355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Игорь Новиков » Черные дыры и Вселенная » Текст книги (страница 6)
Черные дыры и Вселенная
  • Текст добавлен: 20 сентября 2016, 14:44

Текст книги "Черные дыры и Вселенная"


Автор книги: Игорь Новиков



сообщить о нарушении

Текущая страница: 6 (всего у книги 15 страниц)

Черные дыры открыты?

В 1966 году был предложен еще один способ поиска черных дыр. Чтобы его разъяснить, ответим сначала на вопрос – почему светимость газа, падающего в черную дыру, относительно невелика?

Дело в том, что в межзвездном пространстве мала плотность газа, и, следовательно, его мало падает на черную дыру. А могут ли осуществляться в Галактике условия, когда газа падает гораздо больше?

Оказывается, да. Такие условия могут осуществляться, если, например, черная дыра входит в состав очень тесной двойной системы, где вторая компонента является нормальной звездой-гигантом. В этом случае газ из оболочки нормальной звезды под действием тяготения компаньона будет к нему перетекать мощным потоком. Мы уже говорили об этом процессе, когда обсуждали рентгеновские пульсары в двойных звездных системах.

Газ в такой двойной системе не сможет просто упасть на черную дыру: из-за наличия орбитального движения он закручивается, образуя вокруг черной дыры диск. Вследствие трения слоев газа происходит его разогрев до температуры 107 градусов (еще до того, как он провалится в черную дыру). При такой температуре газ испускает рентгеновские лучи.

Следовательно, черные дыры следует искать как рентгеновские источники в составе тесных двойных звездных систем, где они могут быть наряду с нейтронными звездами. Такое предсказание было сделано академиком Я. Зельдовичем и мной в 1966 году, вскоре после открытия первых рентгеновских источников. И. Шкловский, сделавший такое же предсказание в 1967 году, построил подробную астрофизическую картину процессов, которые должны происходить в источниках рентгеновских лучей в двойных звездных системах.

Для поиска рентгеновских источников на небе необходим вынос рентгеновских телескопов за пределы атмосферы, а для длительных наблюдений они должны быть установлены на искусственных спутниках, (полет ракеты ведь очень непродолжителен). С помощью такого телескопа, установленного на спутнике «Ухуру», были открыты в 1972 году рентгеновские источники в составе нескольких двойных звездных систем. Они-то и были подвергнуты подробному изучению, в частности, с помощью аппаратуры, установленной на советских спутниках и пилотируемых космических кораблях.

Так началась эра рентгеновской астрономии. Эта увлекательная ветвь науки заслуживает написания отдельной книги, и не одной, но нас сейчас интересуют рентгеновские источники в двойных звездных системах. Среди них были такие, которые строго периодически меняли свою яркость с периодом около секунды. Они заведомо не могут быть черными дырами. Это вращающиеся нейтронные звезды, обладающие магнитным полем, магнитные полюса которых не совпадают с полюсами оси вращения звезды. Газ здесь падает на магнитные полюса вдоль магнитных силовых линий, и в результате возникает направленное рентгеновское излучение. Вращение же делает эти объекты как бы вращающимися рентгеновскими прожекторами. Но у черной дыры, как мы видели, нет каких-либо активных пятен на поверхности, и она не может приводить к явлению прожектора. Сгустки горячего газа в газовом диске вблизи черной дыры, вращаясь во внутренних областях, могли бы дать периодические вспышки. Однако довольно быстро этот период должен сильно измениться – ведь сгусток не жестко прикреплен к этому чему-то вращающемуся, – а из-за трения постепенно приблизиться к звезде (в результате период обращения уменьшается).

Таким образом, черные дыры должны находиться среди рентгеновских источников в двойных системах, не являющихся пульсарами. Отметим прежде всего, что эти источники не могут быть обычными звездами. Ведь для того чтобы газ нагрелся до температуры, достаточной для испускания рентгеновских лучей, гравитационное поле, в котором он движется, должно быть очень велико. Такими полями обладают только компактные (сжавшиеся) «умершие» звезды: белые карлики, нейтронные звезды или черные дыры. Но как выделить именно черные дыры среди «умерших» звезд?

Мы знаем, что надежным критерием этого является измерение массы. Если масса «умершей» звезды больше критического значения двух солнечных масс, то это черная дыра. Измерить же ее можно по орбитальному движению звезд в двойной системе. И вот оказалось, что из найденных двойных рентгеновских источников по крайней мере один обладает массой, значительно большей критического значения. Этот источник, расположенный в созвездии Лебедя, получил название Лебедь Х-1.

Нормальная видимая звезда в этой двойной системе является массивной звездой с массой около 20 солнечных масс. «Умершая» звезда, из окрестностей которой идет рентгеновское излучение, имеет массу около 10 солнечных масс. Это намного больше критического значения. Многочисленные новые исследования делают этот результат все более надежным. Мы можем поэтому с большой степенью достоверности сказать, что в системе, в которую входит источник Лебедь Х-1, вероятно, открыта первая черная дыра вo Вселенной.

Рассмотрим несколько подробнее процессы, происходящие в этой системе. Компоненты двойной звезды обращаются вокруг центра масс с периодом 5,6 суток. Черная дыра массой около 10 солнечных масс притягивает к себе газ из атмосферы «нормальной» звезды-гиганта массой около 20 масс Солнца. Этот газ закручивается орбитальным движением, а центробежные и гравитационные силы сплющивают его в диск.

Струи газа из-за трения соседних слоев движутся вокруг черной дыры по сходящейся к центру спирали. Однако скорость движения к центру намного меньше, чем скорость движения по орбите. Только через месяц газ достигает внутреннего, ближайшего к черной дыре края диска. Здесь, как мы знаем, орбитальное движение становится неустойчивым, и газ сваливается в черную дыру.

За все время путешествия в диске газ нагревается трением: в наружных слоях диска его температура всего несколько десятков тысяч градусов, а во внутренних частях – больше 10 миллионов градусов. Общая рентгеновская светимость этого газа в тысячи раз превосходит полную (во всех областях спектра) светимость Солнца. Основная часть рентгеновского излучения, которая наблюдается на Земле, приходит из самых внутренних частей диска радиусом, не превышающим 200 километров. Размер самой черной дыры около 30 километров.

Еще одним важным доказательством того, что рентгеновское излучение в источнике Лебедь Х-1 рождается в очень малой области вблизи черной дыры, являются чрезвычайно быстрые хаотические колебания рентгеновского излучения, происходящие за тысячные доли секунды. Если бы излучающий объект был больше, он бы не мог столь быстро изменять свою яркость.

Таков этот удивительный источник рентгеновских лучей, находящийся от нас на расстоянии около 6 тысяч световых лет.

Со времени открытия источника Лебедь Х-1 прошло больше десяти лет. Он тщательно изучен. Почему же мы столь осторожно говорим о «вероятном» открытии черной дыры?

Предоставим слово американским специалистам Р. Блендфорду и К. Торну. «В обычной ситуации астрономы уверенно приняли бы этот результат, – говорят они, – но, поскольку в данном случае решается судьба первого открытия человеком черной дыры и поскольку твердые заключения иногда разрушаются своевременно не замеченными систематическими ошибками, астрономы проявляют осмотрительность. Пока не будет найдено дополнительное, независимое подтверждающее доказательство – доказательство скорее положительное, чем отрицательное, типа «чем же еще это может быть?» – они не хотят делать вывод, что Лебедь Х-1 – действительно черная дыра».

За прошедшие годы открыто еще два-три источника, подобных Лебедю Х-1 и являющихся кандидатами в черные дыры. Но пока лишь кандидатами...

Сколько всего черных дыр в нашей Галактике? И есть ли опасность встречи с одной из них и падения в эту бездну?

Точно ответить на первый вопрос трудно, так как неизвестно, какая часть массивных звезд в конце жизни полностью разрушается в термоядерном взрыве в ходе коллапса, а в какой части их все же остается достаточно массивное ядро, сжимающееся в черную дыру. Большинство астрономов считают, что черных дыр в Галактике должно быть многие миллионы, если не миллиарды.

Что же касается второго вопроса, то читатель, наверное, сам уже ответил на него – опасности случайного столкновения с умершей массивной звездой нет никакой. Ведь звезды столь далеко находятся друг от друга в пространстве, что вероятность их столкновения совершенно пренебрежима. Тем более ничтожна вероятность столкновения с черной дырой, которая гораздо меньше по размеру звезды. К тому же в черные дыры превратилась только очень малая часть всех звезд в Галактике.

Гигантские черные дыры

До сих пор мы говорили о возникновении во Вселенной черных дыр звездного происхождения. Астрономы имеют все основания предполагать, что, помимо звездных черных дыр, есть еще другие дыры, имеющие совсем иную историю.

Как читатель уже знает, в начале 60-х годов нашего века были открыты необыкновенные небесные тела – квазары. Эти объекты находятся далеко за пределами нашей Галактики. Они необычайно мощно излучают энергию, их светимость иногда в сотни раз превышает светимость больших галактик. Уже само по себе это крайне интересно. Но астрономы были буквально поражены, когда им удалось установить, что основная энергия в квазаре излучается из области размером меньше одного светового года!

Для сравнения напомним, что поперечник Галактики – сто тысяч световых лет.

Как же удалось установить размеры квазаров? Ведь все они так далеки, что в любой телескоп выглядят как звездочки и непосредственно определить их размеры невозможно.

Советские астрономы Ю. Ефремов и А. Шаров решили эту задачу косвенным путем. Они обнаружили, что квазар может резко менять свою яркость за время меньшее, чем один год. Одновременно к таким же выводам пришли американские наблюдатели. Значит, и размер квазара должен быть меньше одного светового года. В самом деле, если бы он был больше, то свет, вышедший из дальней от нас его части, пришел бы к нам более чем на год позже, чем от ближних частей. Поэтому даже при резком увеличении светимости квазара мы бы видели одновременно свет разной яркости от разных его частей: от переднего края мы видели бы яркий свет, а от дальнего слабее, так как он вышел более чем на год раньше, когда интенсивность квазара еще была слаба. Этот слабый свет смешивается в наших приборах с ярким от переднего края (а порознь их увидеть нельзя!), изменение яркости всего квазара смазывается, оно не резкое, поскольку растягивается во времени.

Значит, несмотря на то, что квазар удивительно маленький – всего лишь в тысячу раз больше, чем Солнечная система, – светит он как десять тысяч миллиардов Солнц! Такого не может быть – единодушно заключили астрономы (я помню эту фразу, сказанную с трибуны семинара одним известным московским астрономом, когда все ломали голову над загадкой квазаров). Но как «не может быть», когда этот «диковинный зверь» был прямо перед глазами астрономов.

Последовал целый каскад гипотез, большей частью экзотических. Известные астрофизики Джефри и Маргарет Бербидж писали тогда: «Существует так много противоречивых идей относительно теории и интерпретации наблюдений (квазаров), что по крайней мере 95 процентов из них неверны».

Сегодня единственным кандидатом, имеющим основание претендовать на роль «основного двигателя» в квазарах, осталась гигантская черная дыра с массой в сотни миллионов солнечных масс. Размер такой дыры – миллиард километров.

В течение прошедших десятилетий выяснилось, что квазары – это необычно активные излучающие ядра больших галактик. Часто в них наблюдаются мощные движения газов. Сами звезды галактики вокруг таких ядер обычно не видны из-за огромного расстояния и сравнительно слабого их свечения по сравнению со свечением квазара. Выяснилось также, что ядра многих галактик напоминают своего рода маленькие квазарчики и проявляют иногда бурную активность – выброс газа, изменение яркости и т. д., – хотя и не такую мощную, как настоящие квазары. Даже в ядрах совсем обычных галактик, включая нашу собственную, наблюдаются процессы, свидетельствующие о том, что и здесь «работает» маленькое подобие квазара.

То, что в центре галактики может возникнуть гигантская черная дыра, теперь кажется естественным. В самом деле, газ, находящийся в галактиках между звездами, постепенно под действием тяготения должен оседать к центру, формируя огромное газовое облако. Сжатие этого облака или его части должно привести к возникновению черной дыры. Кроме того, в центральных частях галактик находятся компактные звездные скопления, содержащие миллионы звезд. Звезды здесь могут разрушаться приливными силами при близких прохождениях около уже возникшей черной дыры, а газ этих разрушенных звезд, двигаясь около черной дыры, затем падает в нее.

Падение газа в сверхмассивную черную дыру должно сопровождаться явлениями, подобными тем, о которых мы говорили в случае звездных черных дыр. Только процессы эти несравненно более мощные. Кроме того, здесь должно происходить ускорение заряженных частиц в переменных магнитных полях, которые приносятся к черной дыре вместе с падающим газом.

Все это вместе и приводит к явлению квазара и к активности галактических ядер.

Итак, крайне вероятно, что существуют сверхмассивные черные дыры. Французский писатель Ж. Ренар как-то сказал: «Ученый – это человек, который в чем-то почти уверен». Но я в силу специфики своей науки астрономии воздержался бы от таких заключений и подвел бы итог сказанному следующей фразой: только дальнейшие наблюдения внесут ясность в этот вопрос.

Глава V.
Черные дыры и кванты
 
Пустая ли пустота?

Бум, связанный с черными дырами, начался в астрономии в конце 50-х – начале 60-х годов. Проходили годы, многое прояснялось в этой загадке. Стала ясна неизбежность рождения черных дыр после смерти массивных звезд; открыли квазары, в центре которых, вероятно, находятся сверхмассивные черные дыры. Наконец, в рентгеновском источнике в созвездии Лебедя обнаружили первую черную дыру звездного происхождения. Физики-теоретики разобрались с диковинными свойствами самих черных дыр, постепенно привыкли к этим гравитационным пропастям, могущим только заглатывать вещество, увеличиваясь в размере, и, казалось бы, обреченным на вечное существование.

Ничто не предвещало нового грандиозного открытия. Но такое открытие, изумившее видавших виды знатоков, грянуло как гром среди ясного неба.

Оказалось, что черные дыры вовсе не вечны! Они могут исчезнуть в результате квантовых процессов, идущих в сильных гравитационных полях. Нам придется начать рассказ несколько издалека, чтобы сделать более понятным суть этого открытия.

Начнем с пустоты. Для физика пустота вовсе не является пустой. Это не каламбур. Уже давно установлено, что «абсолютной» пустоты, то есть «ничего, ничего», в принципе быть не может. Что же физики называют пустотой? Пустотой называют то, что остается, когда убирают все частицы, все кванты любых физических полей. Но тогда ничего не останется, скажет читатель (если он давно не интересовался физикой). Нет, оказывается, останется! Останется, как говорят физики, море нерожденных, так называемых виртуальных, частиц и античастиц. «Убрать» виртуальные частицы уже никак нельзя. В отсутствии внешних полей, то есть без сообщения энергии, они не могут превратиться в реальные частицы.

Лишь на короткий миг в каждой точке пустого пространства появляется пара – частица и античастица и тут же снова сливаются, исчезают, возвращаясь в свое «эмбриональное» состояние. Разумеется, наш упрощенный язык дает только некоторый образ тех квантовых процессов, которые происходят. Наличие моря виртуальных частиц-античастиц давно установлено прямыми физическими экспериментами. Не будем говорить здесь об этом, иначе мы бы неизбежно слишком отклонились от основной линии рассказа.

Чтобы избежать невольных каламбуров, физики называют пустоту вакуумом. Будем так делать и мы.

Достаточно сильное или переменное поле (например, электромагнитное) может вызвать превращение виртуальных частиц вакуума в реальные частицы и античастицы.

Интерес к подобным процессам теоретики и экспериментаторы проявляли давно. Рассмотрим процесс рождения реальных частиц переменным полем. Именно такой процесс важен в случае гравитационного поля. Известно, что квантовые процессы необычны, часто непривычны для рассуждений с точки зрения «здравого смысла». Поэтому, прежде чем говорить о рождении частиц переменным гравитационным полем, приведем простой пример из механики. Он сделает понятнее дальнейшее.

Представьте себе маятник. Его подвес перекинут через блок, подтягивая веревку или опуская ее, можно менять длину подвеса. Толкнем маятник. Он начнет колебаться. Период колебаний зависит только от длины подвеса: чем длиннее подвес, тем больше период колебаний. Теперь будем очень медленно подтягивать веревку. Длина маятника уменьшится, уменьшится и период, но увеличится размах (амплитуда) колебаний. Медленно вернем веревку в прежнее положение. Период вернется к прежнему значению, прежней станет и амплитуда колебаний. Если пренебречь затуханием колебаний вследствие трения, то энергия, заключенная в колебаниях, в конечном состоянии останется прежней – такой, как била до всего цикла изменения длины маятника. Но можно так изменять длину маятника, что после возвращения к исходной длине амплитуда его колебаний будет меняться. Для этого надо подергивать веревку с частотой вдвое больше частоты маятника. Так мы поступаем, раскачиваясь на качелях. Мы опускаем и поджимаем ноги в такт нашим качаниям, и размах качелей все увеличивается. Конечно, можно и остановить качели, если подгибать ноги не в такт колебаниям, а в «противотакт».

Подобным же образом можно «раскачивать» электромагнитные волны в резонаторе. Так называется полость с зеркальными стенками, отражающими электромагнитные волны. Если в такой полости с зеркальными стенками и с зеркальным поршнем имеется электромагнитная волна, то, двигая поршень вперед и назад с частотой, вдвое больше частоты электромагнитной волны, мы будем менять амплитуду волны. Двигая поршень в «такт» колебаниям волны, можно увеличить амплитуду, а значит, и интенсивность электромагнитной волны, а двигая поршень в «противотакт», можно гасить волну. Но если двигать поршень хаотически – и в такт и в «противотакт», – то в среднем всегда получится усиление волны, то есть в электромагнитные колебания энергия «накачивается».

Пусть теперь в нашей полости – резонаторе имеются волны всевозможных частот. Как бы мы ни двигали поршень, всегда найдется волна, для которой движение поршня происходит в такт. Амплитуда и интенсивность этой волны возрастут. Но чем больше интенсивность волны, тем больше она содержит фотонов-квантов электромагнитного поля. Итак, движение поршня, изменяя размер резонатора, ведет к рождению новых фотонов.

После знакомства с этими простыми примерами вернемся к вакууму, к этому морю всевозможных виртуальных частиц. Для простоты мы будем говорить пока только об одном сорте частиц – о виртуальных фотонах – частицах электромагнитного поля. Оказывается, процесс, подобный рассмотренному нами изменению размеров резонатора, который в классической физике ведет к усилению уже имеющихся колебаний (волн), в квантовой физике может приводить к «усилению» виртуальных колебаний, то есть к превращению виртуальных частиц в реальные. Так, изменение гравитационного поля со временем должно вызывать рождение фотонов с частотой, соответствующей времени изменения поля. Обычно эти эффекты ничтожны, так как слабы гравитационные поля. Однако в сильных полях ситуация меняется.

Еще один пример: очень сильное электрическое поле вызывает рождение из вакуума пар заряженных частиц – электронов и позитронов.

Вернемся из нашего краткого экскурса в физику пустоты к черным дырам. Могут ли рождаться частицы из вакуума в окрестностях черных дыр?

Да, могут. Это было известно давно, и в этом не было ничего сенсационного. Так, «при сжатии электрически заряженного тела и превращении его в заряженную черную дыру электрическое поле возрастает настолько, что рождает электроны и позитроны. Подобные процессы изучали академик М. Марков и его ученики. Но такое рождение частиц возможно и без черной дыры, надо лишь любым способом увеличить электрическое поле до достаточной величины. Ничего специфического для черной дыры здесь нет.

Академик Я. Зельдович показал, что рождаются частицы и в эргосфере вращающейся черной дыры, отнимая от нее энергию вращения. Такое явление подобно процессу, открытому Р. Пенроузом, о котором мы говорили в главе 3.

Все эти процессы вызываются полями вокруг черной дыры и приводят к изменению этих полей, но они не уменьшают саму черную дыру, не уменьшают размеры области, откуда не выходит свет и любое другое излучение и частицы.


    Ваша оценка произведения:

Популярные книги за неделю