355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Флорентий Рабиза » Космос у тебя дома » Текст книги (страница 7)
Космос у тебя дома
  • Текст добавлен: 13 июня 2017, 10:00

Текст книги "Космос у тебя дома"


Автор книги: Флорентий Рабиза



сообщить о нарушении

Текущая страница: 7 (всего у книги 11 страниц)

Незаметная скорость

Итак, мы с вами живем на гигантском волчке. Но мы не замечаем той огромной скорости, с которой Земля несется по своей орбите вокруг Солнца. Не замечаем мы и скорости, с которой поверхность Земли вращается вокруг своей оси.

Правда, мы знаем, что весна сменяет зиму, лето – весну, осень – лето, а зима приходит на смену осени. Эти смены времен года происходят постепенно, мы к ним привыкли и не связываем их со скоростью Земли вокруг Солнца, равной в среднем 29,765 километра в секунду. Эта цифра нам мало что говорит. Мы привыкли измерять скорости в километрах в час.

Пешеход может идти со скоростью шесть километров в час. Автомашина и поезд обычно развивают 40—100 километров в час. Самолеты перевозят пассажиров со скоростью от 300 до 800 и больше километров в час. Скорость самолетов постепенно растет, уже летают самолеты быстрее звука, то есть со скоростью больше 1200 километров в час. Наши космические корабли, летающие вокруг Земли, делают 28 400 километров в час.

Земля же летит по своей орбите вокруг Солнца со скоростью 107 154 километра в час!

А вращение Земли вокруг своей оси? Здесь самая большая скорость на экваторе – она равна 1674 километрам в час.

Этих скоростей мы с вами совсем не ощущаем.

Доказательство вращения Земли

Хотя в XIX веке никто из образованных людей уже не сомневался, что Земля вращается вокруг своей оси, а не Солнце вокруг нее, известный французский ученый Леон Фуко поставил в 1851 году опыт, который наглядно показывал вращение Земли.

Для своего опыта Фуко воспользовался свойством маятника сохранять плоскость своего качания даже в том случае, если место его подвеса вращается вокруг вертикальной оси.

В здании Пантеона в Париже Фуко подвесил маятник длиной 67 метров. Медный шар этого маятника весил 28 килограммов.

Когда маятник в Пантеоне был запущен, то через несколько минут было обнаружено, что плоскость качания маятника изменилась, ее ближняя к наблюдателю сторона передвинулась по часовой стрелке с востока на запад. На самом же деле плоскость качания маятника осталась прежней. За это время повернулась Земля с запада на восток.

Подобный маятник есть и у нас в некоторых городах. Маятник, который висит в Ленинграде в Исаакиевском соборе, еще больше своего предшественника в Пантеоне. Длина маятника в Исаакиевском соборе равна 98 метрам.

Сделайте и вы небольшую модель маятника Фуко. Возьмите деревянную доску длиной 50–60 сантиметров, шириной 12–15 сантиметров и толщиной 2–3 сантиметра. Укрепите на ней П-образную подставку из узких деревянных реек. Высота подставки должна быть около 30–40 сантиметров. В середине верхней перекладины просверлите вертикальное отверстие и вставьте в него кусочек проволоки, загнув верхний конец, чтобы он держался в отверстии. Нижний конец проволочки загните крючком, на нем будет подвешен маятник. Этот крючок должен свободно вращаться в своем гнезде.

На тонком шнурке подвесьте к крючку какой-нибудь тяжелый грузик (большую гайку, большой шарик от подшипника, завернув его в тряпочку).

Раскачайте маятник так, чтобы его размах не превышал длины подставки. Поворачивая подставку вокруг ее вертикальной оси против часовой стрелки, вы тем самым как бы повторите в миниатюре вращение Земли с запада на восток. Наша модель Земли поворачивается, а маятник продолжает колебаться в той плоскости, в которой он был запущен.

Этот опыт можно провести и более эффектно. Сделайте из толстой проволоки обруч диаметром 50 сантиметров и очень подвижной шарнир. Чтобы не сверлить проволоку, укрепите на внутренней стороне обруча на двух проволочках кусочек жести с хорошо зачищенным отверстием, в которое вставьте крючок и подвесьте на нем маятник. Затем на какой-нибудь перекладине подвесьте и весь обруч. К нижней его части привяжите еще одну веревку и, натянув ее вниз, закрепите конец.

Обруч будет висеть вертикально, растянутый веревками.

Раскачайте маятник. Когда вы станете вращать обруч вокруг его вертикальной оси, это нисколько не отразится на плоскости качания маятника. Он будет качаться в той же плоскости, в какой вы его запустили.

Если вам удастся найти помещение, в котором потолок находится на высоте 4–5 метров или больше, тогда опыт с маятником Фуко можно будет провести и не на моделях.

К сожалению, этот опыт нельзя поставить на открытом воздухе, где легче найти высокую точку для подвеса маятника. Малейшее, даже малозаметное движение воздуха исказит результат опыта.

Сейчас будет описан опыт с маятником, который наглядно покажет вращение Земли. Воспользуйтесь этим описанием, чтобы проделать опыт, применяясь к тем условиям, которые у вас окажутся.

В потолок был вбит тонкий гвоздь с обмотанным вокруг него свободно вращающимся кусочком тонкой проволоки, загнутой крючком. На тонкой бечевке к этому крючку был подвешен резиновый мячик (диаметр 6 сантиметров), наполненный песком. Общая длина маятника была 410 сантиметров. Маятник не доходил до пола на 6 сантиметров. Когда маятник был запущен (запускать надо очень аккуратно, чтобы мячик не вертелся вокруг своей оси и чтобы качался в одной плоскости), было засечено время и на пол под маятник вдоль плоскости его качания положена линейка длиной в один метр. Мячик качался точно над этой линейкой.

Плоскость качания была выбрана по компасу, она проходила с севера на юг. Наблюдатели во время опыта располагались на «юге». Спустя десять минут стало заметно, что колебания маятника направлены уже не вдоль линейки, как это было вначале, а пересекают линейку в ее средней части. На первую линейку была положена вторая, и так, чтобы маятник теперь качался точно над ней. Между линейками в точке их пересечения образовался угол. Создалось впечатление, что вся плоскость колебания маятника повернулась на этот угол по часовой стрелке – с востока на запад. На самом же деле за эти десять минут Земля вместе с комнатой и наблюдателями повернулась с запада на восток.

Как Луна вращает Землю

Что Луна вращает Землю, может показаться невероятным. Возникает справедливое сомнение: как Луна, масса которой в 81 раз меньше массы Земли и которая сама вращается вокруг Земли, вдруг вращает Землю?

Земля совершает много разных вращений: она вращается вокруг Солнца, вращается вокруг своей оси, ось Земли совершает прецессионное вращение. Но есть у Земли и еще одно вращение, вызванное Луной. Не было бы Луны, не было бы и этого вращения. Земля и Луна очень сильно связаны друг с другом силами взаимного притяжения. Конечно, притяжение Земли более мощное, и Земля удерживает своим притяжением Луну на ее орбите. Луна же своим притяжением (правда, в этом ей помогает и Солнце) периодически поднимает в земных океанах воду – происходят приливы и отливы.

Ученые подсчитали, и оказалось, что Луна хотя и вращается вокруг Земли, но вращается не вокруг земного центра, а вокруг точки, которая отстоит от центра Земли на расстоянии приблизительно 4700 километров. Эта точка называется центром масс системы Земля – Луна.

Обычно мы пользуемся выражением «центр тяжести». У палки, например, центр тяжести находится на ее середине. Если этим местом вы положите палку на палец, то палка уравновесится, потому что точка ее опоры будет точно под центром тяжести. У шара центр тяжести совпадает с его центром.

Но если применительно к земным предметам мы используем выражение «центр тяжести», зная, что сила тяжести – это сила притяжения тел к Земле, то по отношению к системе Земля – Луна применяют выражение не «центр тяжести», а «центр масс».

Сделайте небольшой прибор. Возьмите длинный пустой стержень от шариковой ручки – он имеет длину 12,7 сантиметра – и укрепите на его концах два шарика. Шарики можно подобрать деревянные от старых ненужных игрушек. Один шарик диаметром примерно три сантиметра, второй – один сантиметр. У большого шарика масса (под массой мы условились подразумевать меру инертности) в несколько раз больше, чем у маленького. Положите стержень с шариками на острие ножа и двигайте нож до тех пор, пока «коромысло» с шариками не уравновесится. Отметьте чернилами на стержне эту точку. Это будет центр тяжести нашей системы, состоящей из двух шариков. Массой стержня мы пренебрежем, она совсем незначительна. К точке, где расположен центр тяжести нашей системы, а она будет находиться ближе к большому шарику, привяжите две нитки длиной 70 сантиметров. Другой конец ниток привяжите к какой-нибудь перекладине, например к дверному косяку. Нужно, чтобы наш прибор висел свободно, ничего не задевая. Передвигая нитки вдоль стержня, добейтесь полного равновесия коромысла с шариками. Теперь, вращая коромысло вокруг ниток, закрутите их как можно больше. Кончив закручивание, проверьте, придерживая нитки рукой, не сбилось ли место их крепления с точки центра тяжести. Поправьте коромысло и, когда оно будет висеть горизонтально, успокойте его, чтобы оно не качалось. Коромысло начнет вращаться вокруг раскручивающихся ниток. Обратите внимание, что нитки, являющиеся осью нашего прибора, висят строго вертикально, никакие силы не заставляют их сойти с вертикального положения. Когда прибор перестанет раскручиваться, он будет висеть неподвижно в горизонтальном положении.

Этот же опыт можно проделать иначе. Сдвиньте на один сантиметр нитки вдоль стержня по направлению к маленькому шарику. Хорошо закрутите их и успокойте прибор, чтобы он не раскачивался. Осторожно отнимите руки. Начнется вращение. Обратите внимание на то, как ведут себя раскручивающиеся нитки. Они не висят вертикально, как раньше, а описывают конус. Теперь осью вращения нашего прибора стала ось этого конуса. Но ось по-прежнему проходит через центр тяжести двух шариков.

Проделайте этот опыт несколько раз, каждый раз сдвигая точку подвески все ближе и ближе к маленькому шарику. При быстром вращении прибора стержень, висящий теперь совсем наклонно, описывает два конуса. Их вершины соединяются в одной неподвижной точке – центре тяжести этой маленькой системы. Особенно интересно наблюдать вращение прибора, когда он подвешен за самую середину стержня или совсем близко от маленького шарика.

Но вернемся в космос. Как же все-таки Луна вращает Землю? Вы уже, наверное, догадались, что только что проделанные опыты имеют прямое отношение к системе Земля – Луна. Роль стержня от шариковой ручки, который связывает шарики в нашем опыте, играет притяжение Луны к Земле и Земли к Луне. Центр масс этой космической системы, как уже говорилось, находится на расстоянии 4700 километров от геометрического центра Земли. Напомним, что экваториальный радиус Земли – 6378,16 километра, значит, центр масс системы Земля – Луна находится внутри земного шара.

За полный оборот Луны вокруг Земли геометрический центр Земли тоже делает полный оборот вокруг центра масс системы Земля – Луна.

Ну, а теперь давайте сделаем очень упрощенную модель, иллюстрирующую вращение системы Земля – Луна. В ней не будут соблюдаться масштабы, не будет выдержано соотношение масс Земли и Луны, вращение Луны вокруг Земли будет происходить не по эллиптической, а по круговой орбите.

Возьмите кусочек пластилина и вылепите из него шарик диаметром три сантиметра. Это будет «Земля». Затем привяжите к стержню от шариковой ручки на расстоянии 2,5 сантиметра от конца две нитки. Привязать их нужно крепко, чтобы они не сдвигались с места. Насадите на этот конец стержня «земной шар». Стержень должен пройти насквозь строго по диаметру. Нитки при этом прорежут пластилиновый шарик и выйдут из него над тем местом стержня, к которому они привязаны.

Прорезь в пластилине аккуратно заделайте, проследите, чтобы при этом не сдвинулись нитки. Место крепления ниток на стержне будет центром масс нашего прибора, когда он будет закончен. Теперь подвесьте прибор на привязанных к нему нитках и наденьте на свободный конец шарик, тоже вылепленный из пластилина, но гораздо меньшего размера, чем первый. Прежде чем вылепить этот второй шарик, нужно взять маленький кусочек пластилина, прилепить к концу стержня и добиться полного равновесия, отрывая или добавляя пластилин. Стержень должен висеть горизонтально. Потом снимите пластилин, скатайте из него маленький шарик – «Луну» и насадите его на тот же конец стержня.

Добейтесь, чтобы наш прибор висел строго горизонтально, затем хорошо закрутите его вокруг ниток, на которых он висит. Осторожно, чтобы он не раскачивался, отпустите его. Наша модель системы Земля – Луна станет вращаться. «Луна» будет вращаться вокруг «Земли», а геометрический центр пластилиновой «Земли», расположенный на расстоянии одного сантиметра от точки подвеса, то есть центра масс, будет описывать окружность вокруг этого центра. Нитки, на которых вращается прибор, будут висеть вертикально, если система хорошо уравновешена.

Проделанные вами опыты наглядно показывают, какое важное значение имеет правильная центровка различных вращающихся деталей машин: маховиков, роторов турбин, генераторов и двигателей, всевозможных валов. Как важно, чтобы ось детали машины проходила через центр тяжести, чтобы не создавалась ненужная вибрация, которая вредно отражается на всей машине, приводит к износу подшипников и расшатыванию фундамента.

СКВОЗЬ БЕЗДНУ ПРОСТРАНСТВА И ВРЕМЕНИ

Оптическое путешествие по космосу

В 1611 году выдающийся немецкий астроном Иоганн Кеплер создал астрономическую трубу, которую можно считать предшественницей современных мощных телескопов-рефракторов. Астрономическая труба постепенно совершенствовалась: улучшалось качество линз, увеличивался их размер, создавались механизмы для наводки трубы на определенный участок неба, был придуман механизм для сохранения постоянства точки наблюдения независимо от вращения Земли. Одним словом, астрономическая труба превратилась в мощный, очень усовершенствованный телескоп. Ученые с помощью таких телескопов могли все глубже и глубже проникать взглядом в отдаленные участки Вселенной. Появилась возможность познакомиться более подробно с планетами Солнечной системы. У многих из них были обнаружены спутники, о существовании которых раньше не было известно, улучшилось наблюдение комет.

Сейчас, кроме оптических телескопов, получают все большее распространение радио– и рентгеновские телескопы. Они дают возможность изучать не внешние признаки небесных тел, а узнавать иногда и о тех процессах, которые происходят в их недрах.

Радиотелескопы сообщают ученым о многих интересных событиях, которые происходят в самых отдаленных местах нашей Галактики и даже за ее пределами, в других звездных системах.

Улавливая радиоволны и рентгеновское излучение, приходящие из космического пространства, ученые узнают много нового. Но не о том, что происходит сейчас. Ученые узнают о том, что происходило многие годы назад. От нескольких лет до тысяч, миллионов и даже миллиардов лет! Скорость света и радиоволн 300 000 километров в секунду. Это самая большая скорость, возможная в природе. Свет Солнца доходит до нас тоже не мгновенно, а спустя 8,3 минуты после «вылета» с солнечной поверхности.

Однако, сопоставляя разные наблюдения, изучая по существу прошлое нашей Вселенной, ученые могут судить и о том, что происходит в ней теперь.

Самодельный телескоп-рефрактор

Существует два типа оптических телескопов: телескопы-рефракторы и телескопы-рефлекторы.

В телескопах-рефракторах оптическая система состоит из линз. И объектив (оптическая система, направленная на наблюдаемый объект) и окуляр (оптическая система, в которую рассматривается пойманное объективом изображение) – линзы. В телескопах-рефлекторах исследуемый объект ловится параболическим зеркалом, а затем полученное изображение рассматривается с помощью окуляра, состоящего из системы линз.

Мы с вами сделаем телескоп-рефрактор, потому что линзы к нему приобрести легко и изготовление его несложно. Параболическое же зеркало к телескопу-рефлектору нужно шлифовать самому, а это довольно сложное и длительное дело. Но если кто из вас заинтересуется изготовлением телескопа-рефлектора, нужные сведения сможет получить из книги М. С. Навашина «Телескоп астронома любителя» (Физматгиз, 1962).

С помощью телескопа, который мы с вами изготовим, можно будет совершать увлекательные «прогулки» по небу, конечно, когда оно свободно от туч и облаков и на открытом воздухе достаточно тепло. Из комнаты через оконное стекло наблюдать звездное небо неудобно, кроме того, оконное стекло исказит изображение. Телескоп, который мы сделаем, даст возможность наблюдать Луну, планеты и звезды, увеличивать он будет в сто раз. При наблюдении, например, Марса во время его противостояния, то есть когда он ближе всего находится к Земле, вы увидите красноватый кружочек размером с горошину, если ее рассматривать на расстоянии 30 сантиметров.

Для нашего телескопа понадобятся две линзы, несколько листов толстой настольной бумаги и клей.

Линзу для объектива можно приобрести в аптеке в отделе оптики. Нужна очковая линза +0,5 диоптрии. У линзы могут быть неровные края, пусть это вас не смущает. Диаметр линзы около пяти сантиметров, и такого же диаметра мы будем клеить трубу.

Для окуляра нужно приобрести лупу с фокусным расстоянием два сантиметра. Диаметр лупы значения не имеет, но лучше, чтобы он был не больше пяти сантиметров. Основная труба телескопа должна быть 1,9 метра, а вместе с окулярной трубкой – 2 метра.

Если вам не удастся достать линзу +0,5 диоптрии, то можно взять линзу в +1 диоптрию. Но тогда телескоп будет длиною в один метр. При том же окуляре это даст увеличение в 50 раз. И этого увеличения достаточно для многих интересных наблюдений. Изображение планет будет меньшего размера, но зато более четкое.

Для изготовления основной трубы нужно взять лист плотной настольной бумаги, свернуть его в трубку на ровной палке или подходящей трубе диаметром пять сантиметров, затем, распрямив лист, следует отметить, сколько бумаги приходится на внутреннюю поверхность трубы. Эту часть листа закрасьте черной не блестящей краской (черной гуашью или «соусом»). Внутренняя поверхность трубы должна быть черная и не блестящая. Затем промажьте клеем край листа и, свернув его опять в трубку на той же палке, туго намотайте на нее остальную часть листа. С внутренней стороны смажьте край листа клеем, тогда труба не развернется. Нужно позаботиться, чтобы трубка была свернута туго и все слои бумаги плотно прилегали друг к другу. Для трубы длиною в 1,9 метра, возможно, понадобится склеить еще одну такую же трубку, а затем, состыковав их концами, обмотать стык два-три раза бумагой, хорошо промазывая внутреннюю сторону листа клеем. Если вы предполагаете взять будущий телескоп в поездку, то для удобства место стыка надо изготовить так, чтобы одну трубку можно было бы легко отсоединить от другой.

Для окулярной трубки нужно склеить из такой же бумаги трубку длиной 20 сантиметров. Ее внутренний диаметр должен равняться наружному диаметру большой трубы. Необходимо, чтобы окулярная трубка, плотно надетая на конец основной трубы, достаточно свободно передвигалась по ней.

Когда основная и окулярная трубы будут склеены, нужно укрепить в них линзы.

Из тонкого картона или из той же плотной бумаги изготовьте с помощью ножниц и клея две крышечки; одну для конца трубы, где будет объектив, другую на конец окулярной трубки. Точно в середине крышечек надо прорезать отверстия чуть меньше диаметров наших линз. Поставив снаружи линзу точно посередине, наложите на линзу кольцевой ободок из плотной бумаги и слегка закрепите его клеем. Теперь крышечки вместе с линзами в любое время можно будет снять, протереть линзы чистой байковой тряпочкой и положить в коробочку, чтобы не пылились.

Линза объектива должна устанавливаться выпуклостью наружу. Когда все будет готово, линзы протерты и надеты на свои места, можно считать, что оптическая часть телескопа готова. Неплохо трубки телескопа покрыть снаружи масляной краской и дать ей хорошо высохнуть.

Для склеивания больших трубок можно использовать клейстер, который готовят для клейки обоев. Для клейки колпачков – держателей стекол – лучше пользоваться синтетическим или каким-либо другим клеем в тюбике, который хорошо клеит бумагу. При работе с клеем ни в коем случае нельзя пачкать стекла. Стекла должны быть идеально чистыми. Брать линзу можно охватив двумя пальцами ее противоположные края.

Перед установкой линз в оправах их нужно помыть с мылом (если только линзы не склеенные), дать хорошо просохнуть и затем протереть чистой байковой тряпочкой.

Нам осталось сделать еще одну важную часть телескопа – штатив. Без штатива пользоваться телескопом невозможно.

Штатив нужно сделать такой высоты, чтобы можно было, сидя на складном стуле, без особого напряжения наблюдать разные участки неба – от Полярной звезды (над головой) до самого горизонта.

Штатив будет комбинированный – состоять из неподвижного треножника и выдвижного, поворачивающегося во все стороны устройства.

Ножки штатива нужно сделать из деревянных планок длиной около 120 сантиметров, сечением 2x4 сантиметра. Из доски толщиной 4 сантиметра выпилите треугольник со сторонами примерно по 12 сантиметров.

В центре треугольника просверлите отверстие, в которое будет вставляться круглая палка диаметром 2–2,5 сантиметра. Это будет держатель нашего телескопа. В палке-держателе через каждые 5 сантиметров сделайте сквозные отверстия, в которые можно вставить металлическую шпильку. Упираясь в треугольник треножника, шпилька не даст держателю опускаться вниз.

К треугольнику, срезав его углы, на навесных петлях прикрепите ножки, заострив их.

К верхней части держателя, сбоку, привинтите двумя шурупами деревянный кружок. К нему на винте с барашком прикрепите второй кружок, который может поворачиваться на винте. Винт с барашком при его завинчивании до отказа должен прижимать один кружок к другому. Ко второму кружку по его хорде прикрепите деревянную рейку длиной 50–60 сантиметров. К ее концам перпендикулярно к ней прикрепите два фанерных кружка диаметром 12–15 сантиметров. В кружках нужно сделать кольцевые гнезда, в которые будет вкладываться наш телескоп. К этим кружкам приделайте шнурки для закрепления телескопа, тогда он не вывалится из гнезд. Здесь дано описание деталей простейшего треножника; вы можете придумать более совершенную конструкцию. Например, весь держатель телескопа сделать металлический: вместо деревянной круглой палки – алюминиевая трубка, все остальные крепежные детали– из имеющегося под рукой металла. Все деревянные детали штатива перед их сборкой нужно хорошо обработать наждачной шкуркой, покрасить и покрыть лаком.

Уровень расположения трубы регулируется подниманием или опусканием держателя (палка или трубка). Вставленная в соответствующее отверстие деревянная палочка не даст телескопу вместе с держателем сдвинуться вниз. Для того чтобы у держателя телескопа не было перекоса, вставьте наглухо в деревянный треугольник штатива небольшой металлический патрубок, а уж в него стержень держателя. Тогда система будет устойчивее и держатель будет легче поворачиваться вокруг своей оси.

Наклон трубы телескопа обеспечивается поворотом кружка с рейкой вокруг болта с барашком. Барашек крепко фиксирует наклон трубы.

На подгонку приспособлений для наклона и поворота телескопа нужно обратить особое внимание. Телескоп все время придется вращать, даже когда он уже наведен на определенный объект ваших наблюдений. Земля вращается, и наблюдаемый вами объект все время будет выскальзывать из поля наблюдения. В обсерваториях у каждого телескопа есть механизм, который вращает телескоп с той же скоростью, с какой Земля «уводит» его от объекта наблюдения. В результате телескоп оказывается «намертво» нацеленным в нужную точку неба, и астроном может спокойно вести свои наблюдения или производить фотосъемку.

Когда у вас все будет готово и телескоп укреплен в гнездах штатива, поверните трубу горизонтально и наведите ее на какой-нибудь отдаленный предмет – дерево, дом, фонарный столб и т. п. Лучше это делать днем. Направлять телескоп на объект наблюдения нужно так, как будто вы собираетесь выстрелить из ружья и наводите его на цель. «Цель» должна оказаться на линии, проходящей по самому верху трубы. Ни мушки, ни прицельной рамки на трубе нет, но их легко себе представить. А когда «цель» поймана, тогда легко навести и объектив на намеченный объект. Смотря в окуляр, двигайте его взад и вперед, пока не увидите четкое изображение. Изображение будет «вверх ногами», но это не имеет никакого значения при наблюдении небесных тел.

Четкость изображения зависит от правильной центровки линз нашего телескопа. Центры линз объектива и окуляра должны совпадать с осью трубы. Для проверки центровки попробуйте, смотря на наблюдаемый предмет, вращать трубку окуляра вокруг своей оси. Если изображение остается без изменений, значит, центровка правильная и, дождавшись вечера и, конечно, безоблачного неба, можно будет приступить к увлекательному путешествию по небу.

С помощью телескопа вы сможете познакомиться со многими планетами Солнечной системы, с кратерами Луны и ее «морями». Правда, звезды будут выглядеть почти так же, как и без телескопа, только немного ярче, но в телескоп вы увидите и такие звезды, которые простым, невооруженным глазом не разглядишь.

Для тех, кто увлечется астрономией, а ею трудно не увлечься, можно порекомендовать книгу И. Д. Новикова и В. А. Шишакова «Самодельные астрономические инструменты и наблюдения с ними». В ней описано, как изготовить разнообразные астрономические инструменты.

Чтобы «путешествовать» по небу не вслепую, приобретите «путеводитель по небу» – «Школьный астрономический календарь». Его ежегодно выпускает издательство «Просвещение». В календаре дана карта звездного неба, рассказано, что, когда и где можно наблюдать.


    Ваша оценка произведения:

Популярные книги за неделю