355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Георгий Гуревич » Полет на Луну » Текст книги (страница 5)
Полет на Луну
  • Текст добавлен: 17 сентября 2016, 22:57

Текст книги "Полет на Луну"


Автор книги: Георгий Гуревич


Соавторы: Борис Ляпунов,Вадим Левин,Карл Гильзин,Ю. Хлебцевич,Н. Варваров,Юрий Степанов,Марк Поповский,И. Фридман,Юрий Долгушин,Л. Орлов
сообщить о нарушении

Текущая страница: 5 (всего у книги 9 страниц)

Первые десять минут

Репортаж ведет участник полета доктор Т. А. Акопян.

Привет вам из межпланетного пространства, дорогие земляки! Дорогие земляки… С особым чувством произносим это слово мы, покинувшие Землю 10 минут назад. 10 минут – и столько всего произошло! Попробую сейчас рассказать все по порядку.

10 минут назад мы были рядом с вами, у подножья Казбека. Одетые в скафандры, мы сидели в кабине, пристегнутые к мягким креслам, каждый на своем месте. Перед глазами у нас были щиты с лампочками – у Тамарина щиты огромные, со всеми приборами, относящимися к механизмам корабля, у меня – небольшой стенд. Глядя на него, я мог видеть, что температура у нас нормальная, воздух чистый, влажность достаточная и что у доктора Акопяна пульс учащенный. Впрочем, у всех остальных участников тоже пульс повысился. Пусть попробуют отрицать, что они не волновались. Их волнение было подмечено лампочками и записано самопишущими приборами на ленту.

И вдруг грохнуло, взревело, рвануло. Могучая сила бросила меня на кресло, придавила к нему, стиснула грудь. Несколько секунд, оглушенный, раздавленный, я ловил воздух ртом. Пожилые толстяки поймут меня. Помните вы, как тяжело было вашему сердцу, когда вы прибавили лишних 5 килограммов. А я в момент старта прибавил 140 кило сразу, потяжелел втрое.

Но тренировка помогла. Через несколько секунд я оправился и повернул отяжелевшую голову к окну.

Казалось, что склон почти отвесный. Но чувства обманывали нас. В космическом полете вообще нельзя доверяться чувствам. Просто двигатель был сильнее, чем земная тяжесть, и, пока он работал, все время казалось, что ракета летит прямо вверх.

Но вот мелькает округлая вершина горы, открывается обширный вид на изрезанную, изломанную поверхность: гряды, конусы, узкие ущелья, окутанные туманом. Мы летим вверх все стремительнее, а кажется – медленнее. Горы уходят вниз, окутываясь голубой дымкой. Потом оказывается, что у дымки заметная верхняя граница, что выше нее – ярко-синее, совсем не зимнее небо.

Синий цвет постепенно переходит в ультрамариновый, наливается лиловатыми оттенками, становится чернильно-лиловым. Мы уже в стратосфере. И все это занимает одну минуту. К концу второй минуты, набрав высоту, ракета поворачивает на восток. Нам кажется, что ракета поднимается все круче, даже запрокидывается. Но это очередной обман. На самом деле Земля под нами.

Плывут далекие, скрытые белесым туманом незнакомые хребты и ущелья Дагестана. Потом плоское темное пятно. Очертания его на редкость знакомы – это Каспийское море. Мы видим его целиком – и острый Апшеронский полуостров и отпочковавшийся Кара-Богаз. Перед нами живая карта. Она неясна, смазана облаками. Карта ползет с востока на запад. Теперь я уже употребляю слово «ползет». Море кажется нам просто темной равниной, и эту равнину мы пересекаем за полторы минуты. Все это захватывающе интересно и непривычно. Гляжу, стараюсь все увидеть и запомнить. За Каспием снега нет, пустыня кажется красноватой. Потом снова темная равнина Аральского моря. К ней примыкает серовато-оливковая полоса – орошенные берега Аму-Дарьи. Гляжу на них и стараюсь представить, похожи ли они на так называемые каналы Марса. Пожалуй, очень похожи: зеленоватая полоска на красном фоне.

Земля все дальше. Теперь она не похожа на чашу. Мы видим ее круглый край, окаймленный туманной полоской тропосферы. Горизонт все шире, и от этого легче ориентироваться.

Почти семь минут ракета с ревом и воем мчится вдоль этой светящейся, слегка подкрашенной карты. И вдруг тишина. Двигатель выключен. Над пультом командира появляется цифра 10,7 – исходная скорость набрана. Тяжесть исчезает мгновенно Мы срываемся. И падаем… падаем… падаем. Кружится голова, тошнит, хочется схватиться руками за кресла. Куда же мы летим? За окном все то же. Красноватые пустыни, разрезанные бриллиантовой полосой Тянь-Шаня. Итак, начинается пятидесятичасовой полет при отсутствии веса. Надо привыкать к невесомости.

Все это произошло с нами за десять минут. И десять минут понадобилось, чтобы я бегло рассказал о первых впечатлениях. Сейчас 10 часов 20 минут по вашему, кавказскому, времени. Который час у нас – затрудняюсь сказать. Мы уже пролетели 10 000 километров от Казбека. Справа, за спиной у нас, ослепительно жгучее Солнце; впереди – Луна, примерно такая же, как у нас на Земле. И Солнце и Луна – на фоне черного звездного неба. Но о звездах после, сейчас не до них. Самое замечательное слева, сзади от нас – земной шар. Мы смотрим на него с высоты 3000 километров. Он занимает четверть неба. Кажется, только сейчас, видя всю планету целиком, понимаешь, какая это громада. Левая половина Земли светится, то есть она освещена Солнцем, но нам кажется, что сияет Земля. Прямо перед нами Дальний Восток и Япония, дальше на восток – глубокая тьма. Неосвещенная половина Земли кажется темнее неба. И только с запада на восток, поперек всего Тихого океана, тянется оранжевая лунная дорожка. Товарищи, это нужно посмотреть своими глазами. Подняться и увидеть земной шар весь сразу!..

Кончаю мою затянувшуюся передачу. Позже, в межпланетном пространстве, когда впечатлений будет меньше, мы все запишем.

Трасса земля – Луна

Начальник бригады расчета трассы бюро «Л» профессор Г. Н. Костромин.

Нашему конструкторскому бюро было поручено не только проектирование и строительство межпланетного корабля для полета на Луну. В бюро была создана и бригада расчета трассы Земля – Луна. Мы работали в тесном контакте с рядом астрономических обсерваторий и научно-исследовательских институтов.

Точный расчет трассы космического полета Земля – Луна представляет собой сложнейшую научную проблему, связанную с исключительными трудностями.

Это объясняется тем, что корабль летит в пространстве, где действуют силы тяготения: он притягивается Землей, Солнцем, Луной, планетами. Если бы этих сил не было, то корабль, получивший при взлете с Земли какую-то скорость, летел бы прямолинейно и равномерно до самой цели. Силы тяготения искривляют, изгибают траекторию корабля, превращают ее в сложную кривую.

Но и притяжение можно было учесть легко, если бы корабль притягивался не всеми небесными телами сразу, а по очереди. Если бы, например, корабль летел все время в поле одного только земного тяготения, то рассчитать траекторию его полета не представляло бы никакого труда. То же самое было бы, конечно, и в случае полета в поле тяготения одного только Солнца, одной только Луны и т д. Такой полет рассчитывается просто. По законам небесной механики корабль в этом случае может лететь только по одной из следующих кривых (они называются коническими сечениями): кругу, эллипсу, параболе и гиперболе. Стоит только знать скорость корабля в начальный момент, чтобы легко рассчитать его дальнейший путь. Однако в действительности на полет нашего корабля одновременно влияет притяжение и Земли, и Луны, и Солнца, и планет солнечной системы. Точного решения такой задачи ученые еще не знают. Потому приходится всю трассу полета на Луну разбивать условно на два основных участка. Принимается, что на каждом из этих участков действует только одно поле тяготения – земное или лунное, в зависимости от того, какое из них сильнее, и рассчитывается соответствующая траектория корабля А затем учитываются многие второстепенные обстоятельства, в первую очередь другие поля тяготения. Все эти второстепенные влияния несколько изменяют первоначально рассчитанную траекторию, вносят в нее, как говорят, «возмущения». Вот из-за них-то и получается таким сложным расчет. А не учти мы этих «возмущений», корабль так сильно отклонится от цели, что на исправление курса потребуется израсходовать много лишнего топлива. И это еще в лучшем случае…

Но возвратимся к трассе полета Земля – Луна. Когда мы путешествуем на Земле, все равно – по суше или по воде, то обычно в нашем распоряжении всегда много разных возможных маршрутов. Мы выбираем самый короткий или самый интересный маршрут, самый дешевый или самый удобный, самый быстрый или самый верный способ передвижения.

Не менее, конечно, свободен выбор трассы и путешествия межпланетного. Нам заданы только начальный и конечный пункты этого путешествия. Между ними можно провести бесчисленное множество всевозможных маршрутов, различных трасс. И легко видеть, что этих возможностей еще гораздо больше, чем на Земле, – ведь все эти линии трасс идут в пространстве, а не на поверхности!

Чем же руководствоваться, выбирая одну-единственную линию-трассу из всех возможных? Очевидно, условия полета по любой возможной трассе будут одинаковыми – всюду абсолютный вакуум и холод мирового пространства, всюду та же опасность встречи с метеоритами. Все то же. Остается одно – скорее добраться до цели и израсходовать при этом поменьше топлива.

Но, значит, трассу выбрать не так сложно – наилучшая из всех та, для которой время полета наименьшее и расход топлива наименьший И сразу – первая трудность. Нет такой трассы. Мало время полета – велик расход топлива, таков закон межпланетного полета.

Чем больше топлива мы можем израсходовать на полет, тем быстрее совершим его. Правда, пока нам еще рано думать о курьерских перелетах. Мы еще только выходим на межпланетные пути, еще еле-еле справляемся с самым простым и легким полетом – на Луну. Только для этого полета удается, да и то с большим трудом, разместить на корабле нужный запас топлива. Значит, на этом первом этапе самое главное избрать такой маршрут, который потребует наименьшего расхода топлива.

Какую же кривую должен прочертить в мировом пространстве наш корабль, летящий на Луну, чтобы расход топлива оказался наименьшим, – эллипс, параболу или гиперболу?

Мы уже знаем, что корабль, которому при взлете с Земли сообщена скорость отрыва, полетит по параболическому пути; не зря скорость отрыва называют также параболической скоростью. Летя по параболе, корабль в состоянии улететь бесконечно далеко от Земли. Значит, он пересечет орбиту Луны в какой-нибудь точке; остается только рассчитать момент взлета и направление взлетающего корабля так, чтобы в этой точке корабль встретил Луну. Если скорость корабля при взлете с Земли будет больше, чем скорость отрыва, то корабль полетит уже не по параболе, а по другой кривой, также уводящей корабль в бесконечность – по одной из бесчисленного множества возможных гипербол. Чем больше начальная скорость корабля, тем сильнее «раскрыта» гипербола, тем прямее и короче путь корабля к Луне. Именно так и будут совершать свои полеты курьерские корабли будущего – они достигнут цели всего за несколько часов. Пока мы можем только мечтать об этом времени – нам не под силу сообщить кораблю при взлете необходимую для этого огромную скорость. Значит, гипербола исключается, это ясно.

Но и полет по параболе вовсе не является обязательным. Что случится, если конечная скорость корабля при взлете будет несколько меньше скорости отрыва? Тогда корабль полетит уже не по параболе – траектория его полета будет в этом случае эллипсом. Но ведь эллипс – это не разомкнутая кривая, подобно параболе или гиперболе. Эллипс, как и круг, кривая замкнутая. Это значит, что корабль, взлетевший с Земли по эллипсу, обязательно возвратится, раньше или позже, снова на Землю. Этим и интересна параболическая траектория – она является как бы границей между бесчисленными замкнутыми (эллиптическими) и разомкнутыми (гиперболическими) траекториями.

Если скорость, которую корабль наберет при взлете, будет немногим меньше скорости отрыва, он залетит, двигаясь по своей эллиптической орбите, очень далеко от Земли, дальше чем находится от нас Луна. Значит, в этом случае, как и при полете по параболе или гиперболе, корабль пересечет лунную орбиту и если все было рассчитано правильно, встретит в точке пересечения Луну. Такие эллипсы и называются поэтому секущими.

Будем теперь постепенно уменьшать скорость взлетающего корабля. Очевидно, этим самым мы будем уменьшать и то максимальное расстояние, на которое корабль может удалиться от Земли, то есть расстояние до корабля, находящегося, как говорят, в апогее своей эллиптической орбиты. Конечно, мы заинтересованы в том, чтобы скорость корабля была наименьшей, ибо при этом и расход топлива будет наименьшим. На сколько же мы можем уменьшить взлетную скорость корабля по сравнению со скоростью отрыва, чтобы наш корабль все-таки достиг Луны?

На первый взгляд кажется, что таким предельным случаем является полет по эллипсу, который уже не пересечет орбиту Луны, а только коснется ее в апогее (такой эллипс и называется поэтому касательным).

Но это впечатление ошибочно. Можно еще уменьшить взлетную скорость корабля, и он все же достигнет Луны. Как же так, ведь при таком уменьшении скорости эллипс, по которому полетит корабль, уже не будет касаться лунной орбиты, и, значит, корабль не встретится с Луной?

Да, так и случилось бы, если бы Луна не обладала собственным полем тяготения. Но Луна – весьма массивное небесное тело, обладающее значительным притяжением. На расстоянии примерно 40 000 километров от Луны притяжение к ней превосходит притяжение к Земле. Значит, достаточно только нашему кораблю достичь этой зоны, чтобы он изменил направление своего полета и устремился к Луне вместо того, чтобы вернуться на Землю по другой стороне эллипса.

Сколько же можно сэкономить топлива, если лететь не по параболе, а по этому наивыгоднейшему, то есть самому наименьшему эллипсу? Оказывается, что для полета по такому эллипсу скорость корабля при взлете с Земли должна быть всего примерно на 100 метров в секунду меньше, чем скорость отрыва, то есть 11,1 километра в секунду вместо 11,2 километра в секунду. Это кажется даже неправдоподобным и, во всяком случае, очень неожиданным – чтобы перенести корабль с расстояния 340 000 километров от Земли в бесконечность, взлетную скорость надо увеличить всего на 100 метров в секунду.

В этом заключается очень интересная особенность трасс в мировом пространстве. Когда взлетная скорость корабля близка к скорости отрыва, то ничтожное увеличение этой скорости очень сильно наменяет расстояние, которое корабль пролетает, удаляясь от Земли. Вот еще один такой пример. Если при скорости 11,1 километра в секунду корабль залетает на расстояние 340 000 километров от Земли, то для того, чтобы корабль долетел до орбиты Луны, то есть на 40 000 километров дальше, его взлетная скорость должна быть увеличена всего примерно на 10 метров в секунду. Скорость увеличивается на одну тысячную, а дальность полета возрастает на 40 000 километров!

Итак, мы установили, что минимальная скорость, которой должен обладать корабль при взлете с Земли, чтобы в конце концов достичь Луны, равна 11,1 километра в секунду. Если все же для корабля «Луна-1» избрана не эта наивыгоднейшая эллиптическая, а параболическая трасса с соответственно большей взлетной скоростью (скоростью отрыва 11,2 километра в секунду), то это объясняется тем, что ценой сравнительно небольшого увеличения затраты топлива таким способом удается существенно уменьшить продолжительность полета – со 115 до 50 часов. Это во всех случаях важно и особенно, конечно, важно для первого полета.

Обратный полет на Землю корабль «Луна-1» совершит тоже по параболическому маршруту, представляющему собой вторую симметричную ветвь той же параболы.

Само собой разумеется, что момент отправки корабля с Земли рассчитан нами с большой точностью, чтобы корабль встретил Луну в заданной точке ее орбиты. Что касается обратного полета, то взлет с Луны может быть осуществлен практически в любое время – Земля всегда находится в фокусе того эллипса, по которому вокруг нее движется Луна, искать ее не надо. Важно лишь установить точный момент выключения двигателя корабля, чтобы направление полета корабля при взлете с Луны было правильным.

В мировом пространстве еще нет расчерченных трасс. Но корабль «Луна-1» будет лететь по тем незримым путям, которые мы указали ему на основе законов небесной механики.

Со спутником или без?

Старший инженер конструкторского бюро «Л» А. Н. Осипов.

На бархатно-черном небе – ярко освещенный круг. Он похож на гигантскую шину, повисшую на фоне звезд. На освещенной стороне – вогнутая чаша, на противоположной – купол и решетки. Так выглядит искусственный спутник Земли, межпланетный транзитный вокзал, первая остановка на трассах солнечной системы.

Вогнутая чаша – это зеркало, собирающее солнечную энергию. В центре его – котлы солнечной электростанции, на противоположной стороне – купол обсерватории. Здесь нет воздуха, нет облаков и удобно вести астрономические наблюдения. Нет и веса, приходится искусственно создавать его, вращая круг. Внутри круга – жилые и служебные помещения, оранжерея, топливные баки. Топливо подвозят с Земли ракеты-танкеры. Вот одна из них мчится снизу, откуда виднеется одетый туманной дымкой покатый край Земли. Другая ракета заправляется топливом, вскоре она полетит на Луну.

Все это изображено на картине, висящей на стене в нашем конструкторском бюро. К сожалению, в межпланетном пространстве еще нет таких станций. И, глядя на картину, я вспоминаю горячие споры, которые велись много лет, вплоть до проектирования корабля «Луна-1».

Суть этих опоров можно свести к одному вопросу – со спутником или без него? Иначе говоря можно организовать полет без помощи искусственного спутника Земли или нельзя?

Два возможных метода осуществления межпланетного полета были предложены еще Циолковским. Один метод – использование искусственного спутника Земли в качестве топливозаправочной станции, другой – создание многоступенчатого ракетного поезда. Каковы же возможности, достоинства и недостатки этих методов? Какой из них избрать, если простой одноступенчатый корабль не способен решить задачу? Вот о чем велись споры. Как всегда бывает в таких случаях, были убежденные сторонники спутника и были его решительные противники – не менее убежденные поклонники идеи ракетного поезда. Находились и скептики, сулившие неудачу и тем, и другим.

Я честно признаюсь, что стоял тогда за спутник, как стою за него и сейчас. Должен сказать, что эта моя точка зрения основана на неоспоримых общеизвестных фактах.

Чтобы доказать свою силу, лучше всего показать слабость противника. В самом деле, чего можно достичь с помощью метода ступенчатых ракет? Пусть даже в нашем распоряжении имеется наилучшее из возможных в будущем химическое топливо для жидкостных ракетных двигателей. Будем считать, что это топливо обеспечит скорость истечения газов при полете в межпланетном пространстве (то есть когда газы вытекают практически в абсолютный вакуум), равную 5 километрам в секунду.

Чтобы определить запас топлива для любого межпланетного полета, нужно знать соответствующую идеальную скорость. Для полета на Луну идеальная скорость корабля должна быть не меньше 23 километров в секунду. Такая величина и принята для корабля «Луна-1». Почему именно 23? Посмотрим, из чего складывается эта скорость.

В любом межпланетном полете нужно преодолеть земное тяготение. Для этого требуется 11,2 километра в секунду. Воздушное сопротивление и потери под действием силы тяжести при взлете будут стоить не менее 1 километра в секунду, а то и все 1,5 километра. Торможение корабля при посадке на Луну потребует примерно 2,9 километра в секунду, да при взлете с Луны в обратный путь понадобится столько же. На маневрирование в межпланетном пространстве, то есть исправление курса, и на резерв, без которого нельзя пускаться в путь, – еще не менее 1 километра. Вот уже получилось 19 километров в секунду.

Все? Нет еще. Как быть теперь с посадкой на Землю? Если всю скорость корабля погашать двигателем, то для этого понадобится еще примерно 12 километров в секунду. Тогда общая идеальная скорость будет равна около 31 километра в секунду. Можно ли уменьшить эту огромную цифру? Да, можно, если затормозить корабль за счет сопротивления атмосферы. Правда, и в этом случае придется сначала включить двигатель, чтобы уменьшить скорость корабля на 4 километра в секунду. К 19 прибавим не 12, а 4. Получается идеальная скорость, равная примерно 23 километрам в секунду.

Сколько же топлива нужно запасти на корабле, чтобы обеспечить такую идеальную скорость? Ответ на это дает формула Циолковского. По этой формуле получается, что вес топлива на корабле при взлете должен составлять 99 процентов общего веса корабля! Конечно, построить такой корабль нельзя, даже если на нем нет никакого полезного груза – только стенки, двигатель и топливо. При этом в лучшем случае можно получить 90 процентов. Да и то чрезвычайно трудно У нас же, как известно, имеется большая полезная нагрузка. По заданию она должна равняться 5 тоннам – столько весит кабина с пассажирами, оборудованием, приборами, запасами и прочим.

Посмотрим же, насколько облегчает дело ракетный поезд, состоящий из четырех ступеней; увеличение числа ступеней дает малый выигрыш, но очень усложняет поезд. Вот какие результаты даст произведенный нами довольно сложный расчет, который, конечно, мы здесь опустим.

Первая ступень поезда должна весить 3500 тонн, из которых 3150 тонн – топливо и 350 тонн – вес самой ракеты. Когда при взлете все топливо на этой ступени будет израсходовано, она автоматически отделится от поезда и упадет на Землю. В то же мгновение включится двигатель второй ступени. Эта ступень весит 752 тонны, из которых 677 тонн топлива.

После выработки всего топлива второй ступени она тоже отделится от поезда. В этот момент поезд будет лететь уже с заданной скоростью отрыва. Таким образом, к Луне приблизится укороченный поезд: вместо четырех он будет состоять всего лишь из двух ступеней общим весом 218 тонн.

На торможение при посадке на Луну будет израсходовано все топливо третьей ступени. Вес этого топлива равен 138 тоннам, а вес самой ступени – 15 тоннам. Третья ступень будет отделена от последней, четвертой, уже на Луне и оставлена там – она не нужна для обратного полета.

Взлетит с Луны последняя ступень, четвертая. Общий вес этой ступени – 65 тонн, из которых 50 тонн приходится на долю топлива, 10 тонн – на ракету с крылом и 5 тонн – на пассажирскую кабину со всем содержимым. Эта последняя ступень и совершит посадку на Землю.

Как видите, расчет показывает, что такой четырехступенчатый корабль для полета на Луну должен весить при взлете с Земли 4470 тонн! Конечно, можно построить такую ракету размерами и весом с теплоход, но это очень нелегкая задача.

Судите теперь сами, насколько проще полететь на Луну, если можно воспользоваться заправкой топливом в пути, как это уже давно делается в авиации. В этом случае запас топлива при взлете можно сильно уменьшить. Значит, сильно уменьшится и взлетный вес корабля.

Насколько же?

Представим себе, что уже создан искусственный спутник Земли – космическое топливохранилище. Этот спутник обращается вокруг Земли по «суточной» орбите на высоте 35 900 километров, то есть делает один оборот вокруг Земли за сутки. На этой высоте скорость спутника равна примерно 3,1 километра в секунду.

Чтобы достичь этого спутника, идеальная скорость корабля при взлете с Земли должна равняться примерно 12 километрам в секунду; 10 километров в секунду даст топливо, залитое в баки корабля, остальная часть необходимой скорости будет получена с помощью стартовой ракеты. Когда корабль достигнет спутника, его топливные баки будут почти пустыми, их придется заново наполнять. Сколько же теперь нужно взять топлива, чтобы корабль смог продолжать свой полет на Луну? Произведем подсчет. Спутник и причаливший к нему корабль мчатся сейчас вокруг Земли со скоростью 3,1 километра в секунду. Но скорость отрыва от Земли на этой высоте равна 4,4 километра в секунду. Значит, чтобы улететь на Луну, корабль должен развить добавочную скорость, равную 1,3 километра в секунду.

Улучив нужный момент, чтобы полностью использовать скорость спутника, корабль направится к Луне. Падение на Луну нужно затормозить – на это требуется 2,9 километра в секунду. Столько же будет израсходовано при взлете. Чтобы причалить к спутнику в самый благоприятный момент на обратном пути, нужно погасить лишнюю скорость – 1,3 километра в секунду. Прибавим еще 1,6 километра в секунду – резерв для маневрирования. Получается 1,3 + 2,9 + 2,9 + 1,3 + 1,6 = 10 километров в секунду. Не больше, чем при взлете с Земли. Мы израсходовали все запасенное топливо. Но никто не мешает нам еще раз воспользоваться услугами спутника и заправиться здесь вторично, на этот раз для посадки на Землю. Спуск на Землю потребует сравнительно немного топлива. Нужно будет, отчалив от спутника, уменьшить скорость корабля, и он начнет падать на Землю. При этом разовьется скорость около 11 километров в секунду, большую часть которой мы надеемся погасить с помощью атмосферы.

Итак, вместимость наших баков должна быть рассчитана на идеальную скорость – 10 километров в секунду. Не 23, а только 10.

Но это значит, в соответствии с формулой Циолковского, что вес топлива должен составлять не 99 процентов, а лишь 87 процентов общего веса корабля. Как же будет выглядеть корабль в этом случае?

Вес корабля с пустыми топливными баками будет равен всего 28 тоннам, из которых 5 тонн – полезный груз. Полный вес топлива на корабле будет равен 182 тоннам. Поэтому общий вес корабля при взлете с Земли или старте со спутника на Луну будет равен 210 тоннам. Одноступенчатый корабль весом 210 тонн вместо сложного четырехступенчатого корабля весом 4470 тонн! Вот что значит искусственный спутник! Факты, как говорят, упрямая вещь.

Правда, противники спутника и не спорят против этого. Они говорят о другом, о том, как трудно построить такой спутник в мировом пространстве – с Земли поднять его туда уже собранным невозможно Говорят они и о том, как сложно осуществить заправку корабля топливом со спутника. Все это верно, но вместе с тем все это преодолимо. Зато такой спутник можно построить один раз, и он будет служить во многих полетах вместо того, чтобы для каждого полета строить громадные многоступенчатые корабли.

Что касается заполнения топливом самого спутника, то оно будет производиться с помощью грузовых ракет-танкеров с Земли (а когда-нибудь, может быть, и с Луны… Выгоднее!) Эти ракеты, снабженные крыльями, будут иметь на борту экипаж из двух человек. Перелив свое топливо в баки спутника, ракеты будут затем возвращаться на Землю.

Как известно, спор наш был отложен, когда ученые и конструкторы создали атомно-реактивный двигатель со скоростью истечения газов 10 километров в секунду. При такой скорости истечения уже можно построить простой, то есть одноступенчатый, корабль для полета на Луну. На этом корабле удается разместить все потребное для полета топливо. Созданный нами корабль – это и есть «Луна-1». Но не приди нам помощь со стороны атомной техники – организовать полет на Луну было бы куда сложнее. Вы можете сказать, зачем сейчас вспоминать об этом, раз есть атомный двигатель? Да, конечно, полет на Луну уже совершается. Ну, а если завтра нам поручат проектировать корабль «Марс-1»? Тут уже и атомный двигатель полностью задачи не решит. Придется волей-неволей возвращаться к старым спорам… Разве только ученые-атомники предложат нам к тому времени что-нибудь еще лучшее, скажем, двигатель со скоростью истечения 20 или хотя бы 15 километров в секунду. Но, как говаривали в седую старину на бога надейся, а сам не плошай! Могу поручиться: не один из нас, работников конструкторского бюро «Л», втайне уже давно подумывает над более дальними межпланетными перелетами. Как же тут не вспомнить наши давнишние споры? Ведь в них надо искать решение задачи…

Я понимаю, конечно, что создание искусственного спутника – топливохранилища в межпланетном пространстве – задача исключительной сложности. Но я знаю, что его можно построить, и я за то, чтобы его построить.


    Ваша оценка произведения:

Популярные книги за неделю