355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Георгий Гуревич » Полет на Луну » Текст книги (страница 8)
Полет на Луну
  • Текст добавлен: 17 сентября 2016, 22:57

Текст книги "Полет на Луну"


Автор книги: Георгий Гуревич


Соавторы: Борис Ляпунов,Вадим Левин,Карл Гильзин,Ю. Хлебцевич,Н. Варваров,Юрий Степанов,Марк Поповский,И. Фридман,Юрий Долгушин,Л. Орлов
сообщить о нарушении

Текущая страница: 8 (всего у книги 9 страниц)

Луна в XXI веке

Начальник комплексной экспедиции доктор географических наук Н. К. Ельников.

Только вчера первый космический корабль покинул Землю, а сегодня в мастерских межпланетного вокзала начинается новая работа: с заводов-поставщиков прибывают части следующей ракеты – «Луна-2». Мы приступаем к сборке.

Первый полет – это только разведка. Сейчас готовится большая комплексная экспедиция. Полетит 11 человек на 3 ракетах. На Луну отправляются астрономы, физик, врач, два инженера и наша группа обследования Луны – 5 человек – геологи и картографы-геодезисты.

У астрономов своя программа, рассчитанная на десятки лет. В лунной обсерватории они будут заново изучать все небо. И мы начнем работу, также рассчитанную на десятки лет, – описание поверхности и горных пород Луны.

Работа не малая. Площадь лунной поверхности – 38 миллионов квадратных километров. Видимая сторона Луны, обращенная к Земле, нанесена на карту уже давно. Эти карты нужно будет только проверить, главным образом уточнить высоту гор и уровень «морей». На Земле мы отмеряем высоту от уровня океана, на Луне океанов нет, нужно найти еще исходный уровень. Зато на обратной стороне Луны – непочатый край работы. Сорок процентов территории – площадь, равную Сибири и Средней Азии, вместе взятым, – нужно еще нанести на карту.

Еще интереснее будет работа геологов.

В наше распоряжение поступает огромный материк. Вероятно, здесь будут открыты не только новые месторождения, но и новые полезные ископаемые. На Луне все ново, даже методы геологической разведки придется продумывать заново.

С чего мы начинаем разведку на Земле? Вот мы приходим в незнакомую местность. Прежде всего ищем обнажение – крутой берег реки, овраг. Затем стараемся найти окаменелости – раковины, кости вымерших животных. Определяем вид. Допустим, перед нами брахиопод. Мы уже знаем – брахиоподы жили в каменноугольном периоде. Стало быть, здесь имеет смысл искать уголь.

На Луне не было жизни, не было раковин, не было воды и ветра, не было осадочных пород. Здесь наши привычные приемы не годятся. Нужно будет искать новые методы исследования.

Вероятнее всего, мы будем определять возраст пород по радиоактивным веществам. Чуть ли не самая первая задача: узнать, что древнее – лунные материки или моря, когда возникли кратеры, когда – лучи, когда образовалась Луна вообще: одновременно с Землей или позже? Это важно для вопроса о происхождении Земли.

Сейчас Луна мертвый, застывший мир, но ведь не родилась же она сразу с кратерами. Были когда-то извержения, лунотрясения, сдвиги, разломы. Когда, как это происходило на Луне, когда и где образовались лунные минералы – вот что мы должны понять.

Нас интересует и лунный магнетизм и вопрос о внутреннем строении Луны. Сила тяжести на Луне меньше, благодаря этому можно заложить более глубокие скважины. На Земле 10-километровая скважина – предел мечтаний бурильщиков. На Луне мы надеемся проникнуть километров на 30–40 вглубь. Но Луна меньше Земли, и такая скважина будет соответствовать почти 150-километровой скважине на Земле. Чрезвычайно интересно, как с глубиной изменяется на Луне температура. Есть ли на Луне ядро? Чтобы узнать это, мы произведем взрывы и посмотрим, как пойдут в недрах Луны сотрясения. Мы будем измерять также лунное притяжение, чтобы узнать, где расположены под поверхностью горные породы. На Земле недостаток или избыток силы тяжести указывает, что в глубинах скрыты соответственно легкие или плотные породы.

Для чего это нужно изучать? И для развития геологии, и для того, чтобы обогатить земную минералогию, вулканологию, магнитологию, сравнивая их с лунными, и, прежде всего, для того, чтобы понять строение Луны, понять, где какие ископаемые нужно искать, а не бродить вслепую по обширной лунной поверхности, слишком обширной, чтобы ее можно было осмотреть всю, метр за метром.

Мы еще не знаем точно, какие ископаемые мы будем искать на Луне, какие там есть ценные или новые, небывалые минералы и на что они пригодятся. Но уж во всяком случае с самых первых дней мы будем искать на Луне воду. Конечно, мы хотим найти ее не только для того, чтобы утолять жажду. Для этого можно доставлять воду и с Земли. Вода нужна нам в качестве топлива для межпланетных кораблей. Вы помните, что «Луна-1» везет с Казбека 400 тонн воды, необходимой для полета на Луну и обратно. А если бы мы могли заправляться водой на Луне, этот тяжкий груз заметно облегчился бы. Нам достаточно было бы взять с Земли 150 тонн воды, а на Луне налить в опустевшие баки тонн 80–85. Межпланетные корабли стали бы вдвое меньше, примерно такими, как тяжелые самолеты на дальних пассажирских линиях. И размеры их уменьшились бы, и полет облегчился бы. А самое главное – заправившись водой на Луне мы могли бы немедленно послать ракеты на Марс и на Венеру. Хотелось бы найти на Луне ископаемый лед, но мы не уверены что он там есть, скорее мы обнаружим кристаллизационную воду. Во всяком случае, на Земле кристаллизационная вода встречается повсеместно. Она содержится в кристаллах солей в глине, в слюде, в граните – во многих камнях, даже в самых жарких безводных пустынях.

Если же мы не найдем воду, будем искать другие вещества, которые могли бы служить топливом для жидкостных ракетных двигателей или рабочим веществом для атомных двигателей, – металлоорганические соединения, кремневодороды, соединения фосфора, азота, кислород. Свободного кислорода на Луне, конечно, нет, но, по всей вероятности, имеются окиси кремния, алюминия, железа, магния… Эта проблема так важна, что даже тип двигателя для межпланетных кораблей будет окончательно выбран лишь тогда, когда выяснится, чем можно заправлять его на Луне.

Такова наша программа на ближайшие годы. Но, конечно, каждое открытие повлечет за собой новые предложения, изобретения, новые задачи для исследователей, новые экспедиции. Попытаемся же заглянуть в более далекие времена, угадать, что будет на Луне в следующем – XXI веке, через 50 или даже через 100 лет.

Сейчас, в 1974 году, на Луне гостит разведочная группа – 4 человека. В будущем году начнет работать экспедиция из 11 человек, затем появится постоянная обсерватория с астрономами, астрофизиками и метеорологами, наблюдающими Землю. Лунное население все растет. Экспедиция превращается в институт; затем на Луне возникает межпланетная топливозаправочная станция, вслед за ней – производство, в первую очередь – добыча топлива. А добыча топлива, конечно, вызовет к жизни энергетику.

Энергия потребуется обязательно – найдем ли мы ископаемый лед или углеводороды, будем ли добывать кристаллизационную воду или металлоорганические соединения – для всего нужна энергия. А еще раньше энергия потребуется для того, чтобы отапливать жилье, перемещать грузы, снабжать электричеством приборы и аппараты.

На Луне нет каменного угля, нет кислорода, чтобы сжигать его. Но зато Луна богата солнечными лучами. Здесь нет воздуха, нет облаков, днем всегда ясно и солнечно, и с каждого квадратного метра можно получить мощность более 1,5 лошадиных сил. Поэтому с первых же лет мы начнем строить на Луне солнечные электростанции с огромными зеркалами, солнечными котлами и турбинами. В течение лунного дня эти установки будут давать нам энергию, но для долгой лунной ночи нужно применить другой источник – либо атомные электростанции, либо аккумуляторы, или же, возможно, мы сумеем использовать с помощью полупроводников разницу температур на лунной поверхности и под ней.

За топливной промышленностью, за энергетикой, естественно, следует металлургия. Механизмы нужно будет ремонтировать, нужно будет исправлять на месте, потребуется много металла, трубы, рамы. Неужто везти металл с Земли, разве на Луне не найдется железа? По всей вероятности, найдется, и даже неокисленное. Возникнет металлургия на местном сырье и местном топливе и машиностроение, которое будет обслуживать нужды местной горнодобывающей промышленности, местных солнечных электростанций и межпланетных кораблей.

…Время идет. Наступил новый, XXI век. На Луне уже несколько шахт, несколько заводов, несколько институтов, обсерватория с более крупными, чем на Земле, телескопами, станция для телевизионных передач. Возле предприятий – поселки. Хочется сказать, что все они подземные, но для Луны нужно иное слово – «подлунные». И заводы и жилища нужно спрятать под поверхность или в пещеры, чтобы защитить людей от опасных ультрафиолетовых лучей и от еще более опасного метеоритного обстрела, от холода лунных ночей и зноя лунного дня. Лучше всего поселки и заводы разместить в герметически закрытых пещерах. Проникнув через люки тамбуров в подлунные здания, жители снимут громоздкие межпланетные скафандры и окажутся в условиях, совсем похожих на земные.

Теперь на Луне живут сотни ученых, инженеров, рабочих. Они пьют воду, добытую из кристаллов, они дышат кислородом, добытым из окислов. Рядом с их жилищами в герметически закрытых оранжереях развивается лунное… сельское хозяйство. Конечно, лунный грунт не годится для земледелия. Нужно будет его искусственно удобрять, искусственно снабжать оранжереи теплом, светом, углекислым газом, постепенно превращая его в плодородную почву. Но все это лучше, чем возить каждый ломтик хлеба с Земли.

Поселки разбросаны на большом расстоянии. Как путешествовать, как перевозить грузы? И вот мы видим: над кратерами проносятся реактивные самолеты. Они без крыльев. На Луне нет воздуха, значит, не нужны и крылья. Зато там вволю электричества – и по лунным равнинам ползут, волоча грузы, гусеничные тракторы с аккумуляторами.

Но это будет еще не скоро. Мы заглянули далеко-далеко, лет на 100 вперед Мы только начнем выполнять эту программу. Продолжать будут сегодняшние студенты и школьники, в первую очередь – вы, молодые читатели.

На очереди – планеты

Ученый секретарь Межпланетного комитета профессор А. И. Воеводин.

Луна взята! Нога человека ступила на лунную почву. Завершен труд нескольких поколений, позади – подготовка, обсуждения, споры, расчеты, предварительные опыты, пробные полеты… Начинается новый период – эра освоения Луны.

А что будут делать конструкторы, химики, радиоинженеры, астрономы – все эти смелые исследователи, подготовившие покорение Лупы? Будут они обслуживать регулярное движение на трассе Земля-Луна? Да, конечно. Будут совершенствовать космические корабли? Обязательно. Будут изучать, обрабатывать материалы, поступающие с Луны? Будут и обрабатывать. Но едва ли они успокоятся на достигнутом – эти дерзкие люди, совершившие первый прыжок с родной планеты. Луна – не единственная цель в мировом пространстве. Есть и другие.

Конечно, если бы мы жили на Юпитере с его многочисленным семейством из 12 спутников, на Сатурне с его 9 спутниками или хотя бы на Уране, имеющем 5 спутников, у нас на долгие годы хватило бы забот по изучению «непосредственных окрестностей» своей собственной планеты. Но, увы, Земля вынуждена довольствоваться одним-единственным спутником – Луной. Кроме Луны, у нас ничего нет «поблизости». На очереди – гораздо более трудные и далекие цели – другие планеты солнечной системы. И, естественно, прежде всего наши соседи – Марс и Венера.

Венера ближе к Солнцу, чем Земля, и получает больше тепла. По размерам и по массе она очень близка к Земле. У Венеры плотная атмосфера, в которой непомерно много углекислого газа. И это почти все, что может сказать наука о «самой близкой» к нам планете. Красавица Венера прячет свое лицо под плотной чадрой облаков. Какие тайны скрыты под этим непрозрачным покрывалом? Кипящий ли океан, невиданные грозы и ливни или смерчи из раскаленного песка? Жизнь, богатая и разнообразная, или только что зарождающаяся, или полное безмолвие жаркой пустыни? Яркий день или вечный сумрак под низкими черными тучами? Сегодня мы можем только гадать об этом.

О Марсе мы знаем значительно больше. Эта суровая планета находится дальше от Солнца, чем мы, и получает меньше тепла. Атмосфера там есть, но очень разреженная, наподобие нашей стратосферы. Она не мешает разглядеть поверхность планеты. Мы видим красноватые «материки» Марса (предполагается, что это пустыни) и зеленоватые изменчивые «моря» (возможно, области, покрытые растительностью). Там, где есть растения, могут быть и животные, питающиеся растениями. До чего же заманчиво посмотреть на марсианские цветы и марсианских насекомых, выяснить, как развивалась там жизнь, сравнить с историей жизни на Земле! Как много дало бы это нашим биологам! А каналы! Что же это такое, в конце концов, – долины, по которым просачивается вода, или, как об этом мечтали многие писатели и астрономы, – зоны искусственного орошения, созданные марсианскими инженерами?

Итак, куда направиться раньше – на Марс или на Венеру?

Вообще говоря, мы полетим и туда и сюда. Но очередность все-таки будет, очередность, зависящая не только от наших желаний, но и от возможностей техники. Сначала мы полетим туда, куда легче долететь.

Сравним раньше всего расстояния. И Марс, и Земля, и Венера обращаются вокруг Солнца по близким к кругу эллипсам, совершая один оборот в различные сроки, и движутся с разной скоростью, чем ближе планета к Солнцу, тем быстрее она движется. Расстояния между планетами беспрерывно изменяются. Наименьшее расстояние от Земли до Венеры – 40 миллионов километров, до Марса – 56 миллионов километров. Расстояние до Венеры на четверть меньше. Может быть, нам легче лететь на Венеру? Оказывается, нет. В действительности, расход топлива при полете на Венеру на четверть больше. Чем это объясняется?

У межпланетных полетов свои особые законы, не похожие на законы земной авиации. Двигатель летящего самолета работает беспрерывно. Двигатель межпланетного корабля – лишь в первые минуты многодневного, а то и многомесячного пути. В дальнейшем межпланетный корабль летит за счет скорости, накопленной при разгоне. При этом двигатель не работает и не расходует ни капли топлива. Значит, расстояния в межпланетном полете не играют главной роли. Основное – это затраты топлива. А топливо расходуется главным образом на преодоление силы тяжести.

Теперь прикинем – какому кораблю придется труднее – летящему на Марс или на Венеру. Притяжение Земли им придется преодолевать обоим. Справиться с притяжением Солнца немного труднее кораблю, летящему на Марс. Сравним посадку на планету и взлет. Венера по массе немного меньше Земли. При взлете там нужно развить скорость отрыва, равную 10,3 километра в секунду. Марс заметно меньше, и скорость отрыва там – 5 километров в секунду. Значит, взлет с Венеры гораздо труднее. Но притяжение к планете приходится преодолевать дважды – приближаясь к Марсу, корабль будет падать на него со скоростью 5 километров в секунду, а на Венеру – со скоростью 10,3 километра в секунду. Эту скорость также придется погашать двигателем, затрачивая топливо; едва ли мы сумеем погасить ее целиком за счет торможения в незнакомой нам и малопрозрачной атмосфере Венеры. Зато наверняка сопротивление этой атмосферы нам придется преодолевать при взлете. Итак, посадка на Венеру и взлет с нее требуют больше топлива. Тем самым решается очередность: сначала – Марс, затем – Венера.

Теперь нужно выбрать маршрут. Как и при полете на Луну, выбирать нужно такой маршрут, где расходуется меньше топлива. Может быть, лететь по прямой? Увы, в межпланетном пространстве короткие маршруты – отнюдь не самые легкие. Не надо забывать, что наш аэродром – земной шар – мчится вокруг Солнца со скоростью около 30 километров в секунду. Чтобы лететь под прямым углом к орбите, по кратчайшей дороге к Марсу, надо эту скорость предварительно погасить. Марс, в свою очередь, путешествует со скоростью около 24 километров в секунду. Подлетая к нему под прямым углом к орбите, нужно эту скорость развить, чтобы не отстать от планеты. Итак, мы гасим скорость, потом набираем – огромные и совсем ненужные расходы топлива!

Гораздо разумнее лететь так, чтобы движение Земли помогало кораблю, а не мешало ему. Для этого нужно лететь по эллипсу, который в одной точке касается орбиты Земли, а в другой – самой отдаленной точке – орбиты Марса (или Венеры). Оси этих эллипсов обязательно должны проходить через Солнце. Путешествуя на Марс или на Венеру по таким трассам, корабль сделает пол-оборота вокруг Солнца.

И вот, летя по этим криволинейным путям, мы прибудем на Марс через 8½ месяцев, покрыв почти 600 миллионов километров. Путь на Венеру короче – длина его «только» 400 миллионов километров, продолжительность – примерно 5 месяцев.

По сравнению с полетом на Луну – разница огромная. Там сутки, здесь – месяцы. Там сотни тысяч километров, здесь – сотни миллионов. Расстояния выросли в тысячи раз, сроки – в сотни раз, неизмеримо возрастают и трудности.

Например, трудность с припасами. При полете на Луну был взят пятинедельный запас пищи и кислорода, и весил он не так много. Полет на Марс продлится годы (8½ месяцев туда, 8½ месяцев обратно и еще 15 месяцев надо сидеть на Марсе, ожидая благоприятного расположения планет). Здесь для каждого путешественника нужны тонны пищи, питья и кислорода.

Трудность с метеоритами. При полете на Луну мы не очень боялись этих межпланетных странников – слишком ничтожна была вероятность встречи с ними. Но если лететь в сто раз дальше, в сто раз вырастет возможность столкновения. Нужно всерьез подумать, как оградить себя от этой страшной опасности.

Трудность с невесомостью. На трассе Земля – Луна, где полет продолжался двое суток, мы не очень боялись «межпланетной болезни». «В крайнем случае, потерпим два дня», – говорили улетающие. Но вряд ли можно терпеть полгода. У путешественников могут появиться серьезные нервные расстройства. Возможно, следует создавать в корабле искусственную тяжесть, а это не так просто сделать.

Мы подошли к главной трудности – топливной. Расчеты показывают, что для полета на Марс с высадкой по самому выгодному маршруту и для последующего возвращения на Землю требуется неимоверно много топлива. Вес его должен превышать вес пустого корабля не в 9 раз, как на «Луне-1», а в 160–170 раз. В 50-тонном корабле требуется разместить 8–9 тысяч тонн топлива. Конечно, для размещения такого груза придется увеличить размеры и вес корабля, а это, в свою очередь, увеличит необходимый запас топлива.

Значит ли это, что путь в мировое пространство для нас закрыт, что он обрывается обидно близко – на Луне? Конечно, нет. Вспомним, что всего лишь 20 лет назад даже полет на Луну многим казался несбыточной фантазией, занимательной выдумкой. Нет сомнения, что через некоторое время, не через 20 лет, а много раньше, межпланетные корабли с посланцами Земли возьмут курс на Марс, а вслед за тем и на Венеру.

Есть два пути, по которым пойдет наука, чтобы решить эту задачу.

Первый путь – увеличение скорости истечения газов из ракетного двигателя. Стоит только довести скорость от сегодняшних десяти до двадцати километров в секунду, и Марс станет достижимым. Правда, удвоить скорость истечения совсем не просто. Но разве просто было утроить ее? А это было сделано за истекшие 20 лет.

Второй путь – заправка топливом в мировом пространстве. Для этого нужно построить искусственный спутник Земли – летающее топливохранилище – или организовать заправку топливом на Луне.

Много легче, и к этому мы готовимся, – лететь к Марсу без высадки, чтобы с расстояния в 40–50 тысяч километров как следует рассмотреть планету с помощью телескопов и вернуться на Землю. Несколько сложнее будет облететь вокруг Марса, стать ненадолго его искусственным спутником. Еще сложнее высадиться на один из спутников Марса, хотя и гораздо легче, чем на самую планету. У Марса две совсем маленькие луны – это «летающие горы», радиусом всего в несколько километров. Сила тяжести на этих спутниках так мала, что карандаш, выпавший из кармана, будет падать на камни секунд 20. И прыгать там нужно с осторожностью. При сильном толчке можно нечаянно «соскочить» со спутника, и тогда неосторожный прыгун сам превратится уже в третий по счету спутник Марса.

У Венеры нет спутников. Для того, чтобы рассмотреть ее до высадки, надо будет превратить корабль во временный искусственный спутник или пролететь близко от планеты. Неизвестно, однако, дадут ли нам что-нибудь эти предварительные полеты, раскроется ли облачная пелена или придется прощупывать поверхность Венеры радиолокаторами и этим ограничиться.

Полеты к другим планетам будут еще сложнее.

Ближайшая к Солнцу планета – Меркурий. Масса его в 25 раз меньше земной, скорость отрыва там невелика, но расход топлива будет больше, чем при полете на Венеру. Очень дорого обойдется нам борьба с солнечным притяжением – слишком уж близок Меркурий к Солнцу. Путешествие к Меркурию будет и опасным и довольно неприятным. Корабль приблизится к Солнцу, много месяцев проведет в области вечного зноя. Ведь на освещенной Солнцем поверхности Меркурия температура достигает 400 градусов.

Трудно придется и тем смельчакам, которые отправятся в область вечного мороза – к внешним планетам солнечной системы: Юпитеру, Сатурну, Урану, Нептуну. Планеты эти далеки, полет к ним будет длиться годы. Трудно придется не только путешественникам, но и конструкторам. Масса внешних планет, в особенности Юпитера, во много раз превышает земную, это планеты-гиганты. Поэтому посадка на Юпитер, Сатурн и другие дальние планеты на многие годы останется невозможной. Придется ограничиться обзором этих планет с их спутников, благо выбор таких наблюдательных пунктов весьма обширен.

В заключение нужно упомянуть… Но о чем же еще упоминать? Кажется, все уже перечислено – и Луна, и планеты, и их спутники. Не на Солнце же лететь! Но население солнечной системы гораздо многочисленнее. Кроме планет и спутников, есть еще тысячи астероидов и комет. Некоторые астероиды проходят мимо Земли ближе, чем Марс и Венера, например, Эрос, Аполлон, Адонис, Гермес. Масса астероида, хотя и составляет миллиарды тонн, по сравнению с массой планеты ничтожна. Полет ко многим астероидам не труднее, чем полет к Луне, во всяком случае он требует не больше топлива, даже если астероиды и во много раз дальше от Земли, чем Луна.

Но стоит ли летать туда? Какой интерес в посадке на безжизненную каменную глыбу? Интерес есть. Ведь астероиды, как предполагается, это остатки некогда погибших крупных небесных тел. Изучая астероиды, мы выясняем внутреннее строение этих тел, причины их гибели.

Кроме того, можно подобрать подходящий астероид и совершить на нем экскурсию по солнечной системе. О таком использовании астероидов думал еще основатель астронавтики К. Э. Циолковский. Для этой цели может быть использован, например, астероид Гидальго, который совершает свой путь по очень вытянутому эллипсу. Он проходит недалеко от орбиты Земли, а в самой дальней точке забирается далеко в недра мирового пространства, почти до орбиты Сатурна. Гидальго мог бы прокатить нас по солнечной системе. Правда, такая прогулка несколько затянулась бы – она потребовала бы 14 лет.

Как видите, в солнечной системе достаточно работы для будущих исследователей. Полет на Луну – это самое легкое из межпланетных путешествий. Впереди большие и сложные многолетние странствования, которые потребуют и мужества, и терпения, и готовности отдать свои силы для Родины, для науки.


    Ваша оценка произведения:

Популярные книги за неделю