Текст книги "Java: руководство для начинающих (ЛП)"
Автор книги: Герберт Шилдт
Жанр:
Программирование
сообщить о нарушении
Текущая страница: 4 (всего у книги 36 страниц)
Глава 2 Введение в типы данных и операторы
Основные навыки и понятия
Представление о простых типах данных в Java
Применение литералов
Инициализация переменных
Правила соблюдения области действия переменных в методе
Применение арифметических операторов
Применение операторов сравнения и логических операторов
Представление об операторах присваивания
Представление об укороченных операторах присваивания
Преобразование типов при присваивании
Представление о неприводимых типах данных
Преобразование типов в выражениях
Основу любого языка программирования составляют типы данных и операторы, и Java не является исключением из этого правила. Типы данных и операторы определяют область применимости языка и круг задач, которые можно успешно решать с его помощью. В Java поддерживаются самые разные типы данных и операторы, что делает этот язык универсальным и пригодным для написания любых программ.
Значение типов данных и операций нельзя недооценивать. Эта глава начинается с анализа основных типов данных и наиболее часто используемых операторов. А кроме того, в ней будут подробно рассмотрены переменные и выражения. Особое значение типов данных
В связи с тем, что Java относится к категории строго типизированных языков программирования, типы данных имеют в нем очень большое значение. В процессе компиляции проверяются типы операндов во всех операциях. И если в программе встречаются недопустимые операции, ее исходный код не преобразуется в байт-код. Контроль типов позволяет сократить количество ошибок и повысить надежность программы. В отличие от других языков программирования, где допускается не указывать типы данных, хранящихся в переменных, в Java все переменные, выражения и значения строго контролируются на соответствие типов данных. Более того, тип переменной определяет, какие именно операции могут быть выполнены над ней. Операции, разрешенные для одного типа данных, могут оказаться недопустимы для другого. Простые типы данных в Java
Встроенные типы данных в Java разделяются на две категории: объектно-ориентированные и необъектно-ориентированные. Объектно-ориентированные типы данных определяются в классах, о которых речь пойдет далее в книге. В основу языка Java положено восемь простых типов данных, приведенных в табл. 2.1 (их также называют элементарными, или примитивными). Термин простые указывает на то, что эти типы данных являются не объектами, а обычными двоичными значениями. Такие типы данных предусмотрены в языке для того, чтобы увеличить эффективность работы программ. Все остальные типы данных Java образуются на основе простых типов.
В Java четко определены области действия простых типов и диапазон допустимых для них значений. Эти правила должны соблюдаться при создании всех виртуальных машин. А поскольку программы на Java должны быть переносимыми, точное следование этим правилам является одним из основных требований языка. Например, тип int остается неизменным в любой исполняющей среде, благодаря чему удается обеспечить реальную переносимость программ. Это означает, что при переходе с одной платформы на другую не приходится переписывать код. И хотя строгий контроль типов может привести к незначительному снижению производительности в некоторых исполняющих средах, он является обязательным условием переносимости программ.
Таблица 2.1. Простые типы, встроенные в Java Тип Описание boolean Представляет логические значения true и false byte 8-разрядное целое число char Символ double Числовое значение с плавающей точкой двойной точности float Числовое значение с плавающей точкой одинарной точности int Целое число long Длинное целое число short Короткое число Целочисленные типы данных
В Java определены четыре целочисленных типа данных: byte, short, int и long. Их краткое описание приведено ниже. Тип Разрядность, бит Диапазон допустимых значений byte 8 от-128 до 127 short 16 от -32,768 до 32,767 int 32 от -2,147,483,648 до 2,147,483,647 long 64 от -9,223,372,036,854,775,808 до 9,223,372,036,854,775,807
Как следует из приведенной выше таблицы, целочисленные типы данных предполагают как положительные, так и отрицательные значения. В Java не поддерживаются целочисленные значения без знака, т.е. только положительные целые числа. Во многих других языках программирования широко применяются целочисленные типы данных без знака, но создатели Java посчитали их излишними.
На заметку В исполняющей системе Java для хранения простых типов может формально выделяться любой объем памяти, но диапазон допустимых значений остается неизменным.
Из всех целочисленных типов данных чаще всего применяется int. Переменные типа int нередко используются в качестве переменных циклов, индексов массивов и, конечно же, для выполнения универсальных операций над целыми числами.
Если диапазон значений, допустимых для типа int, не устраивает, можно выбрать тип long. Ниже приведен пример программы для расчета числа кубических дюймов в кубе, длина, ширина и высота которого равны одной миле. /* Расчет числа кубических дюймов в кубе объемом в 1 милю. */ class Inches { public static void main(String args[]) { long ci; long im; im = 5280 * 12; ci = im * im * im; System.out.println("There are " + ci + " cubic inches in cubic mile."); } }
Результат выполнения данной программы выглядит следующим образом: There are 254358061056000 cubic inches in cubic mile.
Очевидно, что результирующее значение не умещается в переменной типа int.
Наименьшим диапазоном допустимых значений среди всех целочисленных типов обладает тип byte. Переменные типа byte очень удобны для обработки исходных двоичных данных, которые могут оказаться несовместимыми с другими встроенными в Java типами данных. Тип short предназначен для хранения небольших целых чисел. Переменные данного типа пригодны для хранения значений, изменяющихся в относительно небольших пределах по сравнению со значениями типа int. Типы данных с плавающей точкой
Как пояснялось в главе 1, типы с плавающей точкой могут представлять числовые значения с дробной частью. Существуют два типа данных с плавающей точкой: float и double. Они представляют числовые значения с одинарной и двойной точностью соответственно. Разрядность данных типа float составляет 32 бита, а разрядность данных типа double – 64 бита.
Тип double употребляется намного чаще, чем float, поскольку во всех математических функциях из библиотек классов Java используются значения типа double. Например, метод sqrt (), определенный в стандартном классе Math, возвращает значение double, являющееся квадратным корнем значения аргумента этого метода, также представленного типом double. Ниже приведен фрагмент кода, в котором метод sqrt () используется для расчета длины гипотенузы треугольника, при условии, что заданы длины катетов. /* Определение длины гипотенузы, исходя из длины катетов по теореме Пифагора. */ class Hypot { public static void main(String args[]) { double x, y, z; x = 3; У = 4; // Обратите внимание на вызов метода sqrt(). Перед именем метода // указывается имя класса, членом которого он является. z = Math.sqrt(х*х + у*у); System.out.println("Hypotenuse is " + z) ; } }
Выполнение этого фрагмента кода дает следующий результат: Hypotenuse is 5.0
Как упоминалось выше, метод sqrt () определен в стандартном классе Math. Обратите внимание на вызов этого метода в приведенном выше фрагменте кода: перед его именем указывается имя класса. Аналогичным образом перед именем метода println () указывается имена классов System.out. Имя класса указывается не перед всеми стандартными методами, но для некоторых из них целесообразно применять именно такой способ. Символы
В отличие от других языков в Java символы не являются 8-битовыми значениями. Вместо этого в Java символы всех языков мира представлены в уникоде (Unicode). Таким образом, в Java тип char представляет 16-разрядное значение без знака в диапазоне от О до 65536. Стандартный набор 8-разрядных символов в коде ASCII является подмножеством уникода. В нем коды символов находятся в пределах от 0 до 127. Следовательно, символы в коде ASCII по-прежнему допустимы в Java.
Переменной символьного типа может быть присвоено значение, которое записывается в виде символа, заключенного в одинарные кавычки. В приведенном ниже фрагменте кода показано, каким образом переменной ch присваивается буква S. char ch; ch = 'S’;
Отобразить значение типа char можно с помощью метода println (). В приведенной ниже строке кода показано, каким образом этот метод вызывается для вывода на экран значения символа, хранящегося в переменной ch. System.out.println("This is ch:" + ch) ;
Тип char представляет 16-разрядное значение без знака, а это означает, что над пе ременной символьного типа можно производить различные арифметические операции. Рассмотрим в качестве примера следующую программу: //С символьными переменными можно обращаться, как с целочисленными, class CharArithDemo { public static void main(String args[]) { char ch; ch = ' X' ; System.out.println("ch contains " + ch) ; ch++; // переменную типа char можно инкрементировать System.out.println("ch is now " + ch) ; ch = 90; // переменной типа char можно присвоить целочисленное значение System.out.println("ch is now " + ch) ; } }
Ниже приведен результат выполнения данной программы. ch contains X ch is now Y ch is now Z
В приведенной выше программе переменной ch сначала присваивается значение кода буквы X. Затем содержимое ch увеличивается на единицу, в результате чего оно превращается в код буквы Y – следующего по порядку символа в коде ASCII (а также в уникоде). После этого переменной ch присваивается значение 90, представляющее букву Z в коде ASCII (и в уникоде). А поскольку символам в коде ASCII соответствуют первые 127 значений в уникоде, то все приемы, обычно применяемые для манипулирования символами в других языках программирования, вполне работоспособны и в Java. Логический тип данных
Тип boolean представляет логические значения “истина” и “ложь”, для которых в Java зарезервированы слова true и false соответственно. Следовательно, переменная или выражение типа boolean может принимать одно из этих двух значений.
Ниже приведен пример программы, демонстрирующий применение типа boolean в коде. // Демонстрация обращения с логическими значениями, class BoolDemo { public static void main(String args[]) { boolean b; b = false; System.out.println("b is " + b); b = true; System.out.println("b is " + b); // Логическое значение можно использовать для // управления условным оператором if. if(b) System.out.println("This is executed."); b = false; if(b) System.out.println("This is not executed."); // Логическое значение получается в результате // выполнения оператора отношения. System.out.println("10 > 9 is " + (10 > 9)); } }
Результат выполнения данной программы выглядит следующим образом: b is false b is true This is executed. 10 > 9 is true
Анализируя приведенную выше программу, необходимо отметить следующее. Во-первых, нетрудно заметить, что метод println (), обрабатывая логическое значение, отображает символьные строки "true" и "false". Во-вторых, значение логической переменной может быть само использовано для управления условным оператором if. Это означает, что отпадает необходимость в выражениях вроде следующего: if(b == true) . . .
И в-третьих, результатом выполнения оператора отношения, например <, является логическое значение. Именно поэтому при передаче методу println () выражения (10 >9) отображается логическое значение true. Скобки в данном случае необходимы, потому что оператор + имеет более высокий приоритет, чем оператор >.
Пример для опробования 2.1. Расчет расстояния до удара молнии
В данном проекте предстоит написать программу, вычисляющую расстояние в футах до источника звука при ударе молнии. Звук распространяется в воздухе со скоростью, приблизительно равной 1100 футам в секунду. Следовательно, зная промежуток времени между теми моментами, когда наблюдатель увидит вспышку молнии и услышит сопровождающий ее раскат грома, можно рассчитать расстояние до нее. Допустим, что этот промежуток времени составляет 7,2 секунды.
Последовательность действий
Создайте новый файл Sound. j ava.
Для расчета искомого расстояния потребуются числовые значения с плавающей точкой. Почему? А потому, что упомянутое выше числовое значение промежутка времени содержит дробную часть. И хотя для расчета достаточно точности, обеспечиваемой типом float, в данном примере будет использован тип double.
Для расчета искомого расстояния умножьте значение 7,2 на 1100, а полученный результат сохраните в переменной типа double.
Выведите результат расчета на экран. Ниже приведен исходный код программы из файла Sound. j ava. /* Пример для опробования 2.1. Рассчитать расстояние до удара моЛнии, звук от которого доходит до наблюдателя через 7,2 с. */ class Sound { public static void main(String args[]) { double dist; dist = 7.2 * 1100; System.out.println("The lightning is " + dist + " feet away."); } }
Скомпилируйте программу и запустите ее на выполнение, чтобы вывести на экран следующий результат:The lightning is 7920.0 feet away.
Усложним задачу. Рассчитать расстояние до крупного объекта, например скалы, можно по времени прихода эхо. Так, если вы хлопнете в ладоши, время, через которое вернется эхо, будет равно времени прохождения звука в прямом и обратном направлении. Разделив этот промежуток времени на два, вы получите время прохождения звука от вас до объекта. Это время можно затем использовать для расчета расстояния до объекта. Видоизмените рассмотренную выше программу, использовав в качестве заданного промежутка время прихода эха. Литералы
В Java литералы применяются для представления постоянных значений в форме, удобной для восприятия. Например, число 100 является литералом. Литералы часто называют константами. Как правило, структура литералов и их использование интуитивно понятны. Они уже встречались в рассмотренных ранее примерах программ, а теперь пришло время дать им формальное определение. В Java предусмотрены литералы для всех простых типов. Способ представления литерала зависит от типа данных. Как пояснялось ранее, константы, соответствующие символам, заключаются в одинарные кавычки. Например, и 1 а1, и 1 %1 являются символьными константами.
Целочисленные константы записываются как числа без дробной части. Например, целочисленными константами являются 10 и -100. При формировании константы с плавающей точкой необходимо указывать десятичную точку, после которой следует дробная часть. Например, 11,123 – это константа с плавающей точкой. В Java поддерживается и так называемый экспоненциальный формат представления чисел с плавающей точкой.
По умолчанию целочисленные литералы относятся к типу int. Если же требуется определить литерал типа long, после числа следует указать букву 1 или L. Например, 12 – это константа типа int, a 12L – литерал типа long. По умолчанию к типу double относятся и литералы с плавающей точкой. А для того чтобы задать литерал типа float, следует указать после числа букву F или f. Так, например, к типу float относится литерал 10,19F.
Несмотря на то что целочисленные литералы по умолчанию создаются как зна¬ чения типа int, их можно присваивать переменным типа char, byte, short и long. Присваиваемое значение приводится к целевому типу. Переменной типа long можно также присвоить любое значение, представленное целочисленным литералом.
Начиная с версии JDK 7 появилась возможность вставлять в литералы (как целочисленные, так и с плавающей точкой) знаки подчеркивания. Благодаря этому упрощается восприятие числовых значений, состоящих из нескольких цифр. А при компиляции знаки подчеркивания просто удаляются из литерала. Ниже приведен пример литерала со знаком подчеркивания. 123_45_1234
Этот литерал задает числовое значение 123451234. Пользоваться знаками подчеркивания особенно удобно при кодировании номеров деталей, идентификаторов заказчиков и кодов состояния, которые обычно состоят из целых групп цифр. Шестнадцатеричные, восьмеричные и двоичные литералы
Вам, вероятно, известно, что при написании программ бывает удобно пользоваться числами, представленными в системе счисления, отличающейся от десятичной. Для этой цели чаще всего выбирается восьмеричная (с основанием 8) и шестнадцатеричная (с основанием 16) системы счисления. В восьмеричной системе используются цифры от 0 до 7, а число 10 соответствует числу 8 в десятичной системе. В шестнадцатеричной системе используются цифры от 0 до 9, а также буквы от А до F, которыми обозначаются числа 10, 11, 12, 13, 14 и 15 в десятичной системе, тогда как число 10 в шестнадцатеричной системе соответствует десятичному числу 16. Восьмеричная и шестнадцатеричная системы используются очень часто в программировании, и поэтому в языке Java предусмотрена возможность представления целочисленных констант (или литералов) в восьмеричной и шестнадцатеричной форме. Шестнадцатеричная константа должна начинаться с символов Ох (цифры 0, после которой следует буква х). А восьмеричная константа начинается с нуля. Ниже приведены примеры таких констант. hex = OxFF; // Соответствует десятичному числу 255 oct = 011; // Соответствует десятичному числу 9
Любопытно, что в Java допускается также задавать шестнадцатеричные литералы в формате с плавающей точкой, хотя они употребляются очень редко. Начиная с версии JDK 7 появилась также возможность задавать целочисленный литерал в двоичной форме. Для этого перед целым числом достаточно указать символы ОЬ или ОВ. Например, следующий литерал определяет целое значение 12 в двоичной форме: 0b1100. Символьные управляющие последовательности
Заключая большинство печатных символов в одинарные кавычки, можно обращаться с ними как с символьными константами, но для непечатных символов, например возврата каретки, требуется специальное символьное представление. Кроме того, некоторые знаки, например одинарные и двойные кавычки, имеют специальное назначение, и поэтому их нельзя непосредственно указывать в качестве литерала. По этой причине в языке Java предусмотрены специальные управляющие последовательности, начинающиеся с обратной косой черты (и нередко называемые константами с обратной косой чертой). Эти последовательности перечислены в табл. 2.2. Они используются в литералах вместо непечатных символов, которые они представляют.
Таблица 2.2. Символьные управляющие последовательности Управляющая последовательность Описание ' Одинарная кавычка " Двойная кавычка Обратная косая черта r Возврат каретки n Перевод строки f Перевод страницы t Горизонтальная табуляция b Возврат на одну позицию ddd Восьмеричная константа (где ddd —восьмеричное число) uxxxx Шестнадцатеричная константа (где хххх —шестнадцатеричное число)
Ниже приведен пример присваивания переменной ch символа табуляции. ch = 't';
А в следующем примере переменной ch присваивается одинарная кавычка: ch = '''; Строковые литералы
В Java предусмотрены также литералы для представления символьных строк. Символьная строка – это набор символов, заключенных в двойные кавычки, как в приведенном ниже примере. "this is a test"
Примеры строковых литералов не раз встречались в рассмотренных ранее примерах программ. В частности, они передавались в качестве аргументов методу println ().
Помимо обычных символов, строковый литерал может также содержать упоминавшиеся выше управляющие последовательности. Рассмотрим в качестве примера следующую программу, в которой применяются управляющие последовательности п и t: // Демонстрация управляющих последовательностей в символьных строках, class StrDemo { public static void main(String args[]) { // В следующей строке кода в символьную строку введена // управляющая последовательность п для перевода строки. System.out.println("First linenSecond line"); // В двух последующих строках кода в символьную строку введена // управляющая последовательность t для выравнивания выводимых // результатов с помощью табуляции. System.out.println("AtBtC") ; System.out.println("DtEtF") ; } }
Ниже приведен результат выполнения данной программы. First line Second line A B C D E F
Обратите внимание на использование управляющей последовательности п для перевода строки в приведенном выше примере программы. Для вывода на экран нескольких символьных строк, совсем не необязательно вызывать метод println () несколько раз подряд. Достаточно ввести в строку символы п, и при выводе в этом месте произойдет переход на новую строку. Подробнее о переменных
О переменных уже шла речь в главе 1. А здесь они будут рассмотрены более подробно. Как вы уже знаете, переменная объявляется в такой форме: тип имя_переменной;
где тип обозначает конкретный тип объявляемой переменной, а имя_переменной – ее наименование. Объявить можно переменную любого допустимого типа, включая рассмотренные ранее простые типы. Когда объявляется переменная, создается экземпляр соответствующего типа. Следовательно, возможности переменной определяются ее типом. Например, переменную типа boolean нельзя использовать для хранения значения с плавающей точкой. На протяжении всего срока действия переменной ее тип остается неизменным. Так, переменная int не может превратиться в переменную char.
В Java каждая переменная должна быть непременно объявлена перед ее употреблением. Ведь компилятору необходимо знать, данные какого именно типа содержит переменная, и лишь тогда он сможет правильно скомпилировать оператор, в котором используется переменная. Объявление переменных позволяет также осуществлять строгий контроль типов в Java. Инициализация переменных
Прежде чем использовать переменную в выражении, ей нужно присвоить значение. Сделать это можно, в частности, с помощью уже знакомого вам оператора присваивания. Существует и другой способ: инициализировать переменную при ее объявлении. Для этого достаточно указать после имени переменной знак равенства и требуемое значение. Ниже приведена общая форма инициализации переменной. тип переменная = значение;
где значение обозначает конкретное значение, которое получает переменная при ее создании. А тип значения должен быть совместим с типом переменной. Ниже приведен ряд примеров инициализации переменных. int count = 10; // присвоить переменной count начальное значение 10 char ch = 'S'; // инициализировать переменную ch буквой S float f = 1.2F; // инициализировать переменную f числовым значением 1,2
Присваивать начальные значения переменным можно и в том случае, если в одном операторе объявляется несколько переменных, как в приведенном ниже примере. int а, Ь=8, с =19, d; // инициализируются переменные b и с
В данном случае инициализируются переменные b и с. Динамическая инициализация
В приведенных выше примерах в качестве значений, присваиваемых переменным, использовались только константы. Но в Java поддерживается также динамическая инициализация, при которой можно использовать любые выражения, допустимые в момент объявления переменной. Ниже приведен пример простой программы, в которой объем цилиндра рассчитывается, исходя из его радиуса и высоты. // Демонстрация динамической инициализации, class Dynlnit { public static void main(String args[]) { double radius = 4, height = 5; // Переменная volume инициализируется динамически //во время выполнения программы. double volume = 3.1416 * radius * radius * height; System.out.println("Volume is " + volume); } }
В данном примере используются три локальные переменные: radius, height и volume. Первые две из них инициализируются константами, а для присвоения значения переменной volume применяется динамическая инициализация, в ходе которой вычисляется объем цилиндра. В выражении динамической инициализации можно использовать любой определенный к этому моменту элемент, в том числе вызовы методов, другие переменные и литералы. Область и срок действия переменных
Все использовавшиеся до сих пор переменные объявлялись в начале метода main (). Но в Java можно объявлять переменные в любом кодовом блоке. Как пояснялось в главе 1, кодовый блок начинается с открывающей фигурной скобки и оканчивается закрывающей фигурной скобкой. Блок определяет область действия переменных. Начиная новый блок, вы всякий раз создаете новую область действия. По существу, область действия определяет доступность объектов из других частей программы и срок их действия.
Во многих языках программирования поддерживаются две общие категории областей действия: глобальная и локальная. И хотя они поддерживаются и в Java, тем не менее не относятся к самым лучшим средствам для определения пределов действия объектов. Намного большее значение в Java имеют области, определяемые классом и методом. Об областях действия, определяемых классом (и объявляемых в них переменных), речь пойдет далее в этой книге, когда дойдет черед до рассмотрения классов. А до тех пор исследуем только те области действия, которые определяются методами или в самих методах.
Начало области действия, определяемой методом, обозначает открывающая фигурная скобка. Если для метода предусмотрены параметры, они также входят в область его действия.
Как правило, переменные, объявленные в некоторой области действия, не видны (а следовательно, недоступны) за ее пределами. Следовательно, объявляя переменную в некоторой области действия, вы тем самым ограничиваете пределы ее действия и защищаете ее от нежелательного доступа и видоизменения. На самом деле правила определения области действия служат основанием для инкапсуляции.
Области действия могут быть вложенными. Открывая новый кодовый блок, вы создаете новую, вложенную область действия. Такая область заключена во внешней области. Это означает, что объекты, объявленные во внешней области действия, будут доступны для кода во внутренней области, но не наоборот. Объекты, объявленные во внутренней области действия, недоступны во внешней области.
Для того чтобы лучше понять принцип действия вложенных областей действия, рассмотрим следующий пример программы: // Демонстрация области действия кодового блока, class ScopeDemo { public static void main(String args[ ] ) { int x; // эта переменная доступна для всего кода в методе main. х = 10; if(х == 10) { // Начало новой области действия. int у = 20; // Эта переменная доступна только в данном кодовом блоке. // Обе переменные, х и у, доступны в данном кодовом блоке. System, out .println ("х and у: " + х + " 11 + у) ; х = у * 2; } // у = 100; // Ошибка! Переменная у недоступна эа пределами // области своего действия // А переменная х по-прежнему доступна. System.out.println("х is " + х); } }
Как следует из комментариев к приведенной выше программе, переменная х определяется в начале области действия метода main () и доступна для всего кода, содержащегося в этом методе. В блоке условного оператора if объявляется переменная у. Этот блок определяет область действия переменной у, и, следовательно, она доступна только в нем. Именно поэтому закомментирована строка кода у = 100;, находящаяся за пределами данного блока. Если удалить символы комментариев, то при компиляции программы появится сообщение об ошибке, поскольку переменная у недоступна для кода за пределами ее блока. В то же время в блоке условного оператора i f можно пользоваться переменной х, потому что код в блоке, который определяет вложенную область действия, имеет доступ к переменным из внешней, охватывающей его области действия.
Переменные можно объявлять в любом месте кодового блока, но сделать это следует непременно перед тем, как пользоваться ими. Именно поэтому переменная, определенная в начале метода, доступна для всего кода этого метода. А если объявить переменную в конце блока, то такое объявление окажется, по существу, бесполезным, поскольку переменная станет вообще недоступной для кода.
Следует также иметь в виду, что переменные, созданные в области их действия, удаляются, как только управление в программе передается за пределы этой области. Следовательно, после выхода из области действия переменной содержащееся в ней значение теряется. В частности, переменные, объявленные в теле метода, не хранят значения в промежутках между последовательными вызовами этого метода. Таким образом, срок действия переменной ограничивается областью ее действия.
Если при объявлении переменной осуществляется ее инициализация, то переменная будет повторно инициализироваться при каждом входе в тот блок, в котором она объявлена. Рассмотрим в качестве примера следующую программу: // Демонстрация срока действия переменной, class VarlnitDemo { public static void main(String args[]) { int x; for(x = 0; x < 3; x++) { int у = -1; // переменная у инициализируется при каждом входе в блок System.out.println("у is: 11 + у); // всегда выводится значение -1 у = 100; System.out.println("у is now: " + у); } } }
Ниже приведен результат выполнения данной программы. У is: -1 у is now: 100 у is: -1 у is now: 100 у is: : -1 у is now: 100
Как видите, на каждом шаге цикла for переменная у инициализируется значением -1. Затем ей присваивается значение 100, но по завершении кодового блока данного цикла оно теряется.
Для правил области действия в Java характерна следующая особенность: имя переменной во вложенном блоке не может совпадать с именем переменной во внешнем блоке. Рассмотрим следующий пример программы. В ней предпринимается попытка объявить две переменные с одним и тем же именем в разных областях действия, и поэтому она не подлежит компиляции. /* В этой программе предпринимается попытка объявить переменную во внутренней области действия с таким же именем, как и у переменной, определенной во внешней области действия. *** Эта программа не подлежит компиляции. *** */ class NestVar { public static void main(String args[]) { int count; // Первое объявление переменной count for (count = 0; count < 10; count = count+1) { System.out.println("This is count: " + count); int count; // Второе объявление переменной count. // Недопустимо, поскольку точно такая же // переменная объявлена раньше!!! for(count = 0; count < 2; count++) System.out.println("This program is in error!"); } } }
Если у вас имеется некоторый опыт программирования на С или C++, то вам, вероятно, известно, что в этих языках отсутствуют какие-либо ограничения на имена переменных, объявляемых во внутренней области действия. Так, в С и C++ объявление переменной count в блоке внешнего цикла for из приведенного выше примера программы вполне допустимо, несмотря на то, что такая же переменная уже объявлена во внешнем блоке. В этом случае переменная во внутреннем блоке скрывает переменную из внешнего блока. Создатели Java решили, что подобное сокрытие имен переменных может привести к программным ошибкам, и поэтому запретили его. Операторы