Текст книги "Черные дыры и Вселенная"
Автор книги: Игорь Новиков
сообщить о нарушении
Текущая страница: 7 (всего у книги 15 страниц)
Сенсационное открытие было сделано в 1974 году английским теоретиком С. Хоукингом. В учебнике по гравитации американских физиков Ч. Мизнера, К. Торна и Дж. Уилера, вышедшем еще до упомянутого открытия, о работах С. Хоукинга сказано, что в них «проявляется не только огромная интуиция, глубина и разносторонность, но также и дар необыкновенной решимости в преодолении тяжелейших физических трудностей, в стремлении найти и понять истину». С. Хоукинг показал, что существует квантовый процесс рождения частиц самой черной дырой, ее гравитационным полем, приводящий к уменьшению массы и размера черной дыры. На первый взгляд это кажется удивительным. Ведь при образовании черной дыры все процессы на сжимающейся звезде быстро замедляются, «застывают» для внешнего наблюдателя, гравитационное поле везде становится неизменным во времени. А такое поле рождать частицы не может. Следовательно, если во время формирования черной дыры переменное поле произведет какое-то (очень малое) количество частиц, поток этих частиц от возникающей черной дыры, как и все процессы, будет очень быстро затухать по мере приближения поверхности звезды к гравитационному радиусу. С. Хоукинг же утверждает, что это не так, поток не затухнет совсем, а будет продолжаться и после образования черной дыры. В чем же здесь дело?
Дело в том, что внутри черной дыры поле вовсе не застыло. Там неизменность во времени невозможна, все внутри дыры обязано двигаться, падать к центру. С этим обстоятельством и связан удивительный процесс, открытый С. Хоукингом. Мы помним, что в обычных условиях в вакууме виртуальные частицы на миг образуют пару частица – античастица, которые тут же сливаются. В поле тяготения черной дыры одна из возникших таким образом частиц может оказаться под горизонтом и будет неудержимо падать к центру, а другая останется снаружи. Теперь уже эта пара не сможет слиться ни через миг, никогда вообще. Частица, оказавшаяся снаружи, улетит в космос; унося с собой часть энергии черной дыры, а значит, и часть ее массы.
Таким образом, возникает квантовое излучение частиц черной дырой. Правда, этот процесс обычно крайне ничтожен. Согласно расчетам С. Хоукинга черная дыра излучает как обычное нагретое тело, но нагретое до очень небольшой температуры. Так, излучение черной дыры с массой в одну солнечную массу соответствует температуре одна десятимиллионная градуса. Это, конечно, ничтожное излучение. Длина волны возникающих фотонов соответствует размерам черной дыры в 10 километров. Потеря энергии на такое излучение полностью пренебрежима.
В реальных условиях сегодняшней Вселенной падение в такую черную дыру даже отдельных атомов газа из межзвездного пространства и ничтожных потоков света, пронизывающих Вселенную, гораздо больше, чем потери на излучение. Значит, черные дыры не только не уменьшаются в размерах, но растут. Чем больше черная дыра, тем меньше температура ее излучения. Поэтому квантовое излучение гигантских черных дыр и вовсе пренебрежимо.
Черные дыры взрываются!Прочитав предыдущие абзацы, читатель может удивленно пожать плечами: «Столь мизерное явление! Почему же оно вызвало такую бурю удивления и восторгов среди физиков?»
Прежде всего потому, что до открытия С. Хоукинга физики были уверены – статическое поле тяготения вне черной дыры никак не может рождать частицы. Переменное же поле за горизонтом внутри дыры «невидимо», «неосязаемо» для внешнего наблюдателя, и о нем, казалось, можно забыть. Но квантовые процессы как раз и характерны тем, что частица может оказаться там, где, с точки зрения классической физики, ее никак быть не должно. Например, частица может «просочиться» сквозь энергетический барьер, когда у нее не хватает энергии на его преодоление. С. Хоукинг показал, что такое свойство квантовых частиц в случае черных дыр ведет к качественно новому эффекту – квантовому испарению черных дыр. Предоставленные сами себе, без внешних воздействий, они медленно исчезают, превращаются в тепловое излучение, медленно затягиваются в пространстве и времени. Принципиальная важность открытия С. Хоукинга состоит именно в том, что опровергнуто представление о вечности черных дыр.
Но это еще не все. Чем меньше дыра, тем большей температуре соответствует ее излучение.
По мере уменьшения массы черной дыры в ходе испарения, ее температура нарастает, а значит, и процесс испарения ускоряется. Когда масса черной дыры уменьшится до тысячи тонн, температура ее излучения повысится до 1017 градусов! Процесс испарения превращается в фантастический взрыв. Эти последние тысячи тонн, сосредоточенные в микроскопическом размере, дыра излучает, а лучше сказать, взрывает за одну десятую долю секунды. Выделившаяся энергия эквивалентна взрыву одного миллиона мегатонных водородных бомб! В таком фантастическом фейерверке исчезает то, что раньше казалось вечной гравитационной бездной.
Конечно, произойти это может очень не скоро. Расчеты показывают, что если отсутствуют внешние воздействия, то черная дыра звездной массы испарится и взорвется в конце 10 66-летнего периода. Столь большой срок не могут представить себе даже астрономы.
Но, вероятно, эти процессы могут играть важную роль в далеком будущем Вселенной. Об этом мы поговорим в следующей части книги.
Вернемся от последних мгновений жизни черной дыры несколько назад, к ее нормальному состоянию и посмотрим, какие частицы при этом излучаются.
Черная дыра рождает не только фотоны, но и другие частицы. Сравнительно большие черные дыры с массой в несколько солнечных обладают столь низкой температурой, что могут производить только безмассовые частицы.
Эти частицы всегда летят со скоростью света и не имеют собственной массы покоя. К ним относятся фотоны, электронные и мюонные нейтрино, а также их античастицы и, наконец, еще не открытые гравитоны – кванты гравитационных волн. Черная дыра с массой, типичной для звезд, рождает особенно много нейтрино (81 процент всего потока) всех сортов, затем фотонов (17 процентов) и гравитонов (2 процента). Тот факт, что разные частицы излучаются в разных количествах, объясняется различием их свойств. Нейтрино испускается больше всего потому, что их квантовое вращение (на языке квантовой физики – спин) минимально (1/2), а гравитонов меньше всего, так как их спин максимален (2).
Черные дыры малой массы имеют большую температуру. Так, температура черных дыр с массой меньше 10 17—10 16граммов, выше 10 9—10 10градусов. Эти черные дыры порождают, помимо перечисленных частиц, электронно-позитронные пары. Заметим, что размеры таких черных дыр составляют всего 10 11сантиметра – в 10 10раз меньше размеров атома.
Еще меньшие черные дыры с массой меньше 5*10 14граммов способны излучать также мюоны и более тяжелые элементарные частицы.
Размер этих черных дыр уже меньше атомного ядра. Конечно, такие карликовые черные дыры не могут возникать в ходе эволюции звезд. Но их появление было возможным в далеком прошлом. Если в начале расширения Вселенной, когда вещество было плотным, образовались такие «первичные» черные дыры с массой меньше 10 15граммов (теоретически это возможно, как показали Я. Зельдович и автор этой книги), то все они должны к нашему времени испариться. По этой причине процесс, открытый С. Хоукингом, имеет очень важное значение для космологии.
Скорее в плане мечтаний (хотя и строго научных) можно представить себе в отдаленном будущем искусственное изготовление в космосе малых черных дыр. Они могли бы аккумулировать энергию, затраченную на их изготовление, и затем излучать ее в заданном темпе и с заданной энергией частиц, которая определяется массой черных дыр. Так, черная дыра с массой 1015 граммов (масса небольшой горы) будет испускать 10 17эрг в секунду на протяжении 10 миллиардов лет.
Много еще неясного в новом явлении. Например, неизвестно, испаряется ли черная дыра совсем без остатка или на ее месте остается частичка с так называемой планковской массой. Неясно, можно ли наблюдать процесс испарения черных дыр во Вселенной. И конечно, пока только фантастическими представляются какие-либо эксперименты с черными дырами в лаборатории физиков. Однако уже то, что известно, заставляет по-новому осмыслить многие аспекты эволюции материи во Вселенной.
Мы заканчиваем рассказ о дырах в пространстве и времени. Меньше столетия назад люди не только понятия не имели о том, что это такое, но даже не смогли бы вообразить их себе, если бы какой-нибудь фантастический путешественник во времени прибыл к ним из нашей эпохи и попытался рассказать о подобных чудесах природы.
Надеемся, что наш рассказ хоть отчасти объяснял необычную популярность темы о черных дырах. Эту часть дилогии мы заканчиваем стихами поэта, выражающими ощущение человека, столкнувшегося с одной из величайших загадок природы, с тем огромным новым миром, который возникает после смерти звезд:
И звезды умирают во Вселенной...
Звезда уходит словно в глубь себя,
В последнем крике выплеснув все чувства...
Уходит внутрь, во тьму, в ничто;
Оставив бездну времени-пространства,
Воронку мрака среди звездной пыли.
Голодный; зев уже иных миров...
Что Дантов ад в сравненье с этим адом!
Безмолвной бездной, заключенной в сферу,
Где время перепуталось с пространством
И все пути ведут к уничтоженью
И только черный ветер во Вселенной.
Застывший ветер, смерч из звездной пыли
Стоит на страже на краю воронки...
М. Катыс
Часть II.
К границам бесконечности.
Глава I.
Вселенная после взрыва
Мир, в котором мы живемПутешествуя в мир черных дыр, мы столкнулись с, казалось бы, невозможным – нарастающее поле тяготения буквально переворачивало свойства пространства и времени, открывая возможность удивительных физических процессов. Теперь мы отправляемся совсем к другим границам, отправляемся вдаль, в просторы Вселенной, где неожиданно вновь сталкиваемся с абсолютной властью тяготения. Более того, мы сталкиваемся здесь с потрясающим фактом – наблюдаемая Вселенная является следствием Большого взрыва, происшедшего около 15 миллиардов лет назад, причина которого – таинственная сингулярность, подобная той, что лежит в глубине черных дыр.
Стремление понять мир, в котором мы живем, конечно, было всегда, с тех пор как люди начали мыслить. История эволюции представлений о Вселенной интересна и поучительна. Но знакомство с историей не является нашей целью. Об этом написано много прекрасных книг.
Обратимся сразу к нашему времени, к нашим знаниям. Если мы и станем иногда обращаться к истории, то только к новейшей, а в более отдаленное прошлое науки о всей Вселенной, называемой космологией, будем заглядывать не часто.
Когда мы пытаемся понять, что представляет собой Вселенная, первое, с чем мы сталкиваемся, это распределение небесных тел в пространстве. Нас будут интересовать в первую очередь самые крупные масштабы, доступные астрономам, и мы начнем с крупнейших структурных единиц Вселенной – с галактик.
Напомним читателю, что наше Солнце входит в состав огромной звездной системы, которую астрономы называют Галактикой с большой буквы, или иногда еще – нашей Галактикой. Общее число звезд, составляющих Галактику, около ста миллиардов.
Подавляющая часть звезд Галактики заполняет объем, напоминающий линзу, поперечником в 100 тысяч световых лет и толщиной 12 тысяч световых лет. Вспомним, что световой год – это расстояние, проходимое светом за год, равное 10 13километрам. В межзвездном пространстве находятся разреженный газ и пыль, собранные в большие облака. Общая их масса составляет только 5 процентов от общей массы звезд. Помимо этого «основного тела» Галактики, в ней имеется еще одна составляющая сферической формы радиусом около 5—10 тысяч световых лет. В эту сферическую систему входят звезды, как правило, менее яркие и более старые, чем в сплюснутой системе.
Молодые горячие звезды сплюснутой системы, которую иногда называют диском, собраны в спиральные рукава. Эти рукава начинаются у центральных областей Галактики и раскручивающейся спиралью простираются к ее окраинам.
По имени спиральных рукавов всю нашу Галактику называют спиральной. В спиральных рукавах имеются мощные скопления газа – газовые облака, где происходит образование молодых звезд.
Звезды и газ диска совершают орбитальные движения вокруг центра масс Галактики по почти круговым орбитам. Наше Солнце движется в Галактике со скоростью около 250 километров в секунду и совершает один оборот за 200 миллионов лет. Звезды сферической составляющей тоже движутся вокруг центра, но по очень вытянутым орбитам, произвольно наклоненным к плоскости диска.
Таковы структура и масштабы большого звездного города, как иногда называют нашу звездную систему.
За пределами нашей Галактики находятся другие звездные города – галактики с маленькой буквы. Большинство наблюдаемых галактик имеет размеры, лишь немногим уступающие нашей: в десятки тысяч световых лет, и состоят они из миллиардов звезд.
Все эти звездные системы находятся от нас на расстояниях, превышающих миллионы световых лет. Только ближайшие и крупнейшие из них видны на небе невооруженным глазом в виде туманных пятен, остальные доступны лишь большим телескопам. Из-за огромных расстояний свечение звезд в них сливается в туманное сияние. Лишь в ближайших галактиках с помощью крупнейших телескопов видны яркие звезды по отдельности.
Галактики различаются по своим формам, составу звезд, в них входящих, и по характеру их движений. По этим признакам астрономы делят галактики на четыре основных типа.
Большая часть галактик – это спиральные, подобные нашей. Но имеются галактики, в которых в линзовидном диске нет спиралей. Их так и называют – линзообразные.
Наконец, немало галактик, которые вообще не имеют диска и состоят целиком из сферической составляющей. Их называют эллиптическими за то, что на фотографиях и в телескоп они выглядят эллиптическими овалами. В этих звездных системах, как правило, мало газа и практически нет областей рождения молодых звезд.
Наименее многочислен тип неправильных галактик. Они похожи на спиральные, только яркие облака скоплений молодых звезд в них не вытянуты в спирали, а разбросаны в виде пятен. Часто эти галактики содержат большое количество газа.
Уже это беглое знакомство показывает, насколько разнообразен мир галактик. Это разнообразие выступает еще разительнее, когда мы сравниваем массы галактик и их размеры.
Напомним, что наша Галактика состоит из 100 миллиардов звезд. Крупнейшие галактики, относящиеся к классу эллиптических, содержат до десяти тысяч миллиардов звезд. В то же время есть «карликовые» галактики, состоящие всего из миллиона звезд.
Какую галактику можно считать типичной? Такую сравнительно большую, как наша, или заметно меньше?
Ответить на этот вопрос столь же трудно, как и на вопрос: какой город считать типичным – такой большой, как Москва, или заметно меньший? Ведь на один большой город приходится десятки маленьких. Точно такая же картина в мире галактик. На каждую гигантскую систему приходится большое количество карликов.
Как же распределены галактики в пространстве?
Оказалось, что это распределение крайне неравномерное. Большая часть их входит в состав скоплений. Скопления галактик столь же разнообразны по своим свойствам, как и сами галактики. Чтобы навести в их описании хоть какой-нибудь порядок, астрономы придумали несколько их классификаций. Как всегда в подобных случаях, ни одна классификация не может считаться полной. Для наших целей достаточно сказать, что скопления можно разделить на два типа – правильные и неправильные.
Правильные скопления часто огромны по своей массе. Они обладают сферической формой и в них входят десятки тысяч галактик. Как правило, все эти галактики эллиптические или линзообразные. В центре находятся одна или две гигантские эллиптические галактики. Ближайшее к нам правильное скопление находится в направлении созвездия Волосы Вероники на расстоянии около трехсот миллионов световых лет и имеет в поперечнике более десяти миллионов световых лет. Галактики в этом скоплении движутся друг относительно друга со скоростями около тысячи километров в секунду.
Гораздо более скромны по массам неправильные скопления. Число галактик, в них входящих, в десятки раз меньше, чем в правильных скоплениях, и это галактики всех типов. Форма их неправильная, имеются отдельные сгущения галактик внутри скопления.
Неправильные скопления могут быть и совсем маленькими, вплоть до мелких групп, состоящих из нескольких галактик.
Что же дальше, в еще более крупных масштабах, чем скопления галактик? Есть ли скопления скоплений галактик, то есть сверхскопления?
В последнее время исследованиями эстонских астрофизиков Я. Эйнасто, А. Саара, М. Йыэвээра и других, американских специалистов П. Пиблса, О. Грегори, Л. Томпсона показано, что самые крупномасштабные неоднородности в распределении галактик носят «ячеистый» характер. В «стенках ячеек» много галактик, их скоплений, а внутри – пустота. Размеры ячеек около 300 миллионов световых лет, толщина стенок 10 миллионов световых лет. Большие скопления галактик находятся в узлах этой ячеистой структуры. Отдельные фрагменты ячеистой структуры и называют сверхскоплениями. Сверхскопления часто имеют сильно вытянутую форму наподобие нитей или лапши. А еще дальше?
Вот тут мы сталкиваемся с новым обстоятельством. До сих пор мы встречались со все более сложными системами: маленькие системы образовывали большую систему, эти большие системы, в свою очередь, объединялись в еще большую и так далее. То есть Вселенная напоминала русскую матрешку. Маленькая матрешка находится внутри большой, та внутри еще большей. Оказалось, что во Вселенной есть наибольшая матрешка! Крупномасштабная структура в виде «лапши» и «ячеек» не собирается уже в более крупные системы, а равномерно в среднем заполняет пространство Вселенной. Вселенная в самых больших масштабах (более трехсот миллионов световых лет) оказывается одинакова по своим свойствам – однородна. Это очень важное свойство и одна из загадок Вселенной. Почему-то в сравнительно мелких масштабах есть огромные сгустки вещества – небесные тела, их системы, все более сложные, вплоть до сверхскоплений галактик, а в очень больших масштабах структурность исчезает. Подобно песку на пляже. Глядя вблизи, мы видим отдельные песчинки, глядя с большого расстояния и охватывая взглядом значительную площадь, видим однородную массу песка.
То, что Вселенная однородна, удалось проследить вплоть до расстояний в десять миллиардов световых лет!
К решению загадки однородности мы еще вернемся, а пока обратимся к вопросу, который, наверно, возник у читателя. Как удается измерить столь огромные расстояния до галактик и их систем, уверенно говорить об их массах, о скоростях движения галактик?
«Мерные масштабы» и другие инструменты астрономовНачнем с расстояний. Несомненно, измерение расстояний в миллионы световых лет и более является чудом современной науки.
Еще в начале нашего века об измерении подобных расстояний не было и речи. Как же, с какими «мерными лентами» удалось пробиться сквозь эти невообразимые дали?
Это был очень трудный научный путь. Шаг за шагом, ступенька за ступенькой удавалось постепенно продвигаться в измерении все более далеких расстояний. При этом следующий шаг всегда основывался на успехах предыдущего.
Первая серьезная ступенька была преодолена еще в середине прошлого века. Расстояния до трех близких к нам звезд были измерены практически одновременно в России, Германии и Африке. Суть метода этих измерений в принципе такая же, как и в измерении расстояний на Земле с помощью дальномера. Дальномеры теперь встроены даже в фотоаппараты и поэтому знакомы каждому. Принцип работы такого прибора состоит в том, что направление на рассматриваемый предмет несколько различно для разных окошечек дальномера. Если известно расстояние между окошечками и угол изменения направления, то легко рассчитывается расстояние по правилам тригонометрии. В дальномере этот расчет выполняет простейшее механическое устройство. Чем дальше предмет, тем на большее расстояние надо разнести окошечки дальномера, чтобы измерение было достаточно надежным. Расстояние между окошечками называют базисом, а сам способ получил название тригонометрического. При измерении расстояний до звезд роль базиса играет диаметр земной орбиты вокруг Солнца. Изменение направления на звезду измеряется с интервалом в полгода из диаметрально противоположных точек земной орбиты. Но даже при таком огромном базисе изменение направления на ближайшие звезды меньше одной угловой секунды дуги, и требуется большая тщательность и высокое искусство измерений.
Выяснилось, что даже ближайшие звезды удалены от нас на расстояние больше светового года.
Со времени первых измерений расстояний до звезд прошло больше столетия. Несмотря на огромный прогресс в технике и методах измерений, и сейчас с помощью тригонометрического метода можно уверенно определять расстояние до звезд не больше ста световых лет.
До границ Галактики при этом еще невообразимо далеко, а о других галактиках и говорить не приходится.
Следующий огромный шаг по лестнице, ведущей вдаль, был сделан уже в начале нашего столетия, и его помогли сделать звезды, систематически меняющие свой блеск, – переменные звезды.
Начало было положено американским астрономом Генриеттой Ливитт, изучавшей переменные звезды в одной из ближайших к нам галактик – Малом Магеллановом Облаке, видимом на южном небесном полушарии.
Через несколько лет после начала исследования она выяснила любопытнейший факт. Двадцать пять звезд оказались переменными, строго периодически меняющими свой блеск. Причем чем больше был период изменения блеска, тем арче была сама звезда! Г. Ливитт пришла к замечательному выводу: «Так как эти переменные звезды, вероятно, находятся на одинаковом расстоянии от Земли (потому что все они находятся в одной галактике – Малом Магеллановом Облаке, – И. Н.), их периоды, очевидно, связаны с количеством излучаемого ими света».
Значение этого открытия трудно переоценить. По периоду изменения яркости можно узнать светимость звезды.
Мы знаем, что видимый блеск звезды на небе ослабевает обратно пропорционально квадрату расстояния до нее. Сравнивая истинную светимость звезды с видимым блеском, можно вычислить расстояние!
Правда, для того, чтобы можно было по периоду изменения блеска звезд, изученных Г. Ливитт, вычислять расстояние, надо знать истинную светимость хотя бы одной такой звезды.
Первая попытка это сделать была предпринята Э. Герцшпрунгом. Он понял, что звезды, наблюдаемые Г. Ливитт в Малом Магеллановом Облаке, точно такие же, как хорошо известные переменные звезды, называемые цефеидами, в нашей Галактике. Блеск цефеид меняется из-за того, что они пульсируют. Теперь надо было определить истинную светимость хотя бы одной цефеиды. Boт тут-то и начались серьезные трудности. В окрестности Солнца нет ни одной цефеиды, расстояние до которой надежно можно было бы определить тригонометрическим способом и, зная ее видимый блеск и расстояние, вычислить истинную светимость.
Начались многочисленные попытки определения расстояний до цефеид нашей Галактики. Первая оценка была сделана самим Э. Герцшпрунгом. Мы не будем описывать здесь суть используемых при этом хитрых косвенных методов. Отметим только, что и первая, и многие последующие попытки были столь трудны, что привели к результатам, содержащим значительные ошибки. Эти ошибки были окончательно выявлены только в начале 60-х годов. Но работа эта настолько важна (речь идет об измерении масштабов Вселенной!), что уточнения продолжаются до сих пор.
После того как установлена истинная светимость хоть одной цефеиды с известным периодом изменения блеска, стало возможным измерять расстояние до любой цефеиды. Действительно, теперь известна зависимость «период – истинная светимость» для цефеид. Для определения расстояния до любой цефеиды достаточно по наблюдениям определить период изменения ее блеска, затем по зависимости найти истинную светимость и, сравнивая с видимым блеском, вычислить расстояние. Если цефеида входит в состав какого-либо скопления звезд или галактики, то тем самым определяется расстояние и до них.
Цефеиды здесь используются как «стандартные свечи», истинная яркость которых известна. Поэтому и весь метод получил название метода «стандартной свечи».
Роль цефеид в измерении расстояний столь велика, что известный американский астроном X. Шепли назвал их «самыми важными» звездами.
Истинная светимость цефеид очень велика – они в тысячу раз ярче Солнца. Поэтому цефеиды видны с достаточно больших расстояний, вплоть до 15 миллионов световых лет. Значит, с их помощью можно определять расстояние до ближайших галактик.
Но нас интересуют еще большие масштабы!
Для дальнейшего продвижения приходится делать еще один шаг. Хотелось бы найти «стандартные свечи» более яркие, чем цефеиды, и хорошо видимые с еще больших расстояний. Оказалось, что такие «свечи» есть. Вокруг галактик обычно наблюдается много звездных скоплений, которые за свою форму получили название шаровых.
Когда с помощью цефеид были определены расстояния до ближайших галактик, сравнили истинные светимости шаровых скоплений вокруг разных галактик. Оказалось, что если выбрать вокруг каждой галактики ярчайшее шаровое скопление, то истинная светимость этих ярчайших скоплений практически одинакова для всех галактик.
Значит ярчайшие шаровые скопления вокруг галактик можно использовать как «стандартную свечу», причем более яркую, чем цефеиды.
Этим методом можно измерять расстояние вплоть до шестидесяти миллионов световых лет. А это значит, что можно измерить расстояние уже до ближайших скоплений галактик. Дальше, увы, шаровые скопления различать пока невозможно.
Следующая ступень – использование еще более яркой «стандартной свечи». Выяснилось, что в разных скоплениях галактик ярчайшие галактики имеют одинаковую светимость – примерно в десять раз больше светимости нашей Галактики.
Эти ярчайшие «стандартные свечи» позволяют продвигаться уже на миллиарды световых лет.
Такова «лестница масштабов», используемая астрономами на пути в глубь Вселенной.
А как измеряют скорости движения далеких объектов?
Разумеется, на расстояниях не только ближайших к нам галактик, но и более отдаленных не заметны никакие перемещения звезд и других объектов на фоне неба, по которым можно было бы вычислить скорость перемещения их в пространстве поперек луча зрения.
Единственное, что можно измерить, но зато сравнительно просто и надежно, это скорость приближения к нам или удаления небесных тел. Такое измерение делается методом, использующим эффект Доплера, о котором уже упоминалось в первом разделе книги. Когда небесное тело приближается к нам – свет его голубеет, когда удаляется – краснеет. Измерение смещения линий в спектре звезды к голубому или красному концу позволяет вычислить скорость, точнее, ту часть скорости, которая направлена по «лучу зрения». Поэтому скорости, определенные по эффекту Доплера, астрономы называют «лучевыми скоростями».
Наконец, об измерении массы галактик и скоплений галактик. Ее можно определить, используя закон всемирного тяготения.
Пусть мы наблюдаем, скажем, эллиптическую галактику. В ней звезды движутся с определенными скоростями друг относительно друга. Если бы не было сил тяготения, они бы разлетелись в пространстве. Силы тяготения, обусловленные общей массой всей галактики, удерживают их от разбегания. Измерив относительные скорости звезд в галактике (это можно сделать методом Доплера) и зная размер галактики, можно вычислить силы тяготения, а значит, и массу, их создающую. Так определяют массы галактик.
При измерении масс скоплений галактик поступают аналогичным образом, только вместо движений отдельных звезд используют движение галактик в скоплении.
Теперь мы знакомы в общих чертах с тем, как были получены числа, описывающие устройство Вселенной в больших масштабах.
Возникает еще один вопрос. Как движутся в пространстве скопления галактик и отдельные, достаточно удаленные галактики?
Ответ на этот вопрос явился величайшим открытием естествознания XX века. Оказалось, что мы живем в расширяющейся Вселенной. Скопления галактик удаляются друг от друга, все вещество Вселенной было приведено в состояние расширения таинственным Большим взрывом в далеком прошлом.