новая область, в которой успешно используется способность ультразвука вызывать деструкцию биологических тканей, – офтальмология. Фокусированным ультразвуком пытаются задержать отслойку сетчатки, образуя в ней очаги асептического воспаления, фиксирующие сетчатку к соседним оболочкам и препятствующие тем самым ее дальнейшей отслойке. Облучение ультразвуком хрусталика глаза ускоряет формирование катаракты. Формирование, развитие, или, как говорят офтальмологи, созревание, катаракты – необходимая предпосылка для ее успешного оперативного лечения. Как правило, такое созревание завершается за несколько месяцев. Облучение хрусталика фокусированным ультразвуком ускоряет этот процесс до нескольких минут.

Результатом исследований последнего десятилетия стало выявление раздражающего действия фокусированного ультразвука. Кроме того, стало известно и другое функциональное его действие, включающее обратимую блокаду проведения нервных импульсов и еще некоторые феномены.

Для угнетающих, разрушающих и некоторых активирующих воздействий чаще всего применяют непрерывное облучение ультразвуком. В таких случаях полнее используется один из действующих факторов ультразвука – выделение тепла в области воздействия. Прямое раздражение ультразвуком рецепторных и нервных структур, когда у человека возникают специфические ощущения, а у животных можно зарегистрировать электрические специфические ответы, осуществляется одиночными стимулами ультразвука или при помощи ультразвука, модулированного по амплитуде полезным сигналом. С точки зрения безопасности, в ряде случаев предпочтительнее импульсное воздействие – стимулами, следующими друг за другом в случайном порядке или с определенной частотой. Это важно учитывать особенно тогда, когда эффекты, получаемые при том и другом способах воздействия, сходны. Например, одинаковое по высоте слуховое ощущение человек испытывает при использовании ультразвука, модулированного по амплитуде колебаниями частотой 500 Гц и ультразвука в импульсном режиме с длительностью импульсов 1 мс и частотой их повторения 500 в секунду. Пороги ощущения для людей с нормальным слухом, измеренные по интенсивности ультразвука, в этих случаях близки. Естественно, выгоднее импульсный режим: при меньшей затрате энергии, а следовательно, при меньшей потенциальной возможности повреждений достигается тот же результат. Дело здесь не только или, вернее, не столько в реализации суммарного количества введенной ультразвуковой энергии, сколько в существовании физиологических механизмов, реагирующих не на общее количество энергии, а на другие параметры стимуляции.

Приведем еще пример. Для непрерывного облучения мозга лягушки в течение 30 с ультразвуком частотой 2.5 МГц безопасная интенсивность ультразвука, т. е. не вызывающая деструктивных изменений, составляет около 100 Вт/см2 (интенсивность осреднена по площади фокальной области). В импульсном режиме облучения (длительность прямоугольных импульсов ультразвука 1 мс, частота их следования – 500 в секунду) аналогичная интенсивность – уже порядка 800 Вт/см2. Суммарная энергия, введенная в организм, в 4 раза больше во втором случае, чем в первом. Пример демонстрирует существенное значение распределения ультразвуковой энергии во времени.

В наших опытах минимальная интенсивность амплитудно-модулированного ультразвука, вызывающего у человека слуховое ощущение, была принята за пороговую; при этом максимальная интенсивность, которая использовалась в экспериментах, составляла около 60 дБ над порогом. При этом случае появлялось ощущение тепла на месте контакта акустически прозрачной полиэтиленовой пленки с кожей головы. Максимальная интенсивность (в дБ) рассчитывалась как 20 lg In/I0, где In – максимальная интенсивность ультразвука (Вт/см2), I0 – пороговая интенсивность (Вт/см2). Аналогичный расчет был использован при воздействии на ушной лабиринт травяной лягушки одиночными стимулами фокусированного ультразвука длительностью 1 мс. Эти опыты показали, что в интервале около 35—40 дБ над порогом обнаружения ответной электрической реакции в слуховых центрах среднего мозга амплитуда ответа возрастает пропорционально увеличению интенсивности стимула, как это имеет место и при ответах на звук. При интенсивности 40—50 дБ амплитуда ответов на ультразвук растет быстрее, чем на звук, рост ее относительно замедляется при интенсивности ультразвука от 50 до 55 дБ. При интенсивности ультразвука выше 55 дБ амплитуда ответа начинает уменьшаться, в ушном лабиринте появляются морфологические изменения, приобретающие по мере дальнейшего увеличения интенсивности характер деструктивных.

Экспериментальные данные, полученные на животных, подтверждаются в наблюдениях у здоровых людей, когда испытуемые устанавливали равную громкость ощущений при воздействии на одно ухо звуком, а на другое – ультразвуком, модулированным по амплитуде аналогичным звуковым сигналом. Приблизительно до уровня 30—35 дБ относительно слухового порога для ощущения равной громкости требовалось одинаковое надпороговое увеличение интенсивности ультразвука и звука. В диапазоне 35—50 дБ для равной громкости требовалось более значительное увеличение интенсивности звука.

Сопоставление результатов исследований, проведенных на лягушке и человеке, при учете различий объектов и методики исследования, тем не менее указывает на качественную и даже количественную однотипность результатов. Действительно, в определенном надпороговом интервале интенсивностей ультразвука величина ответной реакции (амплитуды электрического ответа из слуховых центров среднего мозга – у животного и ощущения равной громкости – у человека) закономерно связана с интенсивностью. За пределами этого интервала закономерность связи нарушается. Если сравнить динамический диапазон интенсивностей у лягушки и человека, в котором отмечены закономерные связи, он оказывается больше у лягушки (около 55—60 дБ), чем у человека (около 50 дБ). Основную причину указанных различий усматривают в том, что у человека использовали амплитудно-модулированный ультразвук, а для животных – импульсный. Как уже указывалось, при импульсном режиме общую ультразвуковую энергию и интенсивность отдельных импульсов можно увеличить в несколько раз по сравнению с непрерывным облучением, а также с облучением при амплитудной модуляции.

Приведенные примеры подтверждают, что установить определенный режим воздействия необходимо как по соображениям безопасности, так и для достижения тех или иных функциональных эффектов.

Глава 3. Ультразвук как раздражитель органов чувств

Исследования, выполненные рядом научных и клинических учреждений, продемонстрировали возможность активировать фокусированным ультразвуком различные рецепторные системы. У человека ультразвуковые воздействия вызывали весь набор ощущений, связанный с естественной активацией периферического аппарата соматосенсорной системы: тактильные, болевые, ощущения вибрации, тепла, холода, щекотки, зуда. С помощью ультразвуковых воздействий возникали также слуховые и вкусовые ощущения. Электрофизиологическими методиками получены ответы при действии фокусированного ультразвука на рецепторный аппарат равновесия (статоцист) моллюсков, на электрорецепторную систему рыб, на слуховую систему лягушки.

Тактильная чувствительность

Если совмещать центр фокальной области излучателя ультразвука с чувствительными точками на коже человека, то действием ультразвука можно вызвать тактильные ощущения. В зависимости от интенсивности и длительности стимулов человек характеризует ощущения как легкое прикосновение, наподобие прикосновения маленькой кисточкой, слабый локальный толчок, удар капельки воды и так далее.

Еще с конца прошлого века благодаря исследованиям М. Бликса, М. Фрея и других ученых известно, что чувствительность кожи дискретна, т. е. существуют чувствительные места и нечувствительные, «слепые». Действие неразрушающих стимулов на такие слепые места не вызывает ощущений. Только при разрушении тканей возникает боль в области, размер которой значительно обширнее, чем место воздействия. Диаметр отдельных чувствительных мест может быть очень мал. Именно поэтому их называют чувствительными точками.

На коже кисти чувствительные точки расположены очень плотно по всей поверхности. На предплечье и плече плотность уменьшается. Ощущения в ответ на действие ультразвука появляются здесь лишь в том случае, если фокальная область попадет в чувствительную точку. В соседних, «слепых» точках, где нет рецепторных структур, ультразвук не вызывает ощущений, за исключением разлитой боли, возникающей при определенных режимах воздействия.

Когда используют стимулы фокусированного ультразвука длительностью приблизительно до 25 мс, возникает одиночное тактильное ощущение. При большей длительности появляются два ощущения, соответствующие началу и концу стимула. В опытах с применением ультразвуковых частот в диапазоне 0.47—2.67 мГц величина порога ощущения не зависит от частоты ультразвука как таковой, а связана с амплитудой смещения среды в фокальной области. Как только достигается необходимая величина амплитуды смещения тканей в области воздействия порядка 0.05—0.1 мкм, возникает пороговое тактильное ощущение. Не следует, однако, забывать, что колебательное смещение частиц среды происходит с частотой ультразвука. Казалось бы, возникает противоречие: пороги не зависят от частоты ультразвука, но в то же время измеряются амплитудой знакопеременного смещения, частота которого соответствует частоте ультразвуковых колебаний. Однако уже отмечалось, что ощущение вызывается только короткими ультразвуковыми стимулами, а при их удлинении возникают два ощущения, отмечающие начало и конец стимула. Следовательно, ощущения соответствуют переднему и заднему фронтам стимулов. Тогда понятно, почему величина порога не зависит от частоты ультразвука. Совершенно неважно, какой будет частота «заполнения» стимула, если ответная реакция возникает только на его начало и конец.

В физиологии органов чувств есть понятие об оптимальной частоте стимуляции. В зоне оптимальной частоты порог реакции наименьший, диапазон интенсивности и способность к различению наибольшая. В нашем случае это не частота ультразвука, а частота следования ультразвуковых стимулов, при которой пороги тактильного ощущения будут наименьшими. Для тактильной рецепции такая частота – около 250 Гц. Если стимулы будут следовать друг за другом чаще, пороги тактильных ощущений повышаются, а при частоте следования выше 700 импульсов в секунду тактильные ощущения вызвать не удается. Такая закономерность существует не только для ультразвуковых стимулов, но для любых ритмических механических воздействий на кожу, например с помощью вибратора. Становится ясно, почему тактильные пороги не связаны с частотой ультразвука: физиологический предел срабатывания кожных рецепторных структур – около 700 Гц, а частота ультразвука на три порядка выше.

При перемещении фокальной области по коже руки в направлении от пальцев к предплечью пороги тактильных ощущений постепенно возрастают. На предплечье не удается найти ни одной чувствительной точки, в которой эти пороги были бы равны или ниже, чем в точках на коже кисти (рис. 16). О чем свидетельствует этот факт? Со времен М. Бликса и М. Фрея известно, что в коже находятся тактильные рецепторные структуры разнообразного строения. Известно также, что плотность их распределения уменьшается по направлению от пальцев к предплечью. Следовательно, величина порога связана не с морфологическими особенностями рецепторных структур, как предполагали ранее, а с их количеством. Чем меньше рецепторных структур на единицу площади поверхности кожи, тем выше тактильный порог.

Полученные данные и сделанный вывод пока не отрицают полностью связи функции со строением тактильной рецепторной структуры. Дело в том, что тактильные пороги на коже тыльной стороны кисти и предплечья оказались выше, чем на ладонной стороне. Это видно на том же рисунке (16, Б). Рецепторный аппарат тыльной поверхности связан с кожными волосками, которых нет на ладони, и вообще строением существенно отличается от рецепторных структур неволосистой, как принято говорить, гладкой кожи. Пока неизвестно, различается ли по плотности распределение рецепторных структур ладонной и тыльной поверхности кожи руки. Поэтому и нет окончательного суждения о том, в каких соотношениях находятся строение и функция тактильных рецепторных структур этих двух «разновидностей» кожи.

Рис. 16. Исследование тактильной чувствительности.

А – фрагмент установки для исследования чувствительности руки с помощью ультразвука, о – опорные держатели для руки, у – ультразвуковой фокусирующий излучатель, м – подвижная муфта для совмещения центра фокальной области излучателя с поверхностью кожи. Над излучателем – проекция кисти. Римскими цифрами обозначены области исследования: I—V со стороны ладонной поверхности, VI—X – со стороны тыльной. Арабскими цифрами помечены точки, в которых осуществлялось воздействие ультразвуком: точка 2 в VI области правой руки совмещена с центром фокальной области излучателя. Ультразвук частотой 2.56 МГц, воздействие в режиме одиночных прямоугольных импульсов длительностью 1 мс, предъявляемых произвольно, обычно не чаще, чем 1 имп./с.


Рис. 16 (продолжение).

Б – пороги тактильной чувствительности человека на кисти и предплечье по данным обследования 8 человек в возрасте от 20 до 42 лет. По оси абсцисс – номер обследованного участка; по оси ординат – амплитуда смещения среды в фокальной области ультразвукового излучателя, мкм. Кружки – пороги тактильных ощущений на ладонной поверхности кисти и предплечья (черные – первое измерение, светлые – повторные), треугольнички – пороги на тыльной стороне ладони и предплечья при однократном измерении.

Если фокальную область ультразвукового излучателя перемещать под кожу, пороги тактильных ощущений повышаются. В одних случаях человек ощущает воздействие в коже и не отличает его от воздействия при расположении центра фокальной области на коже. В других случаях возникают ощущения иного рода, наподобие разлитого толчка в глубине, пульсации сосуда, подергивания за сухожилие. Как правило, глубинное ощущение – более разлитое, чем кожное, без четких границ. Когда ощущение проецируется в кожу, можно предполагать два варианта активации ультразвуком чувствительных структур. Во-первых, могут активироваться структуры в коже. При этом более высокие пороги объясняются тем, что центр фокальной области расположен под кожей. Активация структур осуществляется тогда за счет действия на них края области, где интенсивность ультразвука значительно меньше, чем в центре. Не исключается и второй вариант, который предусматривает возможность активации идущих от кожи нервных волокон. В таком случае распространенность ощущения связана с местом ветвления волокон, и поэтому оно не столь локально, как при расположении центра фокальной области в коже. Если речь идет о тактильных ощущениях в глубине без проекции на кожу, возможна активация тех рецепторных структур, которые расположены в мышцах, стенках сосудов, в сухожилиях. Количество этих структур, как показывают наши опыты, уменьшается по направлению от пальцев к предплечью, поскольку наблюдается повышение порогов в этом направлении.

Ощущения щекотки и зуда можно считать разновидностью соответственно тактильных и болевых ощущений. Пороги щекотки, измеренные с помощью ультразвука, занимают промежуточное положение между тактильными и температурными порогами, пороги зуда – между температурными и болевыми. Соответственно в ощущении щекотки, вероятно, принимают участие тактильные и температурные рецепторы, в ощущении зуда – температурные и болевые.

Температурная чувствительность

Природа рецепции тепла и холода, сопровождающейся появлением температурных ощущений, до настоящего времени составляет одну из интереснейших загадок кожи как органа чувств.

Температурная чувствительность человека и животных, как и тактильная, дискретна, т. е. температурный стимул воспринимается не всей поверхностью кожи, а отдельными чувствительными точками. При действии на эти точки стимулами фокусированного ультразвука можно вызвать ощущения тепла или холода. Найти чувствительную точку можно, например, с помощью миниатюрного теплового источника – термода, прикладывая его к коже в разных местах. Место, где тепловое ощущение наиболее выражено или возникает при меньшей температуре кончика термода, и является искомой чувствительной точкой. Найти чувствительную точку можно и без термода, перемещая по коже центр фокальной области ультразвукового излучателя и определяя порог температурного ощущения при воздействии ультразвуком. В чувствительных точках ощущение наиболее выражено, и порог будет наименьшим. Температурных чувствительных точек на коже значительно меньше, чем тактильных. Чаще встречаются области, в которых воздействия термодом или ультразвуком не вызывает температурных ощущений. До настоящего времени наиболее распространена точка зрения о том, что в коже имеются две раздельные рецепторные системы, одна – для восприятия тепла, другая – холода. Согласно представлениям М. Фрея, в холодовых чувствительных точках находится специализированный рецепторный аппарат – колбы Краузе, в тепловых – тельца Руффини. Однако уже давно установлено, что кожный рецепторный аппарат представлен значительно большим числом разнообразных структур, и самое главное – множеством переходных форм. Соотношения между ощущением и определенной рецепторной структурой, установленные М. Фреем, оказались в основном умозрительными. Об этом свидетельствуют рассмотренные выше исследования тактильных ощущений, показавшие, что тактильные пороги кожной поверхности руки человека не зависят от строения расположенных в коже рецепторных структур. То же самое выявлено в отношении температурной рецепции. Например, было показано, что колбы Краузе могут быть связаны вовсе не с ощущением холода, а с тактильным, тепловым или болевым ощущениями. Ряд ученых считает, что ощущение тепла связано с определенным типом свободных нервных окончаний, а ощущение холода – со свободными нервными окончаниями другого типа. Соответственно расположению окончаний разных типов в коже пытаются выделить тепловые или холодовые чувствительные точки.

Рис. 17. Температурные ощущении при действии фокусированным ультразвуком на чувствительную точку кожи указательного пальца в зависимости от температуры воды, в которую погружена рука.

По оси абсцисс – номер эксперимента, по оси ординат – интенсивность ультразвука, Вт/см2·103. Светлый кружок – ощущение холода, темный – тепла, светлый кружок с точкой внутри – ощущение холода, сменяющееся ощущением тепла. Ультразвук частотой 2.67 МГц, одиночные прямоугольные импульсы длительностью 10 мс.

Теперь обратимся к данным, полученным с помощью ультразвука. Испытуемый с найденными и помеченными на коже тепловыми чувствительными точками погружает руку в резервуар с водой. Вскоре наступает состояние адаптации, при котором человек перестает ощущать температуру воды. Начинаем воздействие на чувствительные точки стимулами фокусированного ультразвука длительностью приблизительно от 1 до 10 мс. Оказывается, что если температура воды ниже 30 °С, на какую бы чувствительную точку ни действовал ультразвук, возникает, как правило, ощущение холода. Если температура воды выше 35 °С, ультразвуковое воздействие в те же точки вызывает только ощущение тепла (рис. 17). Полученные результаты противоречат концепции тепловых и холодовых специфических чувствительных точек и рецепторов.

Для большей ясности необходимо было установить действующий фактор ультразвукового стимула, т. е. непосредственную причину возникновения ощущения при ультразвуковой стимуляции. Казалось бы, наиболее вероятной причиной тепловых ощущений является выделение тепла в фокальной области. Но отчего же тогда бывают ощущения холода? Известен опыт, описанный впервые немецким ученым Е. Вебером. Каждый желающий легко может его воспроизвести на себе. Опустите руки в сосуды с водой разной температуры. Подождите до тех пор, пока перестанете ощущать температуру воды, адаптируетесь. Затем перенесите обе руки в сосуд с водой промежуточной температуры. Для руки, бывшей в более холодной воде, вода в сосуде покажется горячей, для другой, бывшей в более теплой воде, теперь вода окажется холодной. Оценка температуры, как показывает этот опыт, весьма субъективна. Может быть, в опыте с ультразвуком на руке, погруженной в воду с температурой ниже 30°С, выделение тепла тем не менее вызывает субъективно ощущение холода? Так бывает в естественных условиях, например, если прикоснуться к охлажденной руке маленьким горячим предметом. В первый момент вместо тепла возникает ощущение холода. И все же такие объяснения не подходят. Дело в том, что температурные ощущения прямо не зависят от частоты ультразвука, в то время как выделение тепла увеличивается с повышением частоты. Пороги температурных ощущений оказались, как и пороги тактильных, зависимы от амплитуды смещения среды в фокальной области. Стоит достигнуть пороговой амплитуды смещения, как независимо от частоты ультразвука появляется температурное ощущение. Действующим фактором ультразвука опять оказался механический. Для тактильных ощущений выявление механического фактора при ультразвуковой стимуляции казалось вполне естественным: именно механически стимулируются тактильные рецепторы в естественных условиях.

Выявлено, однако, что и в температурной рецепции происходит нечто подобное. Изменения температуры кожи вызывают деформацию тканевых белков, окружающих рецепторные структуры, в первую очередь коллагена. Деформация и является механическим фактором, активирующим температурночувствительные рецепторные структуры. Если дело обстоит именно так, то почему в естественных условиях механический стимул, допустим вибрация или нажатие на кожу, не вызывает температурных ощущений? Вероятно, причина в тех же белках кожи. Они защищают температурные рецепторные структуры от механического воздействия, но до тех пор, пока сами не деформируются под влиянием температуры. Попробуем проверить предположение о защитной роли белков. У человека есть участки, где таких белков очень мало. Это, например, кожа верхнего века и роговая оболочка глаза. Проведем очень простой опыт. Заточим деревянную палочку, как затачивают карандаш, закруглим кончик, чтобы не поцарапать кожу. В зимний морозный день прикоснемся кончиком палочки к коже верхнего века. В ответ на это механическое воздействие появится ощущение холода. Если тот же опыт повторить в жаркий безветренный летний день или, например, в горячем отделении бани, прикосновение палочкой вызовет ощущение тепла. Получить ощущение тепла достаточно отчетливо удается не всем людям из-за индивидуальных особенностей кровоснабжения века. Но вот на поверхности роговицы ощущения холода и тепла в тех же условиях выявляются достаточно ярко. Только прикасаться к роговице палочкой не стоит: легко вызвать боль. Лучше воспользоваться тонким волоском или ниткой. Указанный опыт фактически воспроизводит ситуацию и результаты описанных экспериментов с фокусированным ультразвуком Ультразвук в отличие от естественного механического стимула обладает способностью преодолевать защитный барьер белков, поэтому явления, аналогичные вышеописанным, возникают на всех участках кожи, чувствительных к температуре.

Исследования с применением фокусированного ультразвука, дополненные простыми опытами с механической стимуляцией, приводят к нескольким выводам, важным для понимания температурной рецепции. Температурные ощущения в естественных условиях и под действием ультразвука вызываются в конечном счете механической стимуляцией рецепторного аппарата. Имеет ли все же какое-нибудь значение выделение тепла в фокальной области? Отмечено, что с увеличением количества тепла уменьшается амплитуда смещения среды в фокальной области, необходимая для появления порогового температурного ощущения. Это показали опыты, в которых определялись пороги температурных ощущений, вызываемых стимулами ультразвука разной длительности. Известно, что с увеличением длительности ультразвукового стимула увеличивается выделяемое количество тепла. При этом уменьшаются пороги температурных ощущений, рассчитанные по величине амплитуды смещения среды в фокальной области ультразвукового излучателя. Действие тепла на белки, окружающие рецепторную структуру, и механического фактора на саму структуру в конечном счете складываются.

Ощущения тепла и холода можно вызвать действием ультразвука на одни и те же чувствительные точки, при этом не имеет значения, где они находятся: на коже кисти, предплечья, плеча. Уже отмечалось, что в коже кисти рецепторные структуры расположены плотно, на предплечье и плече – реже. Между ними может быть расстояние больше 1 мм. При этом ультразвук в фокальной области будет активировать лишь одну структуру. Тем не менее в зависимости от температуры воды ультразвуковое воздействие вызывает ощущение тепла или холода. В результате делается следующий вывод: в коже имеются температурночувствительные точки, а не тепловые и холодовые, как предполагалось раньше. Этим точкам соответствуют общие для ощущений тепла и холода температурно-рецепторные структуры.

При расположении фокальной области излучателя под кожей ультразвуком также можно вызвать температурные ощущения. Однако человек всегда проецирует их на кожу Следовательно, рецепторный температурночувствительный аппарат человека расположен именно в коже, в глубже лежащих тканях его нет. Этот вывод хорошо согласуется с представлениями о роли сократительных белков, окружающих температурные рецепторные структуры. Сократительные белки имеются главным образом в коже.

Результаты исследования температурной чувствительности с помощью фокусированного ультразвука создали предпосылки для обоснования гипотезы температурной рецепции, которая позволяет не только объединить накопившийся экспериментальный материал, но и наметить пути будущих исследований в этой области. Эта гипотеза подробно изложена в работе Е. М. Цирульникова, приведенной в литературном указателе.


    Ваша оценка произведения:

Популярные книги за неделю