Текст книги "Вам жить в XXI веке"
Автор книги: Г.А. ЮРКИНА
сообщить о нарушении
Текущая страница: 2 (всего у книги 12 страниц)
* * *
Важнейшим светочувствительным элементом сетчатки глаза служит окрашенный пигментом белок – родопсин, расположенный в мембранных дисках палочек. Около пятнадцати лет назад было обнаружено, что галофильные, то есть соленолюбивые, бактерии содержат в своей оболочке (мембране) белок, весьма сходный с родопсином. Его и назвали бактериородопсином.
Но зачем галофильным бактериям оветочувстви» тельный белок? Оказалось, что он представляет собой некий насос, поглощающий кванты света и благодаря перекачиванию водорода сквозь клеточную мембрану запасающий энергию в виде все той же АТФ, в дальнейшем используемую для обмена веществ, движения, размножения – для жизни. Это первый известный науке случай непосредственной утилизации солнечного света живыми существами, не содержащими хлорофилла – светочувствительного белка высших растений и синезеленых водорослей.
Бактериородопсин оказался чрезвычайно интересным белком. Прежде всего тем, что это природная солнечная батарея, генератор ионных токов. В связи с этим весьма вероятно использование его в будущих гелиотехнических устройствах, скажем, для опреснения воды. Кстати сказать, галофильные бактерии живут в соленых озерах Средней Азии, в Мертвом море, в пересыхающих тропических лагунах.
Вместе с тем этот устойчивый к различным внешним воздействиям белок, сохраняющий свои свойства даже в высушенной пленке, обратимо меняет свою окраску под действием света. Отсюда вполне понятная мысль: создать на основе бактериородопсина фотохромные материалы с высочайшей разрешающей способностью. Полимерные пленки с включенным в них бактериальным светочувствительным белком могут выдержать очень много циклов записи и стирания оптической информации. Сейчас такие материалы, используемые в качестве элементов памяти в ЭВМ новых поколений, разрабатываются в институтах Академии наук СССР.
Таким образом, биотехнология – это новый этап синтеза современных биологических знаний и технологического опыта. Возникнув на стыке различных направлений – микробиологии, биохимии и биофизики, генетики и цитологии, биоорганической химии и молекулярной биологии, иммунологии и молекулярной генетики, – базируясь на достижениях фундаментальных исследований, биотехнология, в свою очередь, ставит новые сложные задачи перед фундаментальной наукой.
Биотехнология – триумф знаний, победный результат многолетней борьбы науки за бережное и рациональное отношение к природе. Познание мира – лишь первая задача человеческой мысли. Знание обязательно должно иметь своим результатом конструктивное улучшение мира.
Е. П. ВЕЛИХОВ, академик
НА ПОРОГЕ МИКРОЭЛЕКТРОННОЙ РЕВОЛЮЦИИ
Евгений Павлович Велихов, вице – президент АН СССР, заместитель директора Института атомной энергии имени И. В. Курчатова, Герой Социалистического Труда, лауреат Ленинской и Государственной премий.
Говорят, количество со временем переходит в качество, и нигде эта истина не подтвердилась так ярко и полно, как в случае с электронно-вычислительными машинами. С тех пор как ученые и инженеры ухитрились уменьшить их размеры в десятки тысяч раз, ЭВМ сделались такими компактными, что перестали быть достоянием только крупных учреждений. Вторгаясь в нашу жизнь, микропроцессоры обещают реформировать все ее области, от производственной до бытовой.
– Нашим детям предстоит обживать мир, предельно насыщенный сложной, «интеллектуальной» техникой. Насколько близко такое будущее к нашим дням?
– Оно уже наступило! И в основе грандиозного технического переворота, оказавшего влияние буквально на все стороны жизни современного общества, – кремниевая пластинка, площадь которой не превышает половины квадратного сантиметра. Поразительны темпы этого обновляющего процесса. Микроэлектроника заявила о себе в начале шестидесятых годов, а уже в начале восьмидесятых завоевала мир. Приятно сознавать, что к микроэлектронной революции прямо причастна наука, которой я занимаюсь. Именно фундаментальные исследования в области физики твердого тела сделали эту революцию реальной. Современные компьютеры по сравнению со своими «предками» в 300 тысяч раз меньше по размеру, но работают в 10 тысяч раз быстрее, при этом более наделены, а энергии потребляют значительно меньше. И самое главное, нынешние компьютеры стали относительно дешевыми. В расчете на одну условную единицу проводимых операций их цена за последнюю четверть века снизилась в 100 тысяч раз!
Микроэлектронное производство не нуждается в большом количестве дорогостоящего сырья и энергии, не загрязняет окружающую среду, а выпускаемые приборы, становясь с каждым днем миниатюрнее и дешевле, приобретают универсальность. Уже в ближайшие годы микрокомпьютер станет столь же необходимой и привычной деталью повседневного обихода, как, скажем, телефон или телевизор. И пока только человеческое воображение ограничивает область применения ЭВМ. По мнению многих исследователей, нынешняя микроэлектронная революция увеличивает мощь нашего интеллекта, подобно тому, как промышленная революция умножила силу наших мускулов.
– В каких областях скажется, на ваш взгляд, прогресс микроэлектроники?
– Прежде всего, конечно, в общественном производстве.
Мы много внимания уделяем тем выгодам, которые дает внедрение станков с числовым программным управлением или специальных обрабатывающих центров. Но ведь их появление сразу меняет сам характер труда обслуживающего персонала. К примеру, работа станочника сводится лишь к контролю за работой автоматизированного оборудования. А какие горизонты творчества открывает компьютер перед конструктором! Раньше он, создавая, допустим, новый автомобиль, вручную, медленно и не без ошибок воспроизводил сначала его образ, модель. Теперь он уже на первом этапе автоматизированного проектирования может перебрать большое количество вариантов. Когда начнется детализация, то есть разработка отдельных частей, узлов – от двигателя до кузова, – то компьютер всю конструкцию будет поддерживать в заданных размерах. Не позволит, скажем, сделать подвески шире кузова. А это огромный труд – непрерывное увязывание всех деталей в одно целое. Такой труд берет на себя вычислительная система. Она же потом проверит и расчеты, и готовое изделие на точность и прочность, в различных взаимосвязях, чрезвычайных ситуациях.
Сейчас ученые Академии наук и МГУ помогают по-новому проектировать модели машин на заводе имени И. А. Лихачева.
Воплощается в конкретное дело исследовательская мысль, практически реализуются наши идеи. И не только в модели ЗИЛ-133, но и в системе управления всем огромным производством.
Сегодня повсеместно возрастает потребность в специалистах высшей квалификации. Прежде всего требуются инженеры по эксплуатации микроэлектронного оборудования, специалисты в области программного обеспечения, автоматической обработки данных.
– А как будет проходить микроэлектронная революция?
– Вскоре мы начнем считать компьютеры на миллионы. У нас есть для этого все технические возможности. Надо лишь четко продумать организационную сторону дела. Важнейшее требование при этом – стандартизация выпускаемой продукции. Нельзя ставить на поток тысячи типов компьютеров!
Кроме того, требуется высочайшее качество, надежность электронно-вычислительной техники. Можно на 99 процентов сделать вещь хорошо, а недоделка на оставшийся один процент сведет весь труд на нет. То есть организация строжайшего контроля за качеством – гарантия эффективного использования компьютеров. Вместе с тем нужна и большая доля свободы в разработке новых средств автоматизации. Микроэлектроника развивается столь быстро, что самая совершенная новинка за два-три года устаревает. Здесь нужен некий «момент-человек». Едва он придумал что– то – сразу же ему создать все условия для воплощения идеи, что называется, в металл, перебросив его на завод или создав небольшую производственную группу. Словом, обеспечить динамизм внедрения. Надо добиваться компьютерной грамотности в порядке всеобуча, как говорят, от рабочего до министра. Прав академик А. Ершов, считающий, что всем нам необходима эта вторая грамотность. Я бы добавил: вскоре у человека будет одним другом больше. Компьютер станет действенным помощником во всех наших делах. Особенно примечательны в этом отношении персональные компьютеры, мощность которых стремительно растет: через каждые два года удваивается! Персональный компьютер не просто подсказчик или наставник, который проверит ваши знания, оценив, правильно или неправильно вы ответили на конкретные, жестко сформулированные вопросы. Это инструмент творчества, развивающий вас, поощряющий ваши поиски…
Вот компьютер в школе – он должен учить учиться, работать на всех уроках и даже вне их. Почему бы компьютерному кабинету, который будет в каждой школе (мы постараемся, чтобы это произошло как можно быстрее), не взять на себя обработку, допустим, сельскохозяйственной информации? Известно, что в любом колхозе одно поле отличается от другого. Чтобы добиться максимальной продуктивности угодий, надо иметь точные сведения и соотнести их, взаимосвязан. Без такой корреляции трудно рассчитывать на успех, а установить ее поможет вычислительная техника, в том числе компьютер из будущего школьного кабинета.
Грандиозная перестройка во всех этих направлениях у нас уже идет. Всем следует глубоко осознать, что эра компьютеров уже наступила и выдвинула свои требования к каждому из нас.
– Облегчит ли информатика научный поиск? Что даст науке широкое использование электронно-вычислительной техники?
– Начнем с того, что сегодня просто невозможно без них проводить исследования, кроме, быть может, самых абстрактных. Огромная память и быстродействие ЭВМ позволяют в десятки раз ускорить получение результатов. Кроме того, электронно-вычислительная техника – незаменимый помощник исследователя и в самом проведении экспериментов. Открытие новых частиц в физике высоких энергий, создание искусственных генов, получение кормового белка и масса других достижений науки стали возможными благодаря тому, что ученые вооружились этой совершенной техникой. Если раньше эксперимент длился несколько дней или недель, а обработка полученных данных растягивалась на месяцы и даже годы, то компьютер позволяет получить конечный результат почти сразу после завершения опыта.
Персональный компьютер с набором вспомогательного оборудования и программ – мощное средство интенсификации научного поиска, но если его ресурсы окажутся недостаточными для решения поставленной задачи, то можно по системе телекоммуникации подключиться к «мозгу» большой ЭВМ, как бы почерпнуть дополнительные знания и силы. Вдобавок, персональный компьютер позволяет исследователю полностью менять ход вычислений, то есть не регламентирует творческий поиск. Однако новая техника выдвигает и некоторые требования перед исследователем. Он должен научиться более четко организовывать свою работу, «алгоритмизировать» свои размышления, с максимальным эффектом использовать «умную электронику»…
– А как скажется появление микроэлектронных устройств на самом «предмете» информатики – накоплении, хранении и переработке информации?
– Традиционный носитель информации – книга. Хранилище для 10 миллионов томов – это хорошая национальная библиотека. Давайте подсчитаем: для библиотеки в 10 миллионов томов потребуется всего лишь сто пластинок. Их можно будет постоянно иметь «под рукой» на полках домашней библиотеки, получая с помощью компьютера заключенную в них информацию. Точно так же компьютер может предоставить запрошенную информацию на рабочее место, связавшись с банком данных через информационную сеть.
Современные компьютеры уже могут прочесть книгу вслух – точно и отчетливо, даже воспроизвести интонации и модуляции человеческого голоса. Со временем человек сможет продиктовать компьютеру самые сложные тексты и получить их в отпечатанном виде, с правильно расставленными знаками препинания, без орфографических ошибок и опечаток. Кстати, бумажное делопроизводство в самое ближайшее время, на наших глазах совершенно преобразится благодаря таким средствам, как электронная почта, телекопирование документов, а огромное число конторских служащих освободится для более интересного и производительного труда.
Коренным образом изменится и работа средств массовой информации. Компьютер будет записывать нужную информацию, передающуюся круглые сутки, а каждый из, нас сможет с помощью того же компьютера прослушивать ее в удобное для себя время.
Но главное, конечно, информационная служба на производстве. Как ею обеспечить, к примеру, инженерный труд? ЭВМ сегодня накапливает информацию о всех технических проектах, устраняя повторы соответствующих расчетов. Опыт такого использования компьютеров в самолетостроении, электронике, автомобилестроении показал, что общие расходы на научно– техническую подготовку производства сокращаются на 40 процентов, не говоря уже о сжатых сроках исследований.
– Что вы считаете сегодня самым важным для ускорения научно-технического прогресса?
– Я уже касался проблем компьютерного образования. Повторяю: учиться предстоит всем – от академика до школьника. Причем, как понимаете, основные заботы и надежды приходятся на детей… Именно их нужно готовить для жизни в «информационном обществе XXI века», до наступления которого остались считанные годы. Электронные игры в детском саду, овладение первыми навыками работы с компьютером в средней школе – все это надо тщательно продумать и энергично осуществить. И нужно, по-моему, обращать основное внимание на то, чтобы выработать у ребят потребность в постоянном самообразовании, привить им умение грамотно и быстро находить нужные сведения, привычку искать и «пускать в дело» ценную информацию. Ведь, возможно, уже в ближайшие десятилетия коренным образом изменится «трудовой цикл» человека. Получив образование и проработав несколько лет, он вынужден будет оставить свое рабочее место или даже изменить профессию, вновьусаживаясь на студенческую скамью. Непрерывная учеба станет нормой нашей жизни. Бесспорно, это нелегко. Но другой возможности нет, если не просто мечтать о будущем, а деятельно приближать его.
Беседу вел журналист А. М.ЛЕПИХОВ
Б. Е. ПАТОН, академик
ПРАКТИКА – ЭТО ТЕОРИЯ В ДЕЙСТВИИ
Борис Евгеньевич Патон, президент АН УССР, директор Института электросварки АН УССР, дважды Герой Социалистического Труда, лауреат Ленинской и Государственной премий.
Институт электросварки АН УССР славится на всю страну своей научной продуктивностью. Разработки этого коллектива не задерживаются в стенах его лабораторий, а быстро и широко внедряются в практику промышленного производства, многократно повышая производительность труда рабочих. Высокие принципыи традиции основателя института Е. О. Патона продолжены и укреплены его последователями.
– Еще недавно спорили: что важнее – фундаментальные или прикладные исследования?…
– Прогресс – лучший судья и свидетель. Все революционные изменения в технике, технологии и экономике рождаются на основе фундаментальных исследований. Помните, знаменитая книга Евклида называется «Начала». Фундаментальные исследования и есть то самое начало, на котором возводится все здание науки. Раньше проходили десяти, а то и сотни лет, пока открытая истина обретала конкретное воплощение. Теперь же ученый, занимаясь фундаментальными разработками, как правило, должен ясно представлять возможности их практического использования. Более того, практика сама сегодня подсказывает наиболее важное направление научного поиска. Именно такие исследования – целенаправленные, фундаментальные – мы стремимся развивать в Академии наук Украины. Фундаментальные по сути, они конечным своим результатом имеют решение конкретных народнохозяйственных проблем. Возьмем, к примеру, физику низких температур, интереснейшее и перспективнейшее ее направление – сверхпроводимость. Здесь – фундаментальные исследования должны привести к результатам огромной значимости не только для самой науки, но и для народного хозяйства. Овладев секретами сверхпроводимости при температурах выше криогенных, можно было бы значительно уменьшить энергопотери в электрооборудовании. И не только это. Удалось бы высвободить для хозяйственных нужд так называемые площади отчуждения, занятые линиями электропередачи и равные территории некоторых государств, а также решить другие важные проблемы, которые ставит перед нами практика.
– Среди них одна из актуальнейших – снижение материалоемкости?
– Я бы даже сказал, одна из острейших. Уже сегодня достижения науки позволяют существенно уменьшить массу машин, механизмов, сооружений (громоздкое, тяжелое оборудование к тому же неконкурентоспособно на мировом рынке), улучшить их эксплуатационные характеристики, отказаться в ряде случаев от дорогостоящих и большей частью дефицитных материалов, заменить их новыми, прогрессивными. В обозримой перспективе ведущее место в народном хозяйстве останется за металлами. Их производство нельзя бесконечно наращивать. Надо всемерно экономить металл, максимально снижать его потери.
– Вы говорили о новых материалах…
– Да, пластмассы, керамика… Они все смелее вторгаются в нашу жизнь, становятся привычными. За ними – будущее. Но по меньшей мере до середины третьего тысячелетия пальму первенства будут удерживать металлы. Область их применения продолжает непрерывно расширяться. Кроме того, они практически незаменимы там, где возникают (замечу, все чаще и чаще) экстремальные условия: огромные давления, очень низкие и высокие температуры, агрессивные среды, радиация и т. д. Не всякий материал такое вытерпит. У металлов есть и другие достоинства, Например, можно заранее их «запрограммировать», придать им новые качества, необходимые свойства. В решении одной из таких проблем нам помогли трещины.
– Трещины?
– Самые обычные. Правда, в газопроводах. Они страшнее любого ЧП. Родившись, хрупкая трещина со сверхзвуковой скоростью распространяется по трубе, разворачивает ее в почти ровный металлический лист. Таким образом разрушаются не десятки, не сотни метров газопровода – километры. В США зафиксирован своеобразный рекорд – 10 километров. Ученые дали меткое название этому явлению: лавинное разрушение.
– И невозможно укротить «строптивую»?
– Можно делать трубы из высокопрочных, холодоустойчивых и высоковязких сталей, что и практикуется в некоторых странах. Однако это не всегда лучший путь. Производство таких труб сложно, трудоемко и, что не менее важно, очень дорого. Оригинальное решение проблемы предложили ученые нашего института: «гасить» трещины с помощью ловушек из многослойных материалов, ввариваемых в газопровод. Трещина, попадая в такие ловушки, не распространяется дальше. Эта разработка послужила началом исследований, направленных на создание и широкое использование нового класса композиционных материалов. Один из них, названный армированным квазимонолитным материалом, уже нашел практическое применение, в частности, для изготовления платформ сорокатонных карьерных самосвалов. Он заменил дорогую легированную сталь. Платформы стали тоньше, надежнее и служат дольше. Эти исследования значительно расширили наши представления о металле, его возможностях.
– Нередко устоявшееся мнение о незыблемости тех или иных понятий, законов мешает развитию науки?
– Да, например, электрошлаковый переплав, открытый в свое время тоже в Институте электросварки… Испокон веков считалось, что сталь и шлак – враги. Не отделишь – считай пропало. А шлак оказался не то что другом – кудесником. Пройдя через него, металл становится лучше по всем качествам, словно Иванушка из «Конька-Горбунка» после купания в кипящем молоке. Сегодня электрошлаковый переплав – целое семейство технологий, недавно пополнившееся еще двумя «родственниками»: центробежным и кокильным литьем, которое позволяет эффективно использовать металлоотходы производства и получать изделия сложной формы с минимальными припусками на обработку. Или другой пример. Берем лист хрома и легко его сгибаем, хотя это и противоречит его природе. Полученный по новой технологии, он еще и не на такое способен. Кстати, эта технология особенно перспективна в космосе.
– В шестидесятые годы, когда ваш институтвпервыепредложил сварку на орбите, кое-кто не верил в успех.
– Нам тогда очень помог Генеральный конструктор академик Сергей Павлович Королев. Мы с ним часто обсуждали будущее космических технологий. К сожалению, Сергей Павлович не дожил до того дня, когда Валерий Кубасов на «Союзе-6» с помощью установки «Вулкан» впервые в мире провел космическую сварку.
На орбитальной станции, как и в любой исследовательской лаборатории, приходится не только проводить эксперименты и наблюдения, но также монтировать и налаживать оборудование, ремонтировать вышедшие из строя установки, узлы станции. Причем не только внутри, но и за ее пределами – в открытом космосе. Для этого нужен инструмент, позволяющий в сложных и порой необычных условиях выполнять сразу несколько технических операций. Светлане Савицкой и Владимиру Джанибекову очень понравился универсальный ручной инструмент – УРИ, созданный в Институте электросварки. Он может резать, сваривать, паять, наносить покрытия в открытом космосе. Необходимость в выполнении таких работ может возникнуть в самых непредвиденных ситуациях. Помните, во время полета Валерия Рюмина и Владимира Ляхова вдруг обнаружилось, что за стыковочный узел зацепилась антенна радиотелескопа. Рюмину пришлось с ней повозиться. А был бы y него УРИ – вмиг бы электронным лучом перерезал тросик антенны.
– Какими, на Ваш взгляд, чертами и качествами должен обладать настоящий ученый?
– Прежде всего высоким профессионализмом, постоянным стремлением к самосовершенствованию, принципиальностью и честностью в отстаивании своих идей, убеждений. И конечно же, высокой гражданственностью, активной позицией в отношении новых прогрессивных перемен в обществе, обостренным чувством личной ответственности за судьбы человечества, всего мира. Свойства эти не рождаются вместе с человеком. Их нужно взрастить в себе, воспитать. Только самоотверженным трудом, преданностью делу можно добыть право быть в науке. В этом устремлении нельзя останавливаться, расслабляться. Победа коротка. Она свершилась и – уже вчерашний день. Нужно постоянно накапливать знания, опыт, чтобы реально оценивать созвучность своих планов и дел времени. Нужно всегда чувствовать себя молодым. Мой отец Евгений Оскарович – его имя носит наш институт – говорил, что в творческих вопросах молодость определяется не годом рождения, а умением всего себя отдавать труду, любимому занятию.
Наука не терпит лени. Ей ничто так не мешает, как дело, отложенное на завтра.
Беседу вел журналист П. Г.ПОЛОЖЕВЕЦ
Ю. Н. ДЕНИСЮК
СВЕТ, ОБРЕТАЮЩИЙ ОБЪЕМ
Юрий Николаевич Денисюк, член корреспондент АН СССР, заведующий лабораторией Государственного оптического института лауреат Ленинской и Государственной премий.
Голография – «целостная запись» – это метод получения изображения объекта, основанный на интерференции волн. Ее предложил в 1948 году англичанин Д.Габордля ликвидации искажений электронного микроскопа. Советский ученый Ю.Денисюк ставил перед собой другую задачу: он стремился получить более совершенные, чем фотографии, объемные, цветные, неотличимые от самого объекта изображения. Появление лазеров открыло новые возможности перед голографией, обещая сделать ее универсальным средством регистрации информации.
В 1894 году Габриэль Липпман получил первые цветные фотографии. Принцип их был основан на интерференции. К фотоэмульсии, нанесенной на прозрачную пластинку, прижималось металлическое зеркало. При отражении света от зеркала возникала интерференционная картина, но только не между двумя пучками света, а между падающим и отраженным лучом. Максимумы (пучности) располагались в толщине эмульсии на расстояниях, равных половине длины волны. Фотопластинка подвергалась специальной обработке, чтобы черные зерна серебра стали блестящими и отражали свет. Такое слоистое полупрозрачное зеркало обладало одной особенностью: оно отражало свет лишь с той длиной волны, под действием которой образовалось. То есть из падающего белого света отражало красный свет там, где падал красный, синий там, где падал синий, и так далее. Получилась плоская цветная фотография. За эту работу в 1908 году Габриэлю Липпману была присуждена Нобелевская премия.
История работ Липпмана ярко иллюстрирует причудливый и странный характер выяснения истины в науке: Липпман фактически открыл один из частных эффектов голографии. Более того, он получил первое голографическое изображение – в инструкции по использованию своих пластинок он предупреждал, чтобы между зеркалом и эмульсией не попадались соринки, иначе их изображение зафиксируется на фотопластинке.
Вместе с тем Липпман мечтал о получении изображений, создающих полную иллюзию действительного объекта, и даже предложил метод их получения. Метод оказался несовершенным и не имел ничего общего с его же собственными работами по регистрации стоячих волн.
Занимаясь липпмановскими фотографиями, я подумал, нельзя ли рассматривать зеркало, прижатое к эмульсии, не как приспособление аппарата, а как объект, свойства которого в данный момент зафиксировались фотопластинкой. То есть на фотопластинке зафиксировался не предмет, на который был направлен фотоаппарат, а расположенное за нею зеркало вместе с отраженным в нем предметом.
А если зеркало – объект, то его можно исследовать – отодвигать, изменять, заменять на другой.
Поставив вместо плоского зеркала вогнутое, я обнаружил, что изображение, полученное на плоской пластинке, обладает всеми свойствами вогнутого зеркала, так же фокусирует свет, так же искажает отражение предметов. Так и была названа первая, опубликованная в 1961 году работа: «Об отображении оптических свойств объекта в волновом поле рассеянного им облучения».
Позже на фотопластинку был поставлен обычный предмет, и получилась первая обычная трехмерная голограмма.
До 1963 года голография была многообещающим ребенком науки. Дело в том, что для получения четкой голограммы и восстановления изображения был необходим когерентный свет. (Когерентность – это согласованность излучения, когда волны не только совпадают по длине, но и распространяются, выдерживая между собой постоянную разность фаз.) Если луч нес в себе свет с различной длиной волны, то максимумы и минимумы от волн с различной длиной налезали друг на друга, смешивались и голограммы не получались. До 60-х годов источники давали когерентный свет, достаточный для получения четкой интерференционной картины, лишь на расстоянии долей сантиметра. При помощи различных фильтров и приспособлений удавалось увеличить это расстояние (длину когерентности) до сантиметров, но объект, имеющий в глубину несколько сантиметров, уже не фиксировался на голограмме.
В начале 60-х годов появились мощные источники когерентного излучения – лазеры. Длина когерентности лазерного луча достигала нескольких метров.
В 1963 году сотрудники Мичиганского университета Эммент Лейтс и Юрис Упатниекс использовали лазер для получения голограмм. Сделанный ими голографический снимок обошел весь мир. Фотографы снимали с голограммы изображение шахматной доски с фигурами, наводя резкость на последние фигуры, на передний план с различных точек так, чтобы фигуры перекрывались, а потом все были видны. Иллюзия подлинной шахматной доски была безупречной. С этого момента и началось триумфальное шествие голографии в союзе с лазером по всем странам мира.
Едва ли не каждый день мы узнаем о новых применениях голографии. Но она изменяет не только методику научных исследований, но и наши понятия, представления о мире, делает их четче, нагляднее, проще.
С этой точки зрения интересно рассмотреть случаи, когда голография, даже не внося ничего нового в методику исследований, меняет роль и место понятий просто одним своим существованием.
Известны факты, когда даже значительные разрушения коры головного мозга не наносят ущерба памяти. Попытки объяснить их многократной записью информации выглядели очень неубедительно, потому что приводили к громоздким, неустойчивым и неработоспособным системам. Но вот появились голограммы, даже небольшой участок которых содержит информацию о всем объекте и в то же время отличается от любого другого. Если мы разрушим голограмму, сохранив лишь небольшую ее часть, то все равно сможем увидеть весь объект, только осматривать его придется не через широкое окно, а через небольшое отверстие.
Голограмма, как и человеческая память, наделена ассоциативными свойствами, то есть может восстановить изображение всего предмета по фрагменту. Только человек по части узнает и представляет весь предмет, а голограмма восстанавливает его изображение.
Появление модели процессов, абсолютно непонятных биологам, вызвало интерес к ассоциативности и устойчивости человеческой памяти.
Это сходство не осталось не замеченным специалистами по электронно-вычислительной технике. К сожалению, большинство из них увлеклось такими свойствами голограмм, как большая емкость, быстродействие, устойчивое сохранение информации при механических нарушениях, и мало уделяет внимания их ассоциативным свойствам.
Как работает ЭВМ? Числовой массив считывается с магнитной ленты и заносится в машину. Затем каждое число переносится в сумматор и там сравнивается с заданным признаком. При обработке больших массивов информации именно ввод и вывод сдерживают быстродействие ЭВМ.
На фотопластинке, особенно трехмерной, можно записать в голографическом виде очень большой массив информации, и не только в виде чисел. Но выборку необходимого элемента можно осуществить, не перебирая всего массива. Стоит только осветить голограмму лучом из соответствующей точки или поставить перед ней фрагмент, например, номер страницы, как мгновенно будет восстановлено искомое изображение.
Поставив несколько голограмм одну за другой так, чтобы изображение, считываемое с предыдущей, было признаком для последующей, мы можем реализовать выборку информации по самой сложной логической цепи, затратив на это время, нужное, чтобы свет прошел расстояние от первой пластинки до последней.
Такой набор голограмм будет одновременно и памятью, и программой, и ЭВМ.
Значительные трудности возникают, если по ходу действия над элементами информационных массивов производятся математические операции. Но дальнейшее изучение свойств восстановленного волнового фронта, разработка приспособленной к голографии системы кодирования со временем дадут возможность создать так называемый интегральный сумматор, который будет получать отдельный результат или общие характеристики всего числового массива (дисперсии, средние значения), не перебирая все его элементы. Уже первые результаты ведущихся в этом направлении исследований впечатляют, а значение конечной их цели трудно переоценить.