412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Игорь Акимушкин » Проблемы этологии » Текст книги (страница 11)
Проблемы этологии
  • Текст добавлен: 8 октября 2016, 15:13

Текст книги "Проблемы этологии"


Автор книги: Игорь Акимушкин


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 11 (всего у книги 14 страниц)

Ультразвуковые коммуникации

Как млекопитающие общаются между собой криками, мычанием, ржанием, воем, ворчанием и прочее, с давних пор знакомо человеку. Но есть у зверей и неслышная нам «речь» – ультразвуковая. Открыта она была впервые у летучих мышей.

С физической точки зрения всякий звук – это колебательные движения, распространяющиеся волнообразно в упругой среде.

Чем больше вибраций совершает в секунду колеблющееся тело (или упругая среда), тем выше частота звука. Самый низкий человеческий голос (бас) обладает частотой колебаний около восьмидесяти раз в секунду или, как говорят физики, частота его колебаний достигает восьмидесяти герц. Самый высокий голос (например, сопрано перуанской певицы Имы Сумак) около 1400 герц.

В природе и технике известны звуки еще более высоких частот – в сотни и даже миллионы герц. Человеческое ухо воспринимает звуки с частотой колебаний лишь до двадцати тысяч герц. Более высокочастотные акустические колебания называют ультразвуком, его волнами летучие мыши и «ощупывают» окрестности.

Ультразвуки возникают обычно в гортани летучей мыши. Здесь вроде своеобразных струн натянуты голосовые связки, которые, вибрируя, производят звуки. Ведь гортань по своему устройству напоминает обычный свисток. Выдыхаемый из легких воздух вихрем проносится через нее, возникает «свист» очень высокой частоты: до 150 тысяч герц, человек его не слышит.

Летучая мышь периодически задерживает поток воздуха, затем он с такой силой вырывается наружу, словно выброшен взрывом. Давление проносящегося через гортань воздуха вдвое больше, чем в паровом котле. Неплохое достижение для зверька весом в 5–20 граммов!

В гортани летучей мыши возбуждаются кратковременные высокочастотные звуковые колебания – ультразвуковые импульсы. В секунду следует от 5 до 60, а у некоторых видов до 200 импульсов. Каждый импульс, «взрыв», длится 0,002–0,005 секунды (у подковоносов – 0,05–0,1 секунды).

Краткость звукового сигнала – очень важный физический фактор. Только из-за краткости возможна точная эхолокация, то есть ориентировка с помощью ультразвуков.

От препятствия, которое удалено на семнадцать метров, отраженный звук возвращается к зверьку приблизительно через 0,1 секунды. Если звуковой сигнал продлится дольше, то его эхо, отраженное от предметов, расположенных ближе семнадцати метров, будет восприниматься одновременно с исходным звучанием. А ведь по промежутку времени между концом посылаемого сигнала и первыми звуками вернувшегося эха летучая мышь инстинктивно получает представление о расстоянии до предмета, отразившего ультразвук. Поэтому звуковой импульс так краток.

Эхолокатор летучих мышей – очень точный навигационный «прибор»: он в состоянии запеленговать даже микроскопически малый предмет диаметром всего 0,1 миллиметра! И только когда экспериментаторы уменьшили толщину проволоки, натянутую в помещении, где порхали летучие мыши, до 0,07 миллиметра (толщина человеческого волоса), зверьки стали натыкаться на нее.

Летучие мыши наращивают темп эхолотирующих сигналов примерно за два метра от проволоки. Значит, за два метра они ее и «нащупывают» своими «криками». Но летучая мышь не сразу меняет направление, летит прямо на препятствие и лишь в нескольких сантиметрах от него резким взмахом крыла отклоняется в сторону.

С помощью эхолотов, или сонаров (так был назван изобретенный в конце тридцатых годов подводный эхолокатор; он успешно применялся в последней войне для обнаружения неприятельских подводных лодок), которыми наделила их природа, летучие мыши не только ориентируются в пространстве, но и охотятся за своим хлебом насущным: комарами, мотыльками и прочими ночными насекомыми. Эхолоты же служат у них и средством коммуникации друг с другом. В некоторых опытах зверьков заставляли ловить комаров в большом лабораторном зале. Их фотографировали, взвешивали – словом, все время следили, насколько успешно они охотятся. Одна летучая мышь весом в 7 граммов за час наловила 1 грамм насекомых. Другая малютка, которая весила всего 3,5 грамма, так быстро глотала комаров, что за четверть часа «пополнела» на 10 процентов. Каждый комар весит примерно 0,002 грамма. Значит, за пятнадцать минут охоты было поймано 175 комаров: каждые шесть секунд – комар! Довольно резвый темп.


Дональд Гриффин, исследователь сонаров летучих мышей, говорит, что если бы не эхолот, даже всю ночь летая с открытым ртом, летучая мышь поймала бы «по закону случая» одного-единственного комара.

Сначала думали, что природными сонарами обладают только мелкие насекомоядные летучие мыши вроде наших ночниц и нетопырей, а крупные летающие лисицы, или собаки, пожирающие тонны фруктов в тропических лесах, их будто бы лишены. Возможно, это так, но тогда роузеттус представляет исключение, потому что летающие лисицы этого рода наделены эхолокаторами.

В полете роузеттусы все время щелкают языком. Звук (рожденный не гортанью, а языком!) прорывается наружу в углах рта, которые у роузеттуса всегда приоткрыты. Щелчки несколько напоминают своеобразное цоканье языком, как делают иногда люди, осуждая что-нибудь. Примитивный сонар летучей собаки (или лисицы, или крылана – и так их называют!) работает, однако, достаточно точно: миллиметровую проволоку он засекает с расстояния в несколько метров.

Все без исключения мелкие летучие мыши из подотряда микрохироптера (то есть микрорукокрылые) наделены эхолотами. Но модели этих «приборов» у них разные. Исследователи выделяют в основном три типа природных сонаров: шепчущий, сканирующий и стрекочущий (или частотно-модулирующий).

Шепчущие летучие мыши обитают в тропиках Америки. Многие из них, подобно летучим собакам, питаются фруктами либо сосут кровь (вампиры!). Ловят также и насекомых, но не в воздухе, а на листьях растений. Их эхолотирующие сигналы – очень тихие и короткие щелчки. Каждый звук длится 0,001 секунды и очень слаб. Услышать его могут только очень чувствительные приборы. Иногда, правда, летучие мыши-шептуны «шепчут» так громко, что и человек их слышит. Но обычно сонар их работает на частотах 150 килогерц.

Сканируют подковоносы. Некоторые из них обитают на юге нашей страны: в Крыму, на Кавказе и в Средней Азии. Подковоносами они названы за наросты на морде, вроде кожистой подковы двойным кольцом окружающие ноздри и рот. Наросты не праздничные украшения: это своего рода мегафон, направляющий звуковые сигналы узким пучком в ту сторону, куда смотрит летучая мышь. (Подковоносы посылают ультразвуки в пространство не через рот, а через ноздри.)

Подковоносы пользуются на охоте продолжительными, если сравнивать их с «криками» других летучих мышей, и однотонными звуками. Каждый сигнал длится десятую или двадцатую долю секунды, и частота его звучания не меняется: всегда равна 85–120 килогерцам в зависимости от вида животного.

Но наши обычные летучие мыши и их родичи из Северной Америки эхолотируют пространство модулированными по частотам звуками, как лучшие сонары, созданные человеком. Тон сигнала постоянно меняется, значит, меняется и частота отраженного звука. А это, в свою очередь, означает, что в каждый данный момент высота принимаемого звука не совпадает с тоном отправляемого в это время сигнала. И неспециалистам ясно, что такое устройство значительно облегчает эхолотирование.

Американская малая бурая ночница начинает свое «стрекотанье» звуком с частотой около 90 килогерц, а заканчивает его сигналом в 45 килогерц. За 0,002 секунды, пока длится ее «крик», он пробегает по шкале частот вдвое более длинный диапазон, чем весь спектр воспринимаемых человеческим ухом звуков! В «крике» около пятидесяти звуковых волн, но среди них нет и двух одинаковой длины. Таких частотно-модулированных сигналов следует 10 или 20 каждую секунду. Приближаясь к препятствию или к ускользающему комару, летучая мышь учащает сигналы. Теперь уже она «стрекочет» не 10–20, а 200 раз в секунду.

За миллионы лет эволюции ночные насекомые приобрели немало защитных приспособлений от ультразвука. Многие ночные мотыльки, например, густо покрыты мелкими волосками. Дело в том, что мягкие материалы: пух, вата, шерсть (и женские волосы!) поглощают ультразвук. Значит, мохнатых мотыльков труднее запеленговать, чем не «лохматых».

У некоторых ночных насекомых развились чувствительные к ультразвуку органы слуха, которые помогают им заблаговременно узнать о приближающейся опасности. Попадая в радиус действия эхолота летучей мыши, они начинают метаться из стороны в сторону, пытаясь выбраться из опасной зоны. Ночные бабочки и жуки, запеленгованные летучей мышью, прибегают даже к такому тактическому приему: складывают крылья и падают вниз, замирая в неподвижности на земле.

У этих насекомых органы слуха воспринимают обычно звуки двух разных диапазонов: низкочастотного, на котором они «разговаривают» с сородичами, и высокочастотного, на котором работают сонары летучих мышей.

К промежуточным частотам (между двумя этими диапазонами) они глухи.

Больше того! Стало известно, что некоторые ночные бабочки сами издают ультразвуки. И вот что самое странное: эти ультразвуки… отпугивают летучих мышей!

Настигая такую бабочку, летучая мышь метрах в двух от нее круто меняет направление и удаляется прочь. То же происходит, если в момент приближения летучей мыши к насекомому, не издающему ультразвуки, воспроизвести записанные на магнитофонную ленту «щелчки» тех бабочек, у которых такая способность есть: летучая мышь тоже разворачивается и улетает.

Чем пугают ее ультразвуки насекомых? Неизвестно. Есть предположение, что щелчки мотылька предупреждают летучую мышь о том, что насекомое, их производящее, плохое на вкус или ядовитое и лучше его не трогать.


Кроме летучих мышей, лучше всего изучены сонары дельфинов. Эти умные животные очень «болтливы». Ни минуты не молчат. Большая часть их криков составляет разговорный, так сказать, лексикон. Служит для разного рода коммуникаций друг с другом. Другие же – обслуживают сонары.

Дельфин афалина свистит, щелкает, хрюкает, лает, визжит на разные голоса и в разном диапазоне частот. Но когда он плывет «молча», его сонар постоянно ощупывает окрестности «дождем» быстрых криков или, как говорят еще, клаков. Они длятся не больше нескольких миллисекунд и повторяются обычно 15–20 раз в секунду. А иногда и сотни раз!

Малейший всплеск на поверхности – и дельфин сейчас же учащает крики, «ощупывая» погружающийся предмет. Эхолокатор дельфина настолько чувствителен, что даже маленькая дробинка, осторожно опущенная в воду, не ускользнет от его внимания. Рыба, брошенная в водоем, засекается немедленно. Дельфин пускается в погоню. Не видя в мутной воде добычу, безошибочно преследует ее. Вслед за рыбой точно меняет курс.

Если опустить в небольшой бассейн несколько десятков вертикальных стержней, дельфин быстро плывет между ними, не задевая их. Однако крупноячеистые сети он, по-видимому, не может обнаружить своим сонаром. Мелкоячеистые «нащупывает» легко.

Дело здесь в том, наверное, что крупные ячеи слишком «прозрачны» для звука, а мелкие отражают его почти как сплошная преграда.

Считают, что клаки необходимы дельфину для ближней ориентировки. Общая разведка местности и ощупывание более тяжелых предметов производится свистом. И свист этот частотно модулирован! Но начинается он низкими частотами, а заканчивается высокими (у летучих мышей, как мы уже знаем, наоборот).

Другие представители отряда китообразных – кашалоты, финвалы, блювалы и белухи – тоже «разговаривают» и ориентируются с помощью ультразвуков. Вот только не совсем ясно, как издают они эти звуки. Одни полагают, что дыхалом, то есть ноздрей, и воздухоносными мешками дыхательного канала, другие, что горлом. Хотя настоящих голосовых связок у китов и нет, но их с успехом, как считают, могут заменить странные наросты на внутренних стенках гортани. А может быть, и дыхало и гортань в равной мере обслуживают передающую систему сонара.

В сравнительно недавние времена биофизики с изумлением установили, что природа, по-видимому, не очень скупилась, когда наделяла своих детей сонарами. От летучих мышей к дельфинам, от дельфинов к рыбам, птицам, крысам, мышам, обезьянам и морским свинкам и жукам переходили исследователи со своими приборами, тут и там обнаруживая ультразвуки.

Эхолотами вооружены, очевидно, многие птицы. Издают звуки небольшой частоты (20–80 килогерц) морские свинки, крысы, сумчатые летяги и даже некоторые южноамериканские обезьяны.

Мыши и землеройки в экспериментальных лабораториях, прежде чем пуститься в путь по темным закоулкам лабиринтов, в которых этологи испытывали их память, посылали вперед стремительных разведчиков – ультразвуки. В полной темноте зверьки отлично находят норы в земле. Возможно, и тут помогает сонар: из этих дыр эхо не возвращается.

Зрение

Зрение – первейшее чувство у многих животных, особенно у птиц, рыб, осминогов, каракатиц, кальмаров, обезьян и у человека, потомка последних.

Из всех животных, пожалуй, лучше всего изучен глаз лягушки. Его сетчатка, получив зрительную информацию, тут же ее оценивает и девять десятых всех поступивших сигналов уже в готовом виде в форме «приказа» передает в мозг, прямо в рефлекторный отдел, откуда автоматически следуют импульсы действия (у кошки, например, лишь одна десятая зрительных восприятий направляется непосредственно в рефлекторный центр, прочие – в кору мозга для необходимой обработки). Можно сказать, что мозг лягушки «не раздумывает», получив зрительное предупреждение: хватать, удирать или притаиться. Это за него уже «продумала» сетчатка. И мозг тут же мобилизует в соответствии с ее «приказом» мускулатуру тела.

Но поскольку сетчатка не весь мозг, а только его «частичка», и, бесспорно, менее совершенный «счетно-решающий» механизм, лягушка нередко ошибается. Особенно там, где решение должно быть принято с учетом тонких деталей. Например, определение пригодности в пищу мелких живых и неживых перемещающихся объектов. Тут принимающий немедленные решения лягушкин глаз нередко, толком не разобравшись, побуждает ее хватать и несъедобное: бусинку, которую мы дергаем за ниточку, либо и вовсе движущееся темное пятно.

Но это не беда, ничего страшного не случится: лягушка выплюнет негодное и впредь, возможно, станет разборчивее. Зато такое физиологическое устройство – ответственность в выборе решений, данная сетчатке, – намного ускоряет реакции. А это очень важно, когда животное, добывая пропитание, имеет дело с насекомыми.

Удачную охоту обеспечивают специализированные клетки сетчатки – так называемые ганглиозные. У кошки только два типа таких клеток, а у лягушки четыре. Каждый выполняет свою задачу. Одни регистрируют темные пятна ближайшего окружения: затененные места ландшафта. Словно держат под постоянным наблюдением резервные пункты отступления и укрытия от врага или зноя. Другие, условно именуемые «детекторами контура», замечают лишь резкие границы света и тени. Несут, по-видимому, сторожевую службу. Ведь именно темным пятном с тенью, предшествующей или сопутствующей ему, обычно появляется враг. «Детекторы событий», ганглиозные клетки третьего типа, фиксируют всякое движение вообще: приближается ли, скажем, темное пятно или замерло – и вносят необходимые коррективы в оценку происходящего, после чего следует и соответствующая реакция лягушки. Эти клетки как регистраторы первого предупреждения согласованно сотрудничают с клетками четвертого типа – «детекторами насекомых», которые фиксируют перемещение мелких объектов.


Теперь нам более понятны физиологические причины автоматизма в поведении лягушки. Пусковой механизм реакций на движение у нее свой для каждой из трех размерных групп и все время на взводе, он реализует ответные действия на увиденное совершенно рефлекторно. Бездумно, но зато немедленно.

В арсенале средств оповещения, который вмещает только глаз лягушки, действуют и другие сверхчувствительные оптические структуры, способные молниеносно определить скорость подвижного объекта, даже если он приближается или удаляется прямо по сагитальной линии, то есть в направлении к глазу или от него. С такой точностью, как лягушка, никто из людей это делать не умеет. Правда, мозг самых опытных и способных (особый дар!) шоферов в момент обгона автоматически совершает нечто подобное. А глаз лягушки безошибочно оценивает не только скорость, направление, характер движения (поступательное, беспорядочное, колебательное) всех попавших в поле зрения объектов, но и степень их ускорения.

Не чужды разного рода оптические усовершенствования и рыбьим глазам. В пресных водах Центральной и севера Южной Америки плавает презанятная четырехглазка. Сама, как положено, в воде, а глаза – наполовину над поверхностью. Они разделены на две камеры: верхние (с более плоским хрусталиком) ведут наблюдение за воздухом, нижние смотрят в воду.

Не хуже в этом смысле и глаза глубоководных родичей обычных лососей. Батилихнопс, самый крупный из них (до полуметра), имеет в каждом глазу по два глазных яблока. Одно, большое, видит то, что вверху, а другое смотрит вниз и в стороны. Другие глубоководные «лососи» наделены телескопическими глазами. Они цилиндрами удлинены вверх, поля их зрения сближены и потому бинокулярны.

Даже где-нибудь в девственно чистой воде океана яркость освещения при погружении убывает примерно в десять раз на каждые 50 метров. В 400 метрах от поверхности дневное светило бессильно. В этом вечном мраке некоторые рыбы обходятся без зрения, слепыми рождаются и умирают. Другие, напротив, обзавелись огромными глазами, с очень сильными линзами и небывало чувствительной сетчаткой: в ней на каждом квадратном миллиметре 25 миллионов светочувствительных клеток! Как ни у кого на суше.

«На больших глубинах глаза могут быть полезны лишь для того, чтобы обнаружить свет, излучаемый рыбами и другими животными» (Роберт Бертон).

Интересно, что в мире животных есть конвергентная аналогия с рыбами-четырехглазками.

Есть ли у нас пруд или речная заводь, где летом не вертелись бы вертячки? Маленькие черненькие жучки, они целыми днями скользят в веселом «танце» по поверхности воды, словно по льду.

Вертячки охотятся. Высматривают добычу и над водой и под водой одновременно! Им не приходится оставлять один наблюдательный пункт ради другого: глаза их разделены на подводные и надводные доли. Словно у жуков по четыре глаза: два высматривают все интересное в пруду, а два ведут наблюдение за воздухом.

У самцов поденок тоже, по существу, по два глаза с каждой стороны, один с крупными, другой с мелкими фасетками.

Что такое фасетки? Это удлиненные простые глазки (омматидии), образующие все вместе сложный, или фасеточный, глаз взрослых насекомых.

В каждом омматидии – соединенная нервом с мозгом воспринимающая свет клетка. Поверх нее – удлиненный хрусталик. Оба, светочувствительная клетка и хрусталик, окружены непроницаемым для света чехлом из пигментных клеток. Лишь сверху оставлено отверстие, но там хрусталик прикрыт прозрачной роговицей. Она общая для всех омматидиев, плотно прилегающих друг к другу и соединенных в один фасеточный глаз. В нем может быть всего 300 омматидиев (самка светлячка), 4 тысячи (комнатная муха), 9 тысяч (жук-плавунец), 17 тысяч (бабочки) и 10 тысяч – 28 тысяч у разных стрекоз.

Каждый омматидий передает в мозг только одну точку из всей сложной окружающей картины мира. Из множества отдельных точек, увиденных каждым омматидием, складывается в мозгу насекомого мозаичное «панно» разных предметов ландшафта.

Частные примеры поведения

Беспозвоночные

Первейшая форма психической активности – способность животных к научению, то есть к образованию условных рефлексов. Что касается беспозвоночных, то мы, к сожалению, мало что об этом знаем.

Если идти от изначального корня Древа Жизни к его вершине, то наиболее выраженные реакции на обучение проявляют актинии (родичи медуз и кораллов).

Ученые предлагали в пищу актиниям совершенно несъедобные кусочки фильтровальной бумаги, касаясь ими щупалец. Сначала актинии жадно хватали бумагу и отправляли в рот, однако скоро выбрасывали наружу. Но уже через пять дней твердо знали, что это угощение в пищу не годится, и больше не принимали его. Приобретенный навык сохранялся в их памяти от шести до десяти дней. Затем они вновь поддавались обману, но теперь отрицательное отношение к бумаге наступало гораздо раньше, чем в начале опыта.

Актинии обнаружили еще более сложное поведение. Многим известна, очевидно, дружба рака-отшельника с актинией, которую он таскает на своей раковине в целях самообороны (у актиний на щупальцах стрекающие, как крапива, клетки, которые отпугивают врагов рака-отшельника). Некоторые раки, подхватив клешней, пересаживают актинию, скажем, с камня на свою раковину. Но во многих случаях актинии сами активно взбираются на раковину рака (весь процесс занимает от пятнадцати до тридцати минут).

Но вот что странно: актинии нередко забирались и на пустые раковины, что им совершенно ни к чему. Больше того – усаживались и на осколках раковин улитки, в которых, изгнав хозяина, поселяются раки-отшельники. Очевидно, не сама раковина, не форма ее и не внешний вид побуждает актинию поселиться на ней, а какое-то химическое вещество, свойственное раковине брюхоногих моллюсков.

Планарии (плоские черви), кроме всего прочего, интересны тем, что способны к исключительно сложной регенерации: если отрезать у планарии голову, то вскоре эта голова восстановит все недостающее туловище, а туловище, лишенное головы, приобретет голову с новым мозгом. Точнее, нервные узлы – ганглии, заменяющие мозг.

Действием света и электрического тока вызвали у планарий условные рефлексы на эти раздражители. А потом разрезали червей пополам и половинки поместили в отдельные сосуды. Стали проверять реакции на условные рефлексы, образовавшиеся у планарий до операции. И что же получилось? Воссоздавшие недостающие части тела планарии сохранили выработанные у них дооперационные рефлексы. Даже те черви, которым пришлось отрастить новую голову!

Очевидно, во время опытов по обучению в организме планарий образуется какое-то вещество, которое распространяется по всему телу планарии. Есть гипотеза, что вещество это РНК (рибонуклеиновая кислота), которая ответственна за сохранение памяти.

Дождевой червь почти всю жизнь проводит в земле, выползая по ночам на ее поверхность. Норка червя – узкий длинный канал (жарким летом до 1,5 и более метра), в конце которого небольшое расширение – камера, где червь разворачивается. Удивительно, как такое мягкотелое животное умудряется рыть землю, порой очень сухую и твердую?

У него есть три метода выполнения этой трудной задачи. Если земля рыхлая, податливая, то червь буравит ее, как отбойным молотком. Глоточный мешок у него с твердыми и толстыми стенками, который может быстро выдвигаться вперед. При этом он «раз за разом сильно ударяет изнутри в переднюю часть тела, вбивая ее в землю, как молоток».

Но от этих ударов даже мягкая земля перед головой червя твердеет, утрамбовываясь. Тогда он прибегает к другому способу: отрывает губами кусочки земли и глотает их. Наглотается до предела и ползет к поверхности земли, на которую выбрасывает прошедшую через кишечник почву. Но вот попался на пути в подземелье особенно плотный и сухой грунт – червь увлажняет его каплями слюны. Намокнет кусочек почвы, червь его глотает. Затем снова увлажняет землю перед собой и глотает ее. И так постепенно и, надо сказать, с немалыми усилиями готовит себе жилище.

Днем он прячется в норке головой ко входу, который прикрыт листьями, хвойными иглами и прочим мусором. В сумерки оживает. Выползает на поверхность почти всем телом, лишь задний конец держится за край норки. А большая передняя часть тела «совершает круговые движения, несколько приподнимаясь над землей, и ощупывает все вокруг». Нащупает губами опавший лист дерева – хватает его и тащит в норку. Зачем?

«Дарвин в работе, касающейся жизни дождевых червей и их влияния на свойства почвы, впервые обратил внимание на наличие у червей своего рода умственной деятельности… Несомненно, интерпретация Дарвина является фантастической, ибо доводы, на основании которых он приписал дождевому червю способность к разумным действиям, являются совершенно недостаточными. Тем не менее Дарвин затронул очень интересный вопрос и указал путь к его решению» (Ян Дембовский).

Дарвина поразили следующие наблюдения: черви тянут в норку листья, ухватив их за вершину (не за черешок), поэтому лист оказывает наименьшее сопротивление при затаскивании в норку (ведь вершина листа уже его основания). А вот сосновые иглы всегда тянут за черешок, то есть общее для сдвоенных игл основание. И в этом случае предмет оказывает наименьшее сопротивление. Схваченная за конец одной из двух иголок хвоя застряла бы у входа в жилище червя, так как вторая игла легла бы поперек отверстия норки, и задача затащить ее стала бы неразрешимой.

Ч. Дарвин в своих опытах предоставлял червям вырезанные из бумаги треугольники, и те втягивали их наиболее целесообразным способом: за один из острых углов. Значит, соображают черви!


Однако дальнейшие исследования показали, что не ум тут руководит червем.

Когда из листа липы вырезали новый лист, но с обратным соотношением ширины листа (верхушку его сделали тупой, а основание острым), то черви стали втягивать листья опять-таки за верхушку. На этот раз втягивание было затруднено широкой верхушкой, за которую червь цеплялся губами. Далее связали ниткой острые концы сосновых игл. Получалось так, что, за какой бы конец ни хватал червь, сопротивление втягиванию было одинаковым. Но черви по-прежнему тащили в норки иглы основанием вперед, а связанной верхушкой назад. Опыты эти убеждают, что не форма предмета привлекает червя, а какие-то, видимо, химические вещества, которые содержатся в верхушке листа и в основании спаренных сосновых игл.

Делали и так: у листьев вишни срезали верхушки и черешки. Давали им высохнуть, а затем растирали в порошок в разных ступах: в одной сухие верхушки листа, в другой их черешки. И тот и другой порошок смешивали с желатином. Полученной смесью смазывали тонкие прутики: один конец – желатином с порошком верхушки листьев, а другой – черешков. Форма испытуемых палочек с обоих концов была одинаковой, а следовательно, одинаково и сопротивление при втягивании палочек в норки. Что же получилось? Почти все черви хватали губами те концы палочек, которые были смазаны желатином с веществом, содержавшимся в верхушках листьев.

Один конец соломинок такой же величины, как иглы, смазали экстрактами из оснований игл, а второй из вершинок. Черви отдавали явное предпочтение тем концам соломинок, которые «пахли» как основания игл.

Но есть и другая гипотеза: втягивание листа червем происходит методом «проб и ошибок». Червь не выбирает, руководствуясь тем или иным образом, за какой конец листа схватиться. Он присасывается к любому попавшемуся краю листа. Если тащить его трудно или вообще невозможно, он хватает за другой конец. Если сопротивление опять велико, то берется за другой край листа, и так до тех пор, пока не найдет удобную для втягивания сторону листа.

В большинстве случаев, решили исследователи, два фактора влияют на выбор того или иного конца листа и сосновых игл: запах и сила сопротивления перемещению листа. В разных случаях предпочтение отдается тому или иному фактору. Первоначально червь берет предмет за тот конец, который содержит привлекающие вещества. Но если в этом случае лист оказывает сильное сопротивление движению, червь действует по методу «проб и ошибок»: хватается за любые части предмета и останавливается на той, которая оказывает наименьшее сопротивление.

Теперь вернемся к вопросу, поставленному в начале рассказа о червях: зачем они затягивают в норки листья, иглы и другие предметы?

Дарвин полагал, что червь затыкает норки листьями, чтобы сохранить в них тепло. Но это не вяжется с образом жизни животного. В самом деле, из норок он выползает по ночам, когда гораздо прохладнее, чем днем. А в самое знойное время суток норки прикрыты листьями.

Может быть, от врагов он затыкает днем вход в свой дом?

Тоже едва ли. Напротив: скворцы и другие птицы по кучкам листьев, прикрывающих норки, находят обиталища червей. А самый опасный враг – крот – подбирается к ним не с поверхности земли.

«Скорее следует предполагать, – говорит Ян Дембовский, – что черви собирают в норках запасы пищи. В сырых норках листья и иглы постепенно гниют и становятся подходящей пищей для червей».

Дождевые черви способны к научению. Их помещали в Т-образный лабиринт: в наиболее длинный коридор, образующий основание буквы «Т». Когда они доползали до его конца, им предоставлялся выбор повернуть направо или налево. «Направо» их ожидало затемнение и пища, «налево» – удар электрическим током. После серии таких уроков черви приучались безошибочно направляться в нужную сторону, к пище.

Из морских беспозвоночных животных наиболее одаренные – головоногие моллюски: кальмары, каракатицы, осьминоги. Особенно последние. Проведено немало опытов, подтверждающих это.

В аквариум с осьминогом помещали стеклянный полый цилиндр, открытый сверху. В цилиндре – краб, любимая пища осьминога. Моллюск скоро увидел краба, цилиндр стоял в полутора метрах от него. Последовала атака, но предательское стекло задержало осьминога у самой цели.

Осьминог извивался в тщетных попытках схватить столь желанную и близкую добычу. В ярости вспыхивал то одним, то другим оттенком багрянца. Достаточно было подняться по стеклу всего на тридцать сантиметров, и осьминог свободно проник бы через открытый верх цилиндра в убежище краба. Но осьминог не мог оторвать алчного взора от добычи, потерять ее хоть на секунду из поля зрения и упорно атаковал по наикратчайшему направлению.

Как долго продолжал бы он свои бесплодные попытки, неизвестно. Случилось вот что: одно щупальце ненароком перескочило через верхний край цилиндра и кончик его проник в сосуд с крабом. Моментально осьминог изменил тактику: видно, кончик щупальца почувствовал запах краба, и слепой повел зрячего.


Щупальце, перегибаясь через край цилиндра, тянулось все дальше, неумолимо приближаясь к крабу, а осьминог полз за ним, поднимаясь вверх по стеклу. Наконец, щупальце коснулось краба и тут же отдернулось. Но лишь на мгновение. В следующую секунду осьминог ракетой перескочил через стеклянную стенку и сцепился с крабом.

Теперь уже осьминог твердо знал, как достать краба из-за стекла. Достаточно было одной удачной попытки, чтобы выработался условный рефлекс, который заставлял осьминога действовать согласно программе, запечатленной после результативного опыта в клеточках его мозга.


    Ваша оценка произведения:

Популярные книги за неделю