Текст книги "Нестандартные задачи по математике в 4 классе"
Автор книги: Г. Левитас
Соавторы: Герман Левитас
Жанр:
Математика
сообщить о нарушении
Текущая страница: 2 (всего у книги 5 страниц)
41 – 50
Задача 41. Турнир по волейболу проводится по необычным правилам. Команда А считается превосходящей команду В в двух случаях: если она победила команду В в личной встрече или если она победила команду С, победившую команду В (ничьих в волейболе не бывает). Чемпионом объявляется команда, превосходящая все другие команды. Докажите, что в этом турнире могут оказаться три чемпиона.
Представим себе, что в таком турнире три команды обыграли всех остальных, а между собой сыграли так: первая обыграла вторую, вторая обыграла третью, а третья обыграла первую. Тогда каждая из них превосходит все остальные команды. Например, вторая превосходит третью, так как обыграла ее, но превосходит и первую, так как третья команда обыграла первую, вторая превосходит все остальные команды, так как обыграла их.
Задача 42. Переложи одну спичку, чтобы равенство стало верным:
Ответ:

Задача 43. В понедельник журналист получил гонорар за статью. Во вторник он истратил половину этого гонорара, а в среду получил еще 2000 руб. за другую статью, после чего у него осталось еще 4000 руб. Каков был гонорар за первую статью?
Остановимся здесь на алгебраическом решении. Будем создавать уравнение по этапам:
=
= 4000;
(первый гонорар) – (половина первого гонорара) + (второй гонорар) = 4000;
(первый гонорар) – (половина первого гонорара) + 2000 = 4000;
х – половина первого гонорара;
2х – первый гонорар;
2х – х + 2000 = 4000.
Ответ: 4000 рублей.
Задача 44. Сколькими взвешиваниями на чашечных весах без гирь можно найти одну (более тяжелую) монету из 60 монет?
Четырьмя, так как число монет больше 27, но не больше 81.
Задача 45. Разгадай ребус:

Сразу видно, что последняя цифра третьей строки – 4 и что средняя цифра второй строки – 0:

Первый множитель оканчивается либо цифрой 1, либо цифрой 6, так как умножение ее на 4 дает 4 на конце. Но умножение первого множителя на 5 дает число с нулем на конце. Поэтому первый множитель оканчивается на 6.
Ответ: 236 – 504 = 118944.
Задача 46. Сколько существует трехзначных чисел с цифрами от 1 до 5?
На первое место можно поставить любую из пяти цифр. На второе – тоже любую из пяти цифр. Значит, первые два места можно заполнить 5 · 5 = 25 способами. В любом из этих случаев можно на третье место поставить любую из пяти цифр. Поэтому всего таких чисел 25 · 5 = 125 чисел.
Ответ: 125.
Заметим, что если эта задача учащимся трудна, можно заменить в ней данные, дав задачу в такой, например, редакции: Сколько существует трехзначных чисел с цифрами от 1 до 3? Тогда ответ 27, и все числа можно выписать: 111, 112, 113, 121, 122, 123 и т. д.
Задача 47. Этими кубиками написано число 7;

Какие числа надо написать на гранях двух кубиков, чтобы получился календарь, то есть чтобы можно было писать кубиками все числа от 01 до 31?
Цифру 1 надо иметь на обоих кубиках, чтобы писать 11. Точно так же нужно иметь на обоих кубиках 2, чтобы писать 22. На обоих кубиках нужен и нуль, чтобы писать 01, 02…, 09. Из 12 граней двух кубиков остаются свободными 6 граней, на которых надо разместить 7 цифр: 3, 4, 5, 6, 7, 8, 9. Задача кажется неразрешимой. Однако, нам не нужна девятка: ее заменяет перевернутая шестерка
Ответ: На одном кубике надо написать 0, 1, 2, 3, 4 и 5, на другом 0, 1, 2, 6, 7 и 8.
Задача 48. В левом нижнем углу доски 6x7 стоит ферзь. Два игрока по очереди ходят им на любое число полей вправо, вверх или вправо-вверх по диагонали. Побеждает тот, кто попадет ферзем в правый верхний угол доски. Тебе разрешается начать игру или предоставить партнеру право первого хода. Как ты будешь играть?
Суть игры в том, чтобы ходить ферзем на выгодные поля и не ходить на невыгодные. Изучим с этой точки зрения нашу доску. Поле f7 – выгодное. Значит, поля, отмеченные знаком минус на рисунке – невыгодные (если мы попадем своим ходом на одно из них, противник немедленно пойдет на f7:

Значит, поля d6 и е5 – выгодные (если мы попадем своим ходом на одно из них, противник с него попадет только на невыгодное поле). Рассуждая таким образом, можно последовательно разметить всю доску, ставя плюс в выгодные поля и минус в невыгодные.

Ответ: Нужно начинать первым, ходить первым ходом на а4 или е5.
Задача 49. Продолжи последовательность: 10, 200, 3000…
Каждое следующее число последовательности получается из предыдущего увеличением на 1 первой цифры и увеличением на единицу числа нулей.
Ответ: 10, 200, 3000, 40000, 500000…
Задача 50. Если считать этаж, на котором живет Катя, сверху, то получится вшестеро больше, чем если считать снизу. На каком этаже живет Катя, если в ее доме больше 10 и меньше 20 этажей?
Так как в доме меньше 20 этажей, то сверху можно насчитать либо 6, либо 12, либо 18 этажей (ведь это число делится на 6). Если сверху насчитывается 6 этажей, то снизу 1 этаж, и этажей в доме меньше 10, что противоречит условию. Если сверху 12 этажей, то снизу 2, то есть Катя живет на втором этаже, а над ней еще 11 этажей, и вместе это больше 10 и меньше 20, что соответствует условию. Наконец, если сверху 18 этажей, то снизу 3 этажа, Катя живет на 3 этаже, а над ней еще 17 этажей, то есть всего в доме 20 этажей, что противоречит условию.
Ответ: На третьем.
51 – 60
Задача 51. Известно, что а – b = 29. Чему равно (а – 3) – b?
Надо попросить детей придумать сюжет задачи на эту тему.
Ответ: 26.
Задача 52. Эту фигуру нужно обвести карандашом, не отрывая его от бумаги и не проводя никакую линию дважды:

С какой точки можно начать обводку?
Начинать можно из точки, в которой сходится нечетное число путей.
Ответ: С точки А или точки В.
Задача 53. Два велосипедиста выехали навстречу друг другу из пунктов, находящихся друг от друга на расстоянии 20 км. Скорость каждого велосипедиста 10 км/час. Одновременно вместе с первым выбежала собака. Собака бегала между велосипедистами: добежав до второго, она возвращалась к первому, потом опять ко второму и так далее до тех пор, пока они не встретились. Сколько пробежала собака, если ее скорость равнялась 20 км/ч?
Иногда начинают высчитывать, сколько пробежала собака до второго велосипедиста, потом – сколько до первого и так далее. А все очень просто. Велосипедисты ехали до встречи ровно час, и столько же времени бегала собака со скоростью 20 км/ч.
Ответ: 20 км.
Задача 54. Докажи, что эту фигуру:

нельзя обвести карандашом, не отрывая его от бумаги и не проводя никакую линию дважды.
На фигуре больше двух точек, в которых сходится нечетное число путей. Поэтому нельзя начать обводку в одной из них и закончить в другой. Придется проходить через третью точку, что невозможно.
Задача 55. Сколько существует трехзначных чисел с неповторяющимися цифрами от 1 до 5?
На первое место можно поставить любую из пяти цифр. На второе – любую из оставшихся четырех цифр. Значит, первые два места можно заполнить 5 · 4 = 20 способами. В любом из этих случаев можно на третье место поставить любую из трех оставшихся цифр. Поэтому всего таких чисел 20 · 3 = 60 чисел.
Ответ: 60.
Заметим, что если эта задача учащимся трудна, можно заменить в ней данные, дав задачу в такой, например, редакции: Сколько существует трехзначных чисел с неповторяющимися цифрами от 1 до 4? Тогда ответ 24, и все числа можно выписать: 123, 124, 132, 134, 142, 143 и т. д.
Задача 56.Расшифруй фразу, зашифрованную шифром Юлия Цезаря, если известно, что буква Ё в ней шифруется, как Е: «пимомбмамоию росвлю гг лг ащбмаможръ».
В этой фразе есть слово «гг». В русском языке таких слов, состоящих из одинаковых букв, нет. Однако, если е и ё обозначаются одинаково, то «гг» может обозначать слово «гг». Это и дает нам в руки отгадку: г расшифровывается как е, то есть расшифровка идет по правилу «прибавь два».
Ответ: «Скороговорка трудна, её не выговорить».
Задача 57. В каком числе столько же цифр, сколько букв?
Нужно понять условие. Для этого нужно спросить, годится ли в качестве ответа число 1. В нем одна цифра, а букв четыре: о, д, и, н. Точно так же не годится число 2 и вообще никакое однозначное число. А какое число годится, – пусть дети подумают сами.
Ответ: 100 и 1000000.
Задача 58. Известно, что а – b = 21. Чему равно (а + 7) – (b – 4)?
Надо попросить детей придумать текст задачи на эту тему.
Ответ: 32.
Задача 59. В понедельник Андреев заработал вдвое больше Петрова. Во вторник Андреев истратил 100 руб., а Петров заработал еще 200 руб. После этого у них оказалось денег поровну. Сколько заработал каждый из них в понедельник?
Остановимся здесь на алгебраическом решении. Будем создавать уравнение по этапам:
=
(осталось у Андреева) = (осталось у Петрова);
(Заработок Андреева в понедельник) – 100 = (Заработок Петрова в понедельник) + 200;
х – заработок Петрова в понедельник;
2х – заработок Андреева в понедельник;
2х – 100 = х + 200;
х = 300.
Ответ: Андреев – 600 руб, Петров – 300 руб.
Задача 60. Среди 2001 монеты одна фальшивая. Как в два взвешивания на чашечных весах без гирь определить, легче эта монета или тяжелее, чем настоящая?
Первым взвешиванием сравним тысячу монет с другой тысячей монет. Если весы уравновесятся, фальшивая монета – та, которая не попала на весы. Тогда вторым взвешиванием узнаем, тяжелее она или легче любой другой монеты. Если же весы не уравновесятся, то возьмем, например, более легкую тысячу монет и вторым взвешиванием сравним ее половины. Если они уравнялись, то фальшивая монета среди более тяжелой тысячи, то есть фальшивая монета тяжелее настоящей. А если не уравнялись, то фальшивая монета среди более легкой тысячи, то есть она легче, чем настоящая.
61 – 70
Задача 61. В каком числе столько же единиц, сколько букв?
Нужно понять условие. Для этого нужно спросить, годится ли в качестве ответа число 1. В нем одна единица, а букв четыре: о, д, и, н. Точно так же не годится число 2. А число 3 годится: в нем три единицы, и оно записывается тремя буквами: т, р, и. Но это число не единственное – пусть дети найдут еще одно такое число.
Ответ: 3 и 11.
Задача 62. Известно, что а – b = 0. Чему равно (а + 6) – (b + 6)?
Надо попросить детей придумать текст задачи на эту тему.
Ответ: 0.
Задача 63. Сыграйте в игру «Кто первый скажет сорок?» Играют двое. Начинающий называет одно из четырех чисел: 1, 2, 3 или 4. Второй прибавляет к названному числу одно из тех же чисел и так далее. Выигрывает тот, кто первый сможет назвать число 40. Тебе разрешается начать игру или предоставить партнеру право первого хода. Как ты будешь играть? А как надо играть, если проигрывает назвавший 40?
В первой игре надо назвать 40.
Это можно сделать, если противник назовет любое число от 36 до 39. Для этого надо назвать 35.
Это можно сделать, если противник назовет любое число от 31 до 34. Для этого надо назвать 30.
Это можно сделать, если противник назовет любое число от 26 до 29. Для этого надо назвать 25.
Это можно сделать, если противник назовет любое число от 21 до 24. Для этого надо назвать 20.
Это можно сделать, если противник назовет любое число от 16 до 19. Для этого надо назвать 15.
Это можно сделать, если противник назовет любое число от 11 до 14. Для этого надо назвать 10.
Это можно сделать, если противник назовет любое число от 6 до 9. Для этого надо назвать 5. Это можно сделать, если противник назовет любое число от 1 до 4.
Во второй игре надо заставить противника назвать 40. Для этого надо назвать 39.
Это можно сделать, если противник назовет любое число от 35 до 38. Для этого надо назвать 34.
И так далее.
Ответ: В первой игре надо предоставить первый ход противнику, в свою очередь назвать число 5 и далее, независимо от того, какие числа называет противник, называть числа, оканчивающиеся на 0 или на 5.
Во второй игре надо ходить первым, назвать число 4 и далее, независимо от того, какие числа называет противник, называть числа, оканчивающиеся на 9 или на 4.
Задача 64. Сколько существует двузначных чисел, у которых вторая цифра больше первой?
На 1 начинаются восемь таких чисел: от 12 до 19, на 2 – семь, на 3 – шесть, на 4 – пять, на 5 – четыре, на 6 – три, на 7 – два, на 8 – одно число.
Ответ: 36.
Задача 65. Разгадай ребус:

Напишем очевидные цифры:

Теперь определяется первый множитель:

405 · * дает 2**5, значит * = 5, и второй множитель разгадан.
Ответ: 405 · 205 = 83025.
Задача 66.Продолжи последовательность: 2, 2, 4, 12, 48,…
Каждый член последовательности равен предыдущему, умноженному на 1, 2, 3….
Ответ: 2, 2, 4, 12, 48, 240, 1440….
Задача 67. Перечеркни эти девять точек четырьмя прямыми линиями, не отрывая карандаша от бумаги.

Решение дано на рисунке.

Задача 68. Известно, что а · b = 8. Чему равно (а · 3) · b?
Надо попросить детей придумать задачу на эту тему.
Ответ: 24.
Задача 69. Переложи две спички, чтобы равенство стало верным:

Ответ:

Задача 70. Папа с сыном играют в шашки. У папы на две шашки больше, чем у сына, а всего у них 12 шашек. Сколько шашек у каждого?
Возможны четыре способа решения.
1-й способ. Обозначим через х число шашек у сына, а через х + 2 – число шашек у папы. Тогда (х + 2) + х = 12.
2-й способ. Обозначим через х число шашек у сына, а через 12-х – число шашек у папы. Тогда (12 – х) – х = 2.
3-й способ. Обозначим через х число шашек у папы, а через х – 2 – число шашек у сына. Тогда х + (х – 2) = 12.
4-й способ. Обозначим через х число шашек у папы, а через 12 – х – число шашек у сына. Тогда х – (12 – х) = 2.
Однако, наиболее приемлем в 4 классе первый способ – уравнение решается легче.
Ответ: 7 и 5.
71 – 80
Задача 71. Сложи из шести спичек четыре треугольника.
Решение дано на рисунке:

Задача 72. В классе причесанных девочек столько же, сколько непричесанных мальчиков. Кого в классе больше, девочек или непричесанных учеников?
Очевидно, класс состоит из причесанных девочек, причесанных мальчиков, непричесанных девочек и непричесанных мальчиков. Число девочек в классе есть сумма числа причесанных девочек и числа непричесанных девочек. Число непричесанных учеников есть сумма числа непричесанных мальчиков и числа непричесанных девочек. Но первые слагаемые этих сумм равны по условию, а вторые слагаемые совпадают:

Ответ: Одинаково.
Задача 73. Сколько существует трехзначных чисел, у которых каждая цифра —1, 2 или 3?
На первое место можно поставить любую из трех цифр. На второе – любую из трех цифр. Значит, первые два места можно заполнить 3 · 3 = 9 способами. В любом из этих случаев можно на третье место поставить любую из трех цифр. Поэтому всего таких чисел 9 · 3 = 27 чисел.
Ответ: 27.
Задача 74. Известно, что а · b = 15. Чему равно а · (b · 3)?
Надо попросить детей придумать текст задачи на эту тему.
Ответ: 45.
Задача 75. Пять победителей конкурса «Кто громче крикнет» получили в награду по одинаковому количеству орехов. Трое из них сразу съели по 5 орехов и увидели, что у них вместе осталось столько орехов, сколько было выдано двум другим. Сколько всего орехов было выдано всем пятерым?
Трое съели 15 орехов. После этого у них осталось столько, сколько было выдано двум другим. А до этого у них было столько, сколько выдали троим. Значит, 15 орехов было выдано каждому из них.
Ответ: 75.
Задача 76. На верхней полке было в 7 раз больше книг, чем на нижней. Когда с верхней полки взяли 12 книг, а на нижнюю поставили еще 8 книг, то на верхней полке оказалось в три раза больше книг, чем на нижней. Сколько книг было на каждой полке первоначально?
Одно из возможных уравнений составляется так:
(Стало на верхней полке) = 3 · (Стало на нижней полке),
х – было на нижней полке,
7х – было на верхней полке,
7х – 12 = 3 · (х + 8).
Ответ: На верхней полке было 63 книги, на нижней – 9.
Задача 77. В одном ящике 50 шариков, а в другом 80. Каждый из двух игроков по очереди вынимает из какого-нибудь ящика любое число шариков. Выиграет тот, который возьмет последний шарик. Тебе разрешается начать игру или предоставить партнеру право первого хода. Как ты будешь играть?
Суть игры в том, чтобы уравнивать число шариков в ящиках. Это можно сделать первым ходом, взяв из второго ящика 30 шариков. Партнер обязательно нарушит полученное равенство, а мы опять восстановим его. Число шариков все время убывает, и когда-нибудь игрок, уравнивающий число шариков в ящиках доведет это равенство до 0–0, то есть выиграет.
Ответ: Нужно начать игру, взяв из второго ящика 30 шариков, и в дальнейшем каждый раз уравнивать их число.
Задача 78. Известно, что а · b – 12. Чему равно (а : 3) · b?
Надо попросить детей придумать задачу на эту тему.
Ответ: 36.
Задача 79. Задача из Древней Греции. Три грации имели по одинаковому числу плодов и встретили девять муз. Каждая из граций отдала каждой из муз по одинаковому числу плодов. После этого у всех муз и граций плодов стало поровну. Сколько плодов было у каждой грации до встречи, если у муз не было ни одного плода?
Минимальное число плодов, которое могла отдать грация каждой музе, равно 1. В этом случае каждая муза получила бы по три плода. Значит, у каждой музы и каждой грации в результате оказалось бы по три плода. Всего, таким образом, в задаче имелось 3 · 12 = 36 плодов. Поэтому у каждой грации первоначально имелось по 36 : 3 = 12 плодов.
Проверим полученное предположение. Если у каждой из 3 граций было по 12 плодов и если каждая грация дала каждой из 9 муз по одному плоду, то у каждой грации осталось по 3 плода, а у каждой музы стало тоже по 3 плода.
Однако, это решение не единственное. Если предположить, что каждая грация отдала каждой музе по 2 плода, то мы приходим к ответу 6, а если по 3 плода, то ответ будет 24. Вообще можно считать, что грация передает каждой музе по одинаковой кучке плодов, и тогда ответом будет 12, умноженное на число плодов в этой кучке.
Ответ: Любое число, делящееся на 12.
Задача 80. Ученый Виженер придумал такой способ шифровки текста. Вначале задумывается какое-нибудь слово (ключ шифра). Затем определяются номера букв этого слова в алфавите. А затем в шифруемом тексте каждая буква заменяется на следующую за ней в алфавите с таким сдвигом, который указывает полученный ключ. Например, зашифруем фразу «Сегодня хорошая погода» с помощью ключа «гав». Определим номера букв в ключе:

Теперь сдвинем буквы в соответствии с ключом, повторяя его, сколько нужно раз:

Последняя запись и будет шифром. Объясни, как, зная ключ «гав», прочитать запись «Хжжтерг цсфпыда ттдсзб».
Ответ: Нужно записать под данной фразой цифры 413…, а затем сдвигаться по алфавиту назад на столько букв, какова цифра под расшифровываемой буквой.
81 – 90
Задача 81. Известно, что а · b = 18. Чему равно (а · 2) · (b : 3)?
Надо попросить детей придумать задачу на эту тему.
Ответ: 12.
Задача 82. В футбольном турнире участвуют 5 команд из Москвы, Санкт-Петербурга, Великого Новгорода, Нижнего Новгорода и Екатеринбурга. Турнир проводится в два круга: каждая пара встречается один раз в одном городе, другой – в другом. Сколько матчей состоится в каждом городе? Сколько всего матчей в этом турнире?
Чтобы понять условие, нужно разобраться, какие игры и в каких городах проведет каждая команда. Начнем, например, с команды Москвы. Она проведет две игры с петербуржцами: одну в Москве, одну в Санкт-Петербурге. Она проведет две игры с Великим Новгородом: одну у себя, другую в гостях – и так далее. Результатом такого рассмотрения становится рисунок, на котором изображены пять стадионов и отмечено, какие команды приедут в гости на эти стадионы. Теперь ясно, что в каждом городе состоится по 4 матча, а всего матчей будет 5 · 4 = 20. Полезно спросить, сколько было бы матчей на каждом стадионе и сколько всего, если бы команд было 10. А самые сильные ученики могут придумать формулу n · (n – 1), обозначающую число встреч в двухкруговом турнире с n участниками.
Ответ: По 4 на каждом стадионе; всего 20.
Задача 83. Старинная русская задача. Некто узнал, что корова на ярмарке стоит вчетверо дороже собаки и вчетверо дешевле лошади. Он взял на ярмарку 200 рублей и на все эти деньги купил собаку, двух коров и лошадь. Что почем?
Самую маленькую цену – цену собаки – примем за 1 часть. Тогда цена коровы равна 4 частям, цена лошади – 16 частям, а общая цена покупки равна 1 + 8 + 16 = 25 частям. И так как 200 рублей равны 25 частям, то все цены легко определяются.
Ответ: Собака стоила 8 руб., корова – 32 руб., лошадь – 128 руб.
Задача 84. В пакете лежат конфеты. Если раздать их детям по 5 конфет каждому, то двоим конфет не достанется. А если раздать их по 4 конфеты, то в пакете останется еще 176 штук. Сколько конфет в пакете?
Одно из возможных уравнений составляется так:
Число конфет при первой раздаче = Число конфет при второй раздаче;
х – число детей;
х – 2 – число детей, которым досталось по 5 конфет при первой раздаче;
5 (х – 2) = 4х + 176.
Ответ: 920.
Задача 85. Известно, что а · b = 27. Чему равно (а : 3) – (b : 3)?
Надо попросить детей придумать задачу на эту тему.
Ответ: 3.
Задача 86. Среди 18 монет есть одна фальшивая, более легкая. Как одним взвешиванием на чашечных весах без гирь отобрать среди этих монет 6 настоящих?
Ответ: Разделив монеты на 3 группы, надо сравнить вес двух шестерок.
Задача 87. Возьми любое трехзначное число и припиши к нему такое же число. Получится шестизначное число. Раздели его на 7. Что получится, раздели на 11. Что получится, раздели на 13. У тебя получится то трехзначное число, с которого ты начал. Почему?
Приписав к трехзначному числу такое же число, мы умножили его на 1001. А разделив полученное число сначала на 7, потом на 11, а потом на 13, мы снова разделили его на 1001. Заметим, что эту задачу легко превратить в игру, когда один ученик пишет на листе бумаги трехзначное число и передает его второму, второй дописывает число до шестизначного и передает его третьему, третий делит число на 7 и т. д. и наконец, результат возвращается первому.
Ответ: 7 · 11 · 13 = 1001.
Задача 88. У мальчика в правом кармане втрое больше орехов, чем в левом. Если в оба кармана положить еще по 10 орехов, то в правом кармане их будет вдвое больше, чем в левом. Сколько орехов в каждом кармане?
Одно из возможных уравнений составляется так:
будет орехов в правом кармане = 2 · (будет орехов в левом кармане);
х – имеется орехов в левом кармане;
Зх – имеется орехов в правом кармане;
3х + 10 = 2 – (х + 10).
Ответ: 10 в левом, 30 в правом.
Задача 89.Известно, что а : b = 8. Чему равно (а · 3) : b?
Надо попросить детей придумать задачу на эту тему.
Ответ: 24.
Задача 90. Семь одинаковых батонов хлеба надо разделить поровну между 12 людьми. Как это сделать, разрезая каждый батон на равные части, но не разрезая ни один на 12 частей?
Можно каждый из трех батонов разделить на четыре части, а каждый из остальных четырех батонов разделить на три части. Получится 12 четвертушек и 12 третьих долей батона. Каждому из 12 людей надо дать по одной четвертушке и по одной трети батона. Тем самым будет роздан весь хлеб, и при этом каждый получит поровну. Это служит достаточным основанием для доказательства, что задача решена. В таком виде ее могут решить люди, не умеющие работать с дробями. Но в 4 классе можно подтвердить результат арифметически. Заметим, что именно так работали с дробями древние египтяне, сводившие всякую задачу о дробях к задаче о долях.









