Текст книги "Остеохондроз для профессионального пациента"
Автор книги: Игорь Данилов
Жанры:
Здоровье и красота
,сообщить о нарушении
Текущая страница: 3 (всего у книги 19 страниц)
Своими характеристиками, особенностями строения, функциями крестец в образном сравнении напоминает древнейший институт человеческого общества: совокупность близких людей, соединившихся через таинство в монолитную, крепкую семью – ячейку общества, опору государственности. В общем, таких близких друг другу людей, которые выполняют не только репродуктивную функцию и связаны общностью быта, но и сплочены единой ответственностью, взаимной помощью, слаженностью в совместной жизни и отношениях.
Последний, самый маленький отдел позвоночника – копчик. Если с юмором отнестись к этому вопросу, то про него можно образно сказать так: в семье, как говорится… не без рудимента. Копчик представляет собой самый настоящий рудимент (от латинского rudimentum – зачаток, первооснова) хвостового скелета животных. Анатомическое название копчика по-латыни звучит как os coccygis – кость копчика, vertebrae coccygeae – позвонки копчиковые. В латинском языке «coccyx» толкуется как слово «кукушка» (это обозначение пришло из древнегреческого языка), и в принципе так была названа кость, благодаря сходству с клювом кукушки.
Копчик состоит из 3–5 рудиментарных позвонков, сросшихся в одну кость. Их обозначают как СоI, СоII и так далее. Любопытно, что на ранних стадиях развития человеческий эмбрион имеет хвостовой отросток, который, бывает, сохраняется и после рождения. Однако для медицины это не составляет проблемы: хвостик легко можно удалить без последствий для организма. У взрослого человека копчик представляет собой единую малоподвижную структуру, которая по форме похожа на пирамидку, направленную основанием вверх, а верхушкой – вниз и вперёд. Необычный вид имеет первый копчиковый позвонок. Его небольшое тело сочленяется с крестцом, имеет боковые выросты (рудименты поперечных отростков). А на задней поверхности тела находятся копчиковые рога (рудименты верхних суставных отростков), которые направлены вверх к рогам крестца и соединяются с ними посредством связок. Остальные же копчиковые позвонки мелкие, имеют округлую форму. В окружающих тканях копчика множество нервных окончаний. К копчику прикрепляются мышцы и фасции промежности. У женщин копчик более подвижен, в процессе родов дорсальное отклонение копчика обеспечивает расширение родового канала. Так что не так уж и бесполезен этот рудимент, как кажется на первый взгляд.
Таким образом, мы вкратце рассмотрели отделы позвоночного столба – этой удивительной конструкции, которая оптимально приспособлена для вертикального положения тела, работает чётко и слаженно. Но это, так сказать, обзор в целом. Теперь хотелось бы обратить ваше внимание на любопытные подробности из той же области остеологии (учение о костях), касательно важных элементов опорно-двигательного аппарата. Позвоночник человека – орган сегментарный (слово «сегмент» произошло от латинского слова segmentum – «отрезок»). Он состоит из отдельных позвонков, расположенных между ними межпозвонковых дисков, а также связок, суставов.
Позвонок
Итак, одним из основных элементов позвоночника является позвонок (vertebra). По своему строению типичный позвонок напоминает костяной перстень, состоящий из массивного тела позвонка (в нашем случае имитирующий большой драгоценный камень в этом кольце), дуги (точнее двух полудужек, соединяющихся сзади и образующих остистый отросток), замыкающей позвоночное отверстие. Данные отверстия, соединяясь, образуют позвоночный канал, где располагается спинной мозг. На дуге «кольца» имеется 7 по-своему интересных, анатомически выразительных отростков: это остистый отросток, два поперечных и четыре суставных отростка (два верхних и два нижних). В эту схему не вписываются только два верхних шейных позвонка (атлант и эпистрофей), крестцовые позвонки (из-за слияния в единую кость, их видоизменение) и рудиментарные копчиковые позвонки, которые, как мы уже выяснили, из-за особенностей отличаются своим строением от описанной схемы. У основания дуги имеется верхняя и нижняя позвоночные вырезки, которые при соответствующем соединении двух соседних позвонков образуют межпозвонковые отверстия. Тела позвонков приспособлены к тому, чтобы нести на себе тяжесть туловища, и являются основными опорными структурами позвоночника.
Рисунок № 15. Образное сравнение позвонка и перстня
Не случайно я сравнил тело позвонка с драгоценным камнем. Это действительно драгоценный по функциям элемент позвонка. Дело в том, что тело позвонка состоит из губчатого вещества пористой структуры, которое образовано отдельными костными перекладинами – трабекулами (лат. trabecula – небольшая балка, перекладина), основой микроскопичного строения которых являются костные пластинки. Ячейки губчатого вещества тела позвонка заполнены красным костным мозгом. А красный костный мозг, как известно, это важнейший орган кроветворения и костеобразования, поскольку в его тканях находятся кроветворные элементы (стволовые клетки), клетки, разрушающие кость (остеокласты) и клетки, образующие кость (остеобласты). Ценность заключается в том, что именно от тела позвонка поступает регулярное и единственное питание для межпозвонкового диска через замыкательную (гиалиновую) пластинку, отделяющую губчатую кость тела позвонка от межпозвонкового диска.
О питании межпозвонкового диска мы будем говорить ещё не раз, поскольку это является существенным моментом в понимании причин возникновения и развития многих заболеваний позвоночника. А пока хочу привести наиболее доходчивое сравнение. Жизненно важное питание, поступающее от тела позвонка, представляет собой для межпозвонкового диска практически то же, что, к примеру, в Великую Отечественную войну представляла собой «Дорога жизни» для жителей блокадного Ленинграда (ныне Санкт-Петербурга). Ладожское озеро было тогда, подобно замыкательной пластинке, единственной транспортной магистралью, через которую поступало продовольствие для города. Поскольку мы уж коснулись темы Великой Отечественной войны, то приведу и другое, на сей раз весьма печальное сопоставление. Общеизвестный факт, как в концентрационных лагерях во время войны людей заставляли тяжело работать и при этом плохо кормили, вследствие чего доводили их до полного истощения, результатом которого зачастую была смерть. Аналогичный процесс происходит и в межпозвонковом диске. То есть, клеточки межпозвонкового диска, систематически испытывая значительные нагрузки и при этом не получая должного питания (а это происходит, к примеру, когда человек много сидит и мало ходит), истощаются и умирают, что соответственно со временем сказывается на диске в целом.
Фото № 2. Наблюдается пористая структура тела позвонка в разрезе
Но вернёмся к нашему перстню. О «драгоценном камне» – теле позвонка – у нас уже есть общее представление. Теперь полюбуемся отростками, расположенными на дуге. Поговорим о четырёх суставных отростках позвонка (двух верхних и двух нижних), за счёт которых позвонки соединяются с выше – и нижележащими позвонками. Кстати, соединяясь, нижние суставные отростки вышележащего позвонка и верхние суставные отростки нижележащего позвонка образуют дугоотростчатые суставы, так называемые истинные синовиальные суставы. Как вы знаете, суставом как таковым, именуют подвижное соединение костей скелета (позволяющее им перемещаться друг относительно друга), принимающее участие в осуществлении опорной и двигательной функций. Наряду с истинными суставами имеются полусуставы (по-научному межпозвонковые симфизы; symphysis – «переходные соединения»), к которым относятся и межпозвонковые диски.
МРТ № 4
МРТ № 5
На МРТ № 4 наблюдается межпозвонковый диск в начальной стадии развития дегенеративно-дистрофического процесса.
На МРТ № 5 наблюдается межпозвонковый диск на более поздней стадии развития дегенеративно-дистрофического процесса.
Фото № 3. На фото макета позвоночника стрелкой указан дугоотростчатый сустав позвоночника.
Дугоотростчатые суставы имеют синовиальную оболочку, фиброзную капсулу, суставную полость с синовиальной жидкостью, связки. Каждый дугоотростчатый сустав покрыт гиалиновым хрящом, по краю которого (на расстоянии 2–4 мм от края сочленяющихся поверхностей) прикрепляется капсула сустава. Изнутри суставная капсула покрыта синовиальной оболочкой. По передней поверхности она покрыта желтой связкой и составляет заднюю поверхность межпозвонкового отверстия. Капсула усиливается дорсально за счёт многораздельных мышц и вентрально жёлтой связкой, которая вплетается в неё в верхнемедиальном отделе. Верхний суставной отросток лежащего ниже позвонка массивнее нижнего и расположен больше кпереди и кнаружи, а нижний – кзади и кнутри. Часть верхнего суставного отростка у корня дуги участвует в формировании бокового углубления позвоночного канала.
Рентгенограмма № 1. На снимке стрелкой указано расположение дугоотростчатых суставов позвоночника в состоянии нормы
Дугоотростчатые суставы осуществляют своеобразный контроль над движениями позвоночника. Например, они позволяют позвоночнику совершать движения, те же сгибание, разгибание, но в то же время ограничивают его движения в горизонтальной плоскости. Последнее позволяет при ротационных движениях позвоночника (от лат. rotatio – «кругообразное движение, вращение»), например при повороте туловища, при наклоне с поворотом, сохранять стабильное сочленение позвоночника и не проворачиваться позвонкам вокруг своей оси.
Не меньшим блеском биотехнического совершенства позвонка являются остистый и два поперечных отростка – места прикрепления связок и мышц. Они являются превосходно сконструированными природными рычагами. А что такое рычаг с точки зрения физики? Это твёрдое тело, вращающееся вокруг неподвижной опоры, механизм, позволяющий меньшей силой уравновесить большую. Знаменитый «Великий купальщик» Архимед, который и изложил теорию рычага под действием сил тяжести, сказал по этому поводу: «Дайте мне точку опоры, и я переверну Землю». Почему «Великий купальщик»? Да потому что и до Архимеда люди принимали ванну. Но только лишь он принял её настолько гениально, что до сих пор физики, погружая своё учёное тело в ванну и наблюдая, как поднимается уровень воды, невольно вспоминают закон Архимеда. Так вот, благодаря остистым и поперечным отросткам позвонков, к которым прикреплены мышцы и связки, организм имеет возможность при совершении движений, прилагая малые мышечные усилия, выполнять большую работу. Такие уникальные рычаги просто незаменимы, к примеру, для совершения быстрых и чётких движений, удержания тела в статическом положении и так далее.
Связки позвоночника
Не последнюю роль в биомеханике позвоночника играют связки (лат. ligamenta – перевязь) – тяжи, пучки, или пластины плотной волокнистой соединительной ткани, опутывающие тела, дуги, отростки позвонков. Они не просто соединяют кости, укрепляют суставы, но и обеспечивают им подвижность. Замечу, что в состав ткани связок входят коллагеновые волокна (коллаген – волокнистый белок; от гр. kolla означающее клей, genos – рождающий, род, происхождение), обеспечивающие прочность связок, и эластические волокна (от греческого elastikos – упругий, гибкий, растяжимый). Благодаря связкам и межпозвонковым дискам отдельные позвонки соединены между собой и представляют собой единую функциональную систему.
Рисунок № 16. Соединения позвонков (поясничный отдел, вид слева). Два верхних позвонка сагиттально распилены
В первую очередь хочу упомянуть о трёх уникальнейших связках позвоночника. Это передняя, задняя продольные связки и надостистая связка, которые относятся к группе длинных связок позвоночного столба. Они вызывают определённое восхищение, благодаря своим стабилизирующим функциям. Пожалуй, для того чтобы вы лучше поняли, как гениально природа-матушка позаботилась о нашем позвоночнике, вначале приведу несколько отдалённый, но всё же схожий пример из области инженерных проектов.
Вы, наверное, слышали о знаменитой Останкинской телебашне, находящейся в Москве, – одном из выдающихся архитектурных строений XX века. Чем же она привлекательна помимо своей высоты? Своей необычной конструкцией. Когда рождался этот проект, то была поставлена следующая задача: с одной стороны, ствол башни при высоте 533,3 м нужно было сделать стойким, гибким и упругим, и в то же время учесть оптимальное отклонение вершины под действием ветра. С другой стороны, нужно было придумать крепкое и надёжное основание для ствола. Как правило, обычно для высотного сооружения строится фундамент глубокого заложения, служащий в качестве противовеса наземной части любого сооружения. Неожиданный проект в отношении Останкинской телебашни предложил учёный в области строительных конструкций Николай Васильевич Никитин. На инженерную мысль его вдохновил цветок лилии: в стебле он увидел ствол башни, а в лепестках, перевёрнутых вниз, – её опору. Инженерная задача решалась за счёт натянутых сверху донизу, как струны, стальных канатов (в количестве 150 штук, растянутых с силой в 70 тонн), расположенных внутри по окружности ствола башни. Они прочно стягивали конус основания и вырастающий из него «стебель» башни. Так вот, сбалансированное натяжение канатов намертво сцепляло с землёй опоры и удерживало мощный бетонный ствол. Благодаря включению в инженерный расчёт канатов, это так организовало работу опор и связало в единую систему всю конструкцию сооружения, что башня, не имеющая обычного глубокого подземного фундамента, до сих пор выдерживает серьёзные внешние нагрузки, в том числе и сильнейший ветер. Хотя я уверен, что если бы в своё время Николай Никитин обратил внимание на совершеннейшую конструкцию позвоночника, то в своей профессиональной области он, как учёный, сделал бы гораздо более гениальные открытия.
Рисунок № 17. Опора и ствол Останкинской телебашни, находящейся в Москве
После того как мы ознакомились с ролью подобных канатов в архитектурных монолитных сооружениях, заглянем в изящный, с ювелирной точностью отмоделированный мир более сложной организации – живой материи, в частности, в мир строения позвоночника – инженерного идеала конструктивных, высокоточных расчётов. Итак, вернёмся к нашим непревзойдённым позвоночным «канатам» – длинным связкам позвоночника: передней, задней продольным связкам и над-остистой связке. К ним вполне применима древняя мудрость: «Истина в простоте».
Итак, передняя продольная связка относиться к группе длинных связок позвоночного столба. Это довольно широкий соединительнотканный тяж, который проходит по передней и отчасти по боковым поверхностям тел позвонков и межпозвонковых дисков на всём протяжении позвоночника от нижней поверхности тела затылочной кости, глоточного бугорка и переднего бугорка атланта до первого крестцового позвонка. В верхних отделах связка уже, книзу расширяется. Она тесно прилегает к передней поверхности тел позвонков, прочно фиксирована к надкостнице позвонков и рыхло связана с передней поверхностью межпозвонковых дисков. Это довольно прочное образование, выдерживающее разрыв до 500 кг. Замечу, что при самых тяжких повреждениях позвоночника данная связка почти никогда не рвётся поперечно, а лишь разволокняется продольно. Многие авторы, описывая её назначение, считают, что предназначена она всего лишь для ограничения разгибания позвоночника при движении его кзади. (Читая подобное чуть ли не в каждой книге, невольно с юмором вспоминаешь «закон Вейнера о библиотеках», в котором говорится, что «в библиотеках ты не найдёшь ответов, а только отсылки».) Однако на самом деле, на практике, роль передней продольной связки более значима, чем принято считать. Она участвует в регулировке внутридискового давления. Да и вообще скрывает в себе ещё много познавательного материала для науки. Это уникальная связка, которая требует более тщательного изучения её функций, в том числе со стороны физиков.
Задняя продольная связка, относящаяся к группе длинных связок позвоночного столба, тянется также на всём протяжении позвоночника, но, как указывает её название, по задней (дорсальной) поверхности тел позвонков и межпозвонковых дисков. Данная связка берёт своё начало на задней поверхности тела II шейного позвонка (выше она переходит в покрывную перепонку (мембрану)) и, опускаясь, заканчивается в крестцовом канале. Задняя продольная связка, в отличие от передней, более широкая в верхнем отделе позвоночного столба, чем в нижнем. С телами позвонков она соединяется рыхло, зато прочно сращена с межпозвонковыми дисками, на уровне которых она несколько шире, чем на уровне тел позвонков. У этой связки не менее ответственная роль: она образует переднюю стенку позвоночного канала, препятствует чрезмерному сгибанию позвоночника. И хотя об этой связке известно давно, однако она не спешит расставаться со всеми своими секретами.
И наконец, третьей и последней из длинных связок позвоночника является надостистая связка. Самая загадочная связка, которая в будущем ещё не раз удивит пытливый ум учёного. Несмотря на своё скромное расположение и уже известные о ней сведения, она скрывает в себе множество тайн и ещё далеко не изучена. Эта связка состоит из плотных продольных волокон, которые с одной стороны служат продолжением межостистых связок кзади, с другой стороны формируют непрерывный, длинный тяж, проходящий по верхушкам остистых отростков позвонков, где, собственно, и прикрепляются к ним своими пучками. Этот тяж тянется от VII шейного позвонка и до самого крестца. Кверху от VII шейного позвонка надостистая связка переходит в выйную связку. Но здесь тоже далеко не всё так просто.
Выйная связка является своеобразным продолжением надостистой связки. Кстати, старославянское слово «выя», «завоек» в древности означало «шея», «затылок». Люди в старину поговаривали: «Высокая выя – гордость; непреклонная – упорство». Очевидно, от высокой выи и пошло слово «выявить», то есть «обнаружить, показать что-то, проявить среди…» Как говорится в Библии в Евангелии от Луки (гл. 8, ст. 17): «Ибо нет ничего тайного, что не сделалось бы явным, ни сокровенного, что не сделалось бы известным и не обнаружилось бы». Выйная связка – это тонкая, но весьма прочная, упругая пластинка треугольной формы, состоящая из эластических и соединительно-тканных пучков. Она прикреплена одним концом к остистому отростку VII шейного позвонка, спереди – к остистым отросткам шейных позвонков, и вверху, несколько расширяясь, – к наружному гребню затылочной кости. В межклеточном веществе выйной связки содержится 70–80 % эластина – резиноподобного полимера, основного компонента эластических волокон соединительной ткани, который содержится в больших количествах в тех же связках, лёгких, крупных кровеносных сосудах (к примеру, в аорте его 30–60 % от массы вещества ткани). Любопытно, что время полу-жизни эластина в тканях человека составляет приблизительно 75 лет. Следовательно, за всю жизнь эластин обновляется наполовину. Для сравнения, в межклеточном веществе многих тканей время полу-жизни, к примеру тех же протеогликанов (одни из наиболее крупных молекул, являются основным веществом межклеточного матрикса) измеряется днями, неделями, а протеогликанов клеточной поверхности – часами. Время полу-жизни того же коллагена измеряется неделями или же месяцами при расчёте на тотальный коллаген организма.
Учёные ещё находятся в стадии изучения функций выйной связки у человека, считая её рудиментарным образованием. Они отводят ей определённую роль в поддержании головы, причисляя к категории межмышечных перегородок. Сравнивая с анатомией животных, учёные говорят о том, что у человека данная связка «мало развита, в связи с прямохождением», зато она хорошо развита, к примеру, у жвачных животных с тяжёлой головой или большими рогами. Такое сравнение может и развеселит обывателя, вызвав у него различные ассоциации из житейского народного юмора. Однако хочется верить, что наука когда-нибудь придёт к пониманию того, что человек представляет собой уникальное существо, структура тела которого создана в совершенстве. И в этой идеальной конструкции нет ничего лишнего.
Кроме длинных связок, в позвоночнике имеются и короткие связки, каждая из которых имеет свои особенности. Про них можно сказать народной пословицей: «Мал золотник, да дорог». К коротким связкам позвоночника относятся, к примеру, межостистые, межпоперечные, жёлтые связки. Их названия говорят о местах прикрепления данных связок. Исключение составляют разве что жёлтые связки. Так их именуют за свой цвет, который придают эластические волокна, имеющиеся в них в большом количестве. Эти связки соединяют дуги двух смежных позвонков. Таким образом, они вместе с дужкой позвонка формируют боковые и заднюю стенки позвоночного канала. Жёлтые связки не просто пассивно связывают дужки двух позвонков. При сгибании позвоночного столба кпереди они растягиваются, а при разгибании позвоночного столба вновь укорачиваются. Их деятельность гораздо шире, а роль значительнее, чем кажется на первый взгляд. Благодаря своей упругости, жёлтые связки сохраняют постоянный диаметр позвоночного канала при самых различных движениях позвоночника, предохраняя тем самым спинной мозг от сдавлений и перегибов, функционально разгружают межпозвонковые диски.
Итак, мы поверхностно ознакомились с наиболее значимыми образованиями связочного аппарата позвоночного столба (за исключением межпозвонкового диска), чтобы иметь об этом общее представление и глубже понимать суть рассматриваемых в следующих главах вопросов. Хотя помимо этих связок в позвоночнике есть ещё много других не менее занимательных связок, которые, к примеру, осуществляют соединение крестца с копчиком, соединение позвоночного столба с черепом, с рёбрами, не говоря уже о многочисленных связках, суставах, соединяющих скелет в целом. Самых любознательных читателей, желающих конструктивно изучить имеющиеся на сегодняшний день сведения по этому вопросу, отсылаю к разделу анатомии, посвящённому изучению строения костей – артрологии (от греч. arthron – сустав; logos – слово, учение), или синдесмологии (греч. syndesmos – связка; logos – слово, учение).
Межпозвонковый диск
А сейчас особое внимание хотелось бы уделить важному элементу, обеспечивающему подвижность позвоночного столба, – межпозвонковому диску (intervertebral disc). Он настолько значим для жизнедеятельности позвоночника, что если сравнить его роль с ответственными постами в государстве, то ему можно смело отвести должность «министра иностранных дел». Многие функции межпозвонковых дисков похожи на функции искусных дипломатов.
К примеру, с одной стороны они должны обеспечить в рамках своей компетенции своевременное и чёткое выполнение решений высших органов. Однако, если руководящая голова в силу отсутствия знаний или разудалости своих мыслей подвергает тело чрезмерным нагрузкам, то именно благодаря межпозвонковым дискам гасятся, смягчаются острые моменты и происходит сбалансированное распределение нагрузки, чтобы данные необдуманные действия головы не принесли вреда организму в целом. Движения в межпозвонковых дисках всегда синхронны, содружественны движениям в дугоотростчатых суставах позвоночника. Кроме того, соединяя позвонки и обеспечивая подвижность всему позвоночнику, межпозвонковые диски в то же время в пределах своей компетенции уберегают позвонки от травм. Поэтому межпозвонковый диск можно назвать и стражем, и милиционером (от лат. militia – военная служба) по охране «позвоночного порядка» и безопасности тел позвонков от постоянной травматизации.
Как положено, по установленному природой порядку, межпозвонковые диски расположены между телами позвонков на всём протяжении позвоночника, кроме двух первых шейных позвонков (атланта и эпистрофея) и крестца (у взрослого человека). Тут и сравнивать с нашими «чиновничьими» отделами позвоночника не надо, и так всё понятно. Первый диск находится между телами II и III шейных позвонков, а последний – между телами V поясничного и I крестцового позвонков. Если вспомнить про нашу крепкую, дружную семью «крестцового отдела», то можно сказать, что любая дипломатия в этом случае успешно замещается родственными связями. Всего в позвоночнике насчитывается 23 диска.
В силу своего уникального строения и предназначения диаметр межпозвонкового диска чуть больше, чем диаметр тел соединяемых позвонков, поэтому диск несколько выходит за контуры последних. Это придаёт позвоночнику своеобразный вид бамбуковой палки. Суммарно высота всех межпозвонковых дисков составляет приблизительно одну четвёртую длины позвоночника.
Высота (хотя тут уместно и слово толщина) межпозвонковых дисков в основном зависит от места расположения и подвижности соответствующего отдела позвоночника, в котором он находится. Считается, что в подвижном шейном отделе в среднем высота межпозвонковых дисков составляет 5–6 мм, в наименее подвижном грудном отделе – 3–5 мм, в подвижном поясничном – 10–12 мм. Но в практике надо также учитывать индивидуальные особенности человека (рост, вес, возраст и т. д.). Подвижность позвоночника, способность выдерживать значительные нагрузки в основном определяются состоянием межпозвонковых дисков. Но полноценно эти действия, безусловно, могут выполняться только здоровыми межпозвонковыми дисками. Впрочем, всё как в людском обществе.
Рисунок № 18. Расположение межпозвонковых дисков (вид сбоку).
Ещё со школьной скамьи каждому из нас известно, что межпозвонковый диск имеет форму двояковыпуклой линзы. Он состоит из центральной части, представленной желеобразным округлым ядром или пульпозным ядром (nucleus pulposus), из наружной оболочки – прочного волокнистого хряща или фиброзного кольца (annulus fibrosus) и двух гиалиновых пластинок или так называемых замыкательных пластинок, отделяющих губчатую кость тела позвонка от межпозвонкового диска.
Рисунок № 19. Расположение межпозвонкового диска (вид сверху)
Рисунок № 20. Схема строения межпозвонкового диска
Замечу, что одним из устаревших значений слова «пульпа» в латинском языке является обозначение мягкой, сочной или мучнистой массы плодов. А вот гиалиновые пластинки получили название благодаря греческому языку, поскольку представляют собой полупрозрачные плотные массы (греч. hyalos означает «стекло», hyalios – «прозрачный, стекловидный»). Как говорится, всё познавалось и познаётся в сравнении. С латинским словом fibra («волокно») читатель уже предварительно знаком из вышеизложенного текста. Добавлю лишь, что в устаревших понятиях оно числится как волокно растительной или животной ткани. В нынешнюю эпоху большинство людей употребляют это слово в переносном смысле как символ душевных сил («всеми фибрами своей души»), точнее, как мир человеческих переживаний. Помните, как замечательный классик, кстати по профессии врач, Антон Павлович Чехов в рассказе «Клевета» (1883) с юмором писал про одного из своих безвинных героев Ванькина, помощника классных наставников: «Ванькин заморгал и замигал всеми фибрами своего поношенного лица, поднял глаза к образу и проговорил: «Накажи меня бог! Лопни мои глаза и чтоб я издох, ежели хоть одно слово про вас сказал! Чтоб мне ни дна, ни покрышки! Холеры мало!..» Искренность Ванькина не подлежала сомнению».
МРТ № 6
На данном снимке хорошо просматривается пульпозное ядро, гиалиновые пластинки и фиброзное кольцо
Межпозвонковый диск только с виду кажется таким скромным, хотя и весьма ответственным связующим звеном позвоночника. А загляни вовнутрь, в природу его биохимии (хотя бы на молекулярный уровень, так ещё и не познанный до конца) и перед взором исследователя откроется целая галактика. И это уже не метафора, это удивительный по сложности мир микро– и макрокосмоса. Межпозвонковый диск по своей неоднозначной структуре, таинству происхождения во многом похож на линзовидную галактику, которая по форме также напоминает двояковыпуклую линзу. В системе классификации Хаббла галактики такой формы обозначают символом S0. В линзовидной галактике, как и в межпозвонковом диске, имеется центральный диск с отчётливым утолщением в середине. Она богата межзвёздным веществом, служит местом образования новых звёзд, содержит облака межзвёздной пыли и газа. Там кипит своя жизнь, где образуются новые звёзды и разрушаются старые, где идёт постоянное перераспределение энергии, синтез, обмен, взаимосвязь, свои закономерные процессы жизни материи и энергий. Но ведь тот же самый, до конца не познанный процесс происходит и в межпозвонковом диске.
Энергии, породившие линзовидную галактику, так же загадочны и не изучены, как и энергии, послужившие первоосновой чёткой схемы развития любого живого организма. Поэтому пока что предпринимаются попытки объяснения этих процессов лишь с точки зрения формирования материи. Как известно, из зародышевого листка мезодермы у эмбрионального зародыша человека формируется хорда, которая впоследствии редуцируется ещё во внутриутробном периоде развития. Но хочу обратить ваше внимание на тот факт, что фрагменты хорды, то есть первичного зачатка скелета, сохраняются лишь в студёнистом ядре межпозвонковых дисков. Для исследовательских работ медицины будущего в области той же вертеброревитологии это обстоятельство столь же важно и ценно, как важны, к примеру, нынешние исследования стволовых клеток, после того как была установлена их способность к самообновлению и дифференцировке в специализированные клетки.
Пульпозное ядро, являющееся остатком хорды, состоит из межклеточного вещества и хрящевых клеток (хондроцитов, хондробластов). Звучит вроде бы просто. Однако, если окунуться в биохимию того же межклеточного матрикса (лат. matrix, от mater – основа, мать), то можно понять насколько сложен живой мир микроархитектуры тканей. В состав межклеточного вещества входят самые разнообразные структуры: коллаген, эластин, гликозамингликаны (мукополисахариды), к примеру такие как гиалуроновая кислота, протеогликаны хондроитинсульфаты, кератансульфаты и т. д. Напомню, что в состав молекул высокомолекулярных соединений входят тысячи атомов, соединённых химическими связями. Эти соединения характеризуются молекулярной массой от нескольких тысяч до нескольких миллионов. К примеру, молекулярная масса тех же хондроитинсульфатов находится в пределах 10 000-60 000, а молекулярная масса гиалуроновой кислоты достигает нескольких миллионов (20 000-30 000 мономеров в молекуле). Межклеточный матрикс – это достаточно сложный, далеко ещё неизведанный мир, в котором происходит своя жизнь: самосборка многомолекулярных структур согласно порядку, закрепление этих структур путём образования межмолекулярных ковалентных сшивок, осуществление синтеза, обмена, передача сигналов, выполнение определённых специализированных функций, взаимосвязь, обновление структур, разрушение, распад старых структур и так далее. Благодаря межклеточному матриксу клетки имеют возможность мигрировать в его толще, он скрепляет, склеивает клетки друг с другом, участвует в образовании ткани, придает ей прочность, поддерживает форму клеток и органов, осуществляет сложные функции регуляторных влияний на клетки. В общем, можно образно сказать, выполняет те же самые функции, что и межзвёздное вещество.