355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Игорь Новиков » Черные дыры и Вселенная » Текст книги (страница 2)
Черные дыры и Вселенная
  • Текст добавлен: 20 сентября 2016, 14:44

Текст книги "Черные дыры и Вселенная"


Автор книги: Игорь Новиков



сообщить о нарушении

Текущая страница: 2 (всего у книги 15 страниц)

Со свойством «устранимости» тяготения связана сложнейшая проблема теории – проблема энергии поля тяготения. Она, по мнению некоторых физиков не решена и до сих пор. Формулы теории позволяют вычислить для какой-либо массы полную энергию ее гравитационного поля во всем пространстве. Но нельзя указать, где конкретно находится эта энергия, сколько ее в том или ином месте пространства. Как говорят физики, нет понятия плотности гравитационной энергии в точках пространства.

Мне в моей дипломной работе предстояло показать прямым вычислением, что известные в то время математические выражения для плотности энергии гравитационного поля бессмысленны даже для наблюдателей, не испытывающих свободного падения, скажем, для наблюдателей, стоящих на Земле и явно чувствующих силу, с которой планета их притягивает. Математические выражения, с которыми мне предстояло работать, были еще более громоздкими, чем уравнения поля тяготения, о которых мы говорили выше. Я даже просил А. Зельманова дать мне ещё кого-нибудь в помощники, который делал бы эти же вычисления параллельно, ведь я мог ошибиться. А. Зельманов вполне определенно отказал мне. «Вы должны это сделать сами», – был его ответ.

Когда все уже было позади, я увидел, что потратил на эту рутинную работу несколько сотен часов. Почти все вычисления пришлось провести дважды, а некоторые и больше. Ко дню защиты диплома темп работы стремительно возрастал, подобно скорости свободно падающего тела в поле тяготения. Правда, надо заметить, что суть работы состояла не только в прямых вычислениях. По ходу дела надо было еще думать и решать принципиальные вопросы.

Это была моя первая публикация по общей теории относительности.

Но вернемся к работе К. Шварцшильда. Он с помощью изящного математического анализа решил задачу для сферического тела и переслал ее А. Эйнштейну для передачи Берлинской академии. Решение поразило А. Эйнштейна, так как сам он к тому времени получил лишь приближенное решение, справедливое только в слабом поле тяготения. Решение же К. Шварцшильда было точным, то есть справедливым и для сколь угодно сильного поля тяготения вокруг сферической массы; в этом было его важное значение. Но ни А. Эйнштейн, ни сам К. Шварцшильд тогда еще не знали, что в этом решении содержится нечто гораздо большее. В нем, как выяснилось позже, содержится описание черной дыры.

А теперь продолжим разговор о второй космической скорости. Какую скорость согласно уравнениям Эйнштейна надо придать ракете, стартующей с поверхности планеты, чтобы она, поборов силы тяготения, улетела в космос?

Ответ оказался чрезвычайно прост. Здесь справедлива та же формула, что и в ньютоновской теории. Значит, вывод П. Лапласа о невозможности для света уйти от компактной тяготеющей массы подтвердился теорией тяготения Эйнштейна, согласно которой вторая космическая скорость должна быть равна скорости света как раз на гравитационном радиусе.

Сфера с радиусом, равным гравитационному, получила название сферы Шварцшильда.

Предсказание

Итак, согласно теории Эйнштейна, как только радиус небесного тела становится равным его гравитационному радиусу, свет не сможет уйти с поверхности этого тела к далекому наблюдателю, то есть оно станет невидимым. Но читатель наверняка уже обратил внимание, что это чрезвычайно необычное свойство далеко не единственное из тех «чудес», которые должны произойти с телом, размеры которого сравнялись с гравитационным радиусом. Согласно сказанному в предыдущем разделе сила тяготения на поверхности звезды с радиусом, равным гравитационному, должна стать бесконечно большой, так же как и бесконечно большим должно быть ускорение свободного падения. К чему это может привести?

Чтобы ответить на этот вопрос, вспомним сначала, почему обычные звезды и планеты не сжимаются к центру под действием тяготения, а представляют собой равновесные тела.

Сжатию к центру препятствуют силы внутреннего давления вещества. В звездах это давление газа с очень высокой температурой, стремящееся расширить звезду. В планетах типа Земли это силы натяжения, упругости, давления, также препятствующие сжатию. Равенство сил тяготения и указанных противоборствующих сил как раз и обеспечивает равновесие небесного тела.

Противоборствующие тяготению силы зависят от состояния вещества: от его давления и температуры. При его сжатии они увеличиваются. Однако если сжать вещество до какой-то конечной (не бесконечно большой) плотности, то они останутся также конечными. Иначе обстоит дело с силой тяготения. С приближением размера небесного тела к гравитационному радиусу тяготение стремится, как мы знаем, к бесконечности. Теперь оно не может быть уравновешено противоборствующей конечной силой давления, и тело должно неудержимо сжиматься к центру под его действием.

Итак, важнейший вывод теории Эйнштейна гласит: сферическое тело, радиус которого равен гравитационному радиусу и меньше, не может находиться в покое, должно сжиматься к центру. «Но позвольте, – спросит читатель, – если на гравитационном радиусе сила тяготения бесконечна, то какова она станет, как только тело уменьшится до размеров меньше гравитационного радиуса?»

Ответ довольно очевиден. До сих пор мы говорили о силе тяготения на поверхности статического, не сжимающегося в данное время тела. Но она зависит от состояния движения. Как мы уже говорили выше, при свободном падении наступает состояние невесомости – свободно падающее тело вообще не испытывает действия гравитационной силы. Поэтому на поверхности свободно сжимающегося тела не ощущается никакой силы тяготения (и вне сферы Шварцшильда, и внутри ее). Увлекаемое тяготением вещество не может остановиться на сфере Шварцшильда (оно испытало бы тогда бесконечную силу тяготения). Тем более не может оно остановиться внутри сферы Шварцшильда. Любая частица, например ракета, со сколь угодно сильным двигателем, оказавшись от тяготеющего центра на расстоянии меньше гравитационного радиуса, должна неудержимо падать к этому центру.

Итак, мы получили ответ на вопрос о том, к чему ведет бесконечное нарастание гравитационной силы с приближением тела к сфере Шварцшильда: к катастрофическому, неудержимому его сжатию. Физики называют это явление релятивистским коллапсом.

Таким образом, достаточно сжать тело до размеров гравитационного радиуса, а дальше оно само будет неудержимо сжиматься. Так возникает объект, который впоследствии получил название черной дыры.

Описанный нами процесс релятивистского гравитационного коллапса впервые был строго рассчитан с помощью уравнений общей теории относительности американскими физиками Р. Оппенгеймером и Г. Волковым в 1939 году. Их статья является образцом краткости и ясности изложения. Полностью и строго описывая суть явления, она занимает всего несколько страниц.

Имя Р. Оппенгеймера хорошо известно не только физикам, но и широкой общественности. Он участвовал в создании американской атомной бомбы, в 1943—1945 годах возглавлял знаменитую Лос-Аламосскую научную лабораторию. Но впоследствии понял, какую опасность человечеству несет создание водородной бомбы и гонка вооружений, выступил за использование атомной энергии только в мирных целях и в 1953 году был снят со всех постов как неблагонадежный американец.

Работу Р. Оппенгеймера и Г. Волкова следует считать строгим предсказанием возможности возникновения черных дыр. Само название «черная дыра» появилось гораздо позже – в конце 60-х годов. Придумал его американский физик Д. Уилер. До этого они известны были под разными именами. Например, у нас их называли «коллапсарами», однако выяснилось, что это слово звучит не очень благозвучно по-английски. Впрочем, с названием «черная дыра», несмотря на его точность и образность, тоже бывали казусы.

Закончим этот раздел следующим замечанием. Черную дыру можно в принципе сделать искусственно. Для этого надо сжать любую массу до размеров гравитационного радиуса, дальше она сама будет сжиматься, испытывая гравитационный коллапс.

Правда, на этом пути лежат огромные технические трудности. Чем меньшую массу мы хотим превратить в черную дыру, тем до меньших размеров ее необходимо сжать, поскольку гравитационный радиус прямо пропорционален массе. Так, мы знаем, что гравитационный радиус Земли равен примерно одному сантиметру. А чтобы превратить в черную дыру, скажем, гору размером в миллиард тонн, пришлось бы ее сжать до размера атомного ядра!

В последующих разделах мы увидим, что во Вселенной большие массы могут самопроизвольно превращаться в черные дыры в ходе естественной эволюции. Однако, прежде чем говорить об этом, продолжим знакомство с удивительными особенностями черных дыр.

Глава II.
Вокруг черной дыры
Дыра во времени

Как уже говорилось, теория тяготения предсказывает, что время течет тем медленней, чем ближе часы находятся к гравитационному радиусу. Это означает, что, какие бы процессы ни протекали в сильном поле тяготения, далекий от черной дыры наблюдатель увидит их в замедленном темпе.

Так, для него колебания в атомах, излучающих свет в сильном поле тяготения, происходят замедленно, и фотоны от этих атомов приходят к нему «покрасневшими», с уменьшенной частотой. Это явление носит название гравитационного красного смещения (оно послужило основой для одной из проверок правильности теории Эйнштейна). Для нас сейчас важен тот факт, что замедление времени и покраснение света тем больше, чем ближе область излучения располагается к границе черной дыры (к сфере Шварцшильда). Там время замедляет свой бег, и на самой границе черной дыры оно как бы замирает для далекого наблюдателя. Этот наблюдатель, следя, например, за камнем, падающим к черной дыре, видит, как у самой сферы Шварцшильда он постепенно «тормозится» и приблизится к границе черной дыры лишь за бесконечно долгое время.

Аналогичную картину увидит далекий наблюдатель при самом процессе образования черной дыры – когда под действием тяготения само вещество звезды падает, устремляется к ее центру. Для него поверхность звезды лишь за бесконечно долгое время приближается к сфере Шварцшильда, как бы застывая на гравитационном радиусе. Поэтому раньше черные дыры называли еще застывшими звездами.

Но это застывание вовсе не значит, что наблюдатель будет вечно созерцать застывшую поверхность звезды на гравитационном радиусе. Вспомним о замедлении времени, о покраснении света, выходящего из сильного гравитационного поля. С приближением поверхности звезды к гравитационному радиусу наблюдатель видит все более и более покрасневший свет звезды, несмотря на то, что на самой звезде продолжают рождаться обычные фотоны. Менее энергичные («покрасневшие») фотоны к тому же приходят к наблюдателю все реже и реже. Интенсивность света падает.

К факту покраснения света из-за замедления времени, обусловленного сильным полем тяготения, прибавляется еще покраснение света из-за Доплер-эффекта. Действительно, ведь поверхность сжимающейся звезды неуклонно удаляется от наблюдателя. А известно, что свет от удаляющегося источника воспринимается также покрасневшим.

Итак, совместное действие Доплер-эффекта и замедления времени в сильном поле тяготения ведет к тому, что с приближением поверхности звезды к сфере Шварцшильда далекий наблюдатель видит свет все более покрасневшим и все меньшей интенсивности – звезда становится невидимой. Ее яркость стремится к нулю, и ни в какие телескопы ее нельзя уже обнаружить. При этом потухание происходит для далекого наблюдателя практически мгновенно. Так, звезда с массой Солнца после того, как она сожмется до размеров удвоенного гравитационного радиуса, потухнет для внешнего наблюдателя за стотысячную долю секунды.

Нельзя обнаружить поверхность застывшей у гравитационного радиуса звезды и радиолокационным методом. Радиосигналы будут бесконечно долго двигаться к гравитационному радиусу и никогда не вернутся к пославшему их наблюдателю. Звезда для внешнего наблюдателя полностью «исчезает», и остается только ее гравитационное поле. Внешний наблюдатель никогда не увидит то, что произойдет со звездой после ее сжатия до размеров меньше гравитационного радиуса.

«Стоп! – скажет читатель. – О каких размерах меньше гравитационного радиуса можно говорить, когда сам процесс сжатия до гравитационного радиуса растягивается на бесконечный срок? Ведь мы только что говорили, что звезда застывает при размерах, равных гравитационному радиусу. Когда же она станет меньше гравитационного радиуса? После бесконечного долгого времени?» Вот тут-то и проявляется одна из самых удивительных и важных истин, открытых теорией относительности, – относительность временных промежутков, зависимость их от состояния движения наблюдателя. Вспомним, что уже в специальной теории относительности, где роль гравитационных полей не учитывается, один и тот же процесс с точки зрения разных наблюдателей имеет различную длительность: часы на быстро летящей ракете идут с точки зрения наземного наблюдателя медленнее, чем его собственные. Это явление проверено непосредственным физическим экспериментом. В случае же падения к черной дыре относительность длительности процесса проявляется в совершенно удивительном виде. Рассмотрим такое явление подробнее.

Представим себе ряд наблюдателей, расположенных вдоль линии, продолжающей радиус черной дыры, и неподвижных по отношению к ней. Например, они могут находиться на ракетах, двигатели которых работают, не давая наблюдателям падать на черную дыру. Далее, представим себе еще одного наблюдателя на ракете с выключенным двигателем, который свободно падает к черной дыре. По мере падения он проносится мимо неподвижных наблюдателей со всевозрастающей скоростью. При падении к черной дыре с большого расстояния эта скорость равняется второй космической скорости. Скорость падения стремится к световой, когда падающее тело приближается к гравитационному радиусу. Ясно, что темп течения времени на свободно падающей ракете с ростом скорости уменьшается. Это уменьшение настолько значительное, что с точки зрения наблюдателя с любой неподвижной ракеты для того, чтобы падающий успел достичь сферы Шварцшильда, проходит бесконечный промежуток времени, а по часам падающего наблюдателя это время соответствует конечному промежутку. Таким образом, бесконечное время одного наблюдателя на неподвижной ракете равно конечному промежутку времени другого (на падающей ракете), причем промежутку очень малому,– так, мы видели, для массы Солнца это всего стотысячная доля секунды. Что может быть более наглядным примером относительности временной протяженности?

Итак, по часам, расположенным на сжимающейся звезде, она за конечное время сжимается до размеров гравитационного .радиуса и будет продолжать сжиматься дальше, к еще меньшим размерам. Но далекий внешний наблюдатель этих последних этапов эволюции, как мы помним, никогда не увидит. А что будет видеть наблюдатель на сжимающейся звезде после своего ухода под сферу Шварцшильда? Что будет со звездой?

Отложим на некоторое время эти вопросы, а сейчас вернемся к внешнему полю черной дыры и посмотрим, как в этом сверхсильном поле движутся тела и распространяются лучи света.

Небесная механика черных дыр

Согласно ньютоновской теории тяготения любое тело в гравитационном поле звезды движется либо по разомкнутым кривым – гиперболе или параболе, – либо по замкнутой кривой – эллипсу в зависимости от того, велика или мала начальная скорость движения). У черной дыры наибольших от нее расстояниях поле тяготения слабо, и здесь все явления с большой точностью описываются теорией Ньютона, то есть законы ньютоновской небесной механики здесь справедливы. Однако с приближением к черной дыре они нарушаются все больше и больше.

Познакомимся с некоторыми важнейшими особенностями движения тел в поле тяготения черной дыры.

По теории Ньютона, если скорость тела меньше второй космической, то оно движется по эллипсу около центрального тела – тяготеющего центра (ТЦ). У эллипса есть ближайшая к ТЦ точка (периастр) и наиболее удаленная (апоастр). По теории Эйнштейна, в случае движения тела со скоростью, меньшей второй космической, траектория его также имеет периастр и апоастр, но она уже не эллипс; оно движется по незамкнутой орбите, то приближаясь к черной дыре, то снова удаляясь от нее. Траектория вся целиком лежит в одной плоскости, но вблизи черной дыры она может выглядеть весьма причудливо, как, например, показано на рисунке 1. Если же она лежит достаточно далеко, то вид ее представляет собой медленно поворачивающийся в пространстве эллипс. Такой медленный поворот эллиптической орбиты Меркурия на 43 угловых секунды в столетие послужил первым подтверждением правильности теории тяготения Эйнштейна. Очень интересно рассмотреть простейшее периодическое движение тела в поле черной дыры по круговой орбите. По теории Ньютона, движение по кругу возможно на любом расстоянии от ТЦ. Из теории Эйнштейна следует, что это не так. Чем ближе к ТЦ, тем больше скорость движущегося по окружности тела. На окружности, удаленной на полтора гравитационных радиуса, скорость обращающегося тела достигает световой. На еще более близкой к черной дыре окружности движение его вообще невозможно, ибо для этого ему потребовалась бы скорость больше скорости света.

Но, оказывается, в реальной ситуации движение по окружности вокруг черной дыры невозможно и на больших расстояниях, начиная с трех гравитационных радиусов, когда скорость движения составляет всего половину скорости света. В чем же причина?

Дело в том, что на расстояниях меньше трех гравитационных радиусов движение по окружности неустойчиво. Малейшее возмущение, сколько угодно малый толчок заставят вращающееся тело уйти с орбиты и либо упасть в черную дыру, либо улететь в пространство (ничего похожего не предусматривает ньютоновская «Небесная механика»). Но, пожалуй, самое интересное и необычное в новой небесной механике – это возможность гравитационного захвата черной дырой тел, прилетающих из космоса. Напомним, что в ньютоновской механике всякое тело, прилетающее к тяготеющей массе из космоса, описывает вокруг нее параболу или гиперболу и (если не «стукнется» о поверхность тяготеющей массы) снова улетает в космос – гравитационный захват невозможен. Иначе обстоит дело в поле тяготения черной дыры. Конечно, если прилетающее тело движется на большом расстоянии от черной дыры (на расстоянии десятков гравитационных радиусов и больше), там, где поле тяготения слабо и справедливы законы механики Ньютона, то оно движется почти точно по параболе или гиперболе. Но если оно пролетает достаточно близко от дыры, то его орбита совсем не похожа на гиперболу или параболу. В случае, если оно вдали от черной дыры имеет скорость много меньше световой и его орбита подходит близко к окружности с радиусом, равным двум гравитационным радиусам, то оно обернется вокруг черной дыры несколько раз, прежде чем «снова улетит в космос. Этот случай изображен на рисунке 2.

Наконец, если вращающееся тело подойдет вплотную к указанной окружности двух гравитационных радиусов, то его орбита будет на эту окружность навиваться; тело окажется гравитационно захваченным черной дырой и никогда снова не улетит в космос (рисунок 3). Если тело подойдет еще ближе к черной дыре, оно упадет в черную дыру и также окажется гравитационно захваченным.

Прежде чем перейти к другим физическим явлениям в поле тяготения черной дыры, сделаем еще одно замечание, касающееся второй космической скорости. Мы уже говорили раньше, что для второй космической скорости справедлива формула теории Ньютона и тело, обладающее такой и большей скоростью, навсегда улетает от черной дыры в космос. Однако мы должны сделать оговорку.

Очевидно, что если тело движется к черной дыре непосредственно вдоль радиуса, то, какую бы скорость оно ни имело, оно врежется в черную дыру и не улетит в космос.

Более того, нам теперь известно, что если тело будет двигаться хоть и не прямо по радиусу к черной дыре, но орбита его пройдет на достаточно близком расстоянии от черной дыры, то оно будет гравитационно захвачено. Следовательно, чтобы вырваться из окрестностей черной дыры, мало иметь скорость больше второй космической, надо еще, чтобы направление этой скорости составляло с направлением на черную дыру угол больше некоторого критического значения. Если угол будет меньше, тело гравитационно захватится, если больше (и скорость равна второй космической), то улетит в космос. Значение этого критического угла зависит от расстояния до черной дыры. Чем дальше от нее, тем меньше критический угол. На расстоянии нескольких гравитационных радиусов надо уже точно «прицелиться» в черную дыру, чтобы быть ею захваченной.

Наконец, скажем несколько слов еще об одном важном процессе, возникающем при движении тел в поле черной дыры. Речь идет об излучений гравитационных волн. Теория тяготения Эйнштейна предсказывает их существование.

Что же представляют собой эти волны, носящие столь экзотическое название. Они подобны электромагнитным, которые являются быстро меняющимся электромагнитным полем, «оторвавшимся» от своего источника и распространяющимся в пространстве с предельно большой скоростью – скоростью света. Точно так же гравитационные волны являются изменяющимся гравитационным полем, «оторвавшимся» от своего источника и летящим в пространстве со скоростью света.

Известно, чтобы обнаружить электромагнитную волну, достаточно в принципе взять электрически заряженный шарик и наблюдать за ним; когда на него станет падать электромагнитная волна, шарик придет в колебательное движение. Но чтобы обнаружить гравитационную волну, одним шариком не обойтись. Потребуется минимум два, помещенных на некотором расстоянии друг от друга (заряжать их электричеством* конечно, не нужно). При падении на них гравитационной волны шарики будут то несколько сближаться, то удаляться. Измеряя изменение расстояния между ними, можно обнаружить волны тяготения. А почему нельзя обойтись одним шариком? – может спросить читатель.

Дело заключается в следующем. Если на шарик не действуют никакие посторонние силы, то он находится в поле гравитационной волны в состоянии невесомости. На шарике не ощущается никаких сил тяготения, и поэтому невозможно обнаружить проходящую гравитационную волну. Ситуация точно такая же, как у космонавтов в кабине космического корабля на орбите. Находясь в невесомости, они не могут обнаружить и тем более измерить гравитационное поле. Два шарика, находясь на некотором отдалении, подвергаются воздействию поля чуть-чуть по-разному, и между ними возникает относительное движение. Вот это относительное движение и можно измерить. В случае электромагнитных волн для их обнаружения не обязательно брать даже шарик – существуют разные типы электромагнитных антенн. В случае же гравитационных волн придуманы тоже разные конструкции гравитационных антенн.

Но все выглядит относительно просто только теоретически. На самом деле в сколь-нибудь привычных для нас условиях возникающие гравитационные волны крайне слабы: они должны излучаться при ускоренных движениях массивных тел. Но даже при движении небесных тел излучение гравитационных волн ничтожно. Так, при движении планет в Солнечной системе излучается гравитационная энергия, равная мощности всего лишь сотни электрических лампочек. Хотя это число и может показаться большим по нашим земным меркам, оно ничтожно по сравнению, скажем, с мощностью светового излучения Солнца, которое в сто тысяч миллиардов миллиардов раз больше (число записывается единицей с двадцатью тремя нулями). Попытки же создать лабораторные излучатели гравитационных волн пока и вовсе обречены на неудачу.

Скажем, можно сделать излучатель гравитационных волн в виде быстро вращающегося стержня. Если взять стальную болванку длиной 20 метров, массой 500 тонн и раскрутить ее до предела на разрыв центробежными силами (частота вращения при этом около 30 герц), то она будет излучать всего одну десятитысячную миллиардной миллиардной доли эрга в секунду.

Приведенные примеры показывают, насколько трудны попытки обнаружения гравитационных волн. В прямых экспериментах на Земле эти волны пока не обнаружены, хотя в разных лабораториях мира построены и строятся уже десятки гравитационных антенн, предназначенных для приема волн тяготения из космоса. Пионером этой работы был американский экспериментатор Д. Вебер в конце 50-х – начале 60-х годов. У нас в стране работа по созданию гравитационных антенн наиболее интенсивно ведется в Московском университете под руководством В. Брагинского.

Хотя, как уже сказано, с помощью антенн на Земле пока гравитационные волны не обнаружены, однако некоторые астрономические наблюдения прямо показывают, что гравитационные волны излучаются при движении небесных тел. Что же это за наблюдения?

Дело заключается в следующем. Как мы уже знаем, при движении планет или, например, движений звезд в двойных звездных системах излучаются гравитационные волны, уносящие энергию. Эти потери энергии обычно очень малы. Но чем больше масса движущихся небесных тел и меньше расстояние между ними, тем интенсивнее излучение. Потери энергии в системе двойной звезды приводят к постепенному сближению звезд и уменьшению периода их обращения вокруг центра масс. Конечно, это происходит крайне медленно, и тем не менее с помощью специальных способов наблюдения такое уменьшение периода в одном случае удалось зафиксировать, причем в точном согласии с предсказаниями теории Эйнштейна. Мы не будем здесь рассказывать об астрономических наблюдениях подробнее, так как это увело бы нас далеко в сторону.

Вернемся к движению тела вокруг черной дыры по круговой орбите. При этом будет происходит излучение гравитационных волн и постепенное уменьшение радиуса орбиты. Так будет продолжаться до тех пор, пока радиус не примет критического значения трех гравитационных радиусов. На меньших расстояниях, как мы знаем, движение уже неустойчиво. Следовательно, тело, достигнув критической орбиты, сделав еще несколько оборотов и излучив некоторое количество энергии, «свалится» с этого расстояния в черную дыру.

Какое общее количество энергии излучит тело в виде гравитационных волн за все время, пока оно двигалось вокруг черной дыры по окружности с медленно уменьшающимся радиусом? Излучение происходит, как мы видели, крайне малоинтенсивно, но сам процесс этот длится долго! Таким образом, полное количество излученной энергии будет велико. Чтобы показать ее, приведем такое сравнение. Известно, что при ядерных превращениях, например, водорода в гелий или в еще более тяжелые элементы, определенная доля массы превращается в энергию. Максимально во всех видах реакций эта доля может составить около одного процента. В случае же излучения гравитационных волн при движении вокруг черной дыры излучается энергия в шесть раз больше!

Мы видим, что в принципе даже таким простейшим способом можно было бы использовать черные дыры как источник энергии. Конечно, практически такая машина почти бесполезна. Дело в том, что гравитационные волны крайне слабо взаимодействуют с веществом. Поэтому выделяющуюся в виде гравитационных волн энергию было бы очень трудно уловить и использовать для практических нужд: гравитационные волны рассеивались бы в космическом пространстве. В дальнейшем мы увидим, что существуют другие способы использования гигантской гравитационной энергии черных дыр.


    Ваша оценка произведения:

Популярные книги за неделю