Текст книги "Космос у тебя дома"
Автор книги: Флорентий Рабиза
Жанры:
Прочая детская литература
,сообщить о нарушении
Текущая страница: 3 (всего у книги 11 страниц)
Простые опыты с невесомостью
Вес и сила тяжести не одно и то же. Сила тяжести приложена к самому телу, а вес – сила, приложенная к опоре, на которой тело лежит, или к подвеске, на которой оно висит. Если тело падает, а падает оно под действием силы тяжести, то оно перестает давить на опору или оттягивать подвеску. А это значит, что вес исчез – наступила невесомость.
Что произойдет с пружинными весами, которыми измеряют вес, если они падают вместе с подвешенным к ним грузом? Они будут показывать отсутствие веса, их стрелка будет стоять на нуле.
Возьмите пружинные весы, приделайте на шкале над стрелкой хомутик из узкой полоски жести, чтобы он мог скользить по шкале, подвесьте на крючок весов какой-нибудь груз весом в два килограмма и передвиньте хомутик вниз до стрелки. Держа весы в руке, быстро опустите их вместе с подвешенным к ним грузом.
Движение вниз должно быть быстрым, ускоренным, оно должно имитировать падение весов и груза. После опускания весов стрелка будет показывать тот же самый вес. Но хомутик окажется сдвинутым на нулевое деление шкалы. Это значит, что во время быстрого опускания весов и груза груз ничего не весил, был в состоянии невесомости, и стрелка, поднявшись до нуля, сдвинула хомутик к нулю, где он и остался.
Если у вас нет пружинных весов, вы можете соорудить их подобие, укрепив на дощечке тугую резину, приделав к ней указывающую стрелку и жестяной хомутик над ней. Деления могут быть произвольные, важно, чтобы они начинались от нуля, когда на резине никакой груз не висит.
Проделайте другой опыт. Возьмите две нераспечатанные металлические банки консервов разных размеров. Поставьте одну банку на другую, чтобы донышко одной вошло в донышко другой. Между банками положите полоску бумаги так, чтобы наружу торчал ее конец. Если вы потянете за этот конец, то не сможете легко вытянуть плотно зажатую между банками бумагу, чтобы ее вытянуть, надо затратить некоторое усилие.
А теперь расстелите на полу тряпки, чтобы не повредить ни пол, ни банки, и проделайте следующее. Одной рукой держите за конец бумаги, которая зажата между банками, а другой рукой обе банки, поставленные одна на другую. Отпустите банки. Падая, они становятся невесомыми, и бумага легко выскальзывает из них.
Невесомость с сигнализацией
Если вы хотите сделать подарок школьному физическому кабинету, смастерите прибор, который будет показывать состояние невесомости во время свободного падения.
Для этой работы понадобятся столярные, слесарные и электромонтерские навыки, а также умение вырезать и клеить из картона.
Приступим к изготовлению прибора.
Его корпус нужно склеить из толстой бумаги, свернув из нее в несколько слоев трубку, в которой свободно могут перемещаться две цилиндрические батарейки, какие употребляются для транзисторных приемников. Трубка должна быть достаточно жесткой. Для ее склеивания используйте шаблон – круглую, разборную (разрезанную вдоль) деревянную палочку на сантиметр толще батареи. Длина трубки должна равняться двойной длине батарейки плюс пять сантиметров.
Из картона и бумаги нужно склеить две крышечки, чтобы их можно было плотно надевать и снимать с трубки. К одной из крышечек (будем считать ее верхней) сверху приклейте маленький фанерный кружок (диаметр его должен равняться внешнему диаметру трубки) и смонтируйте на нем контакты для крепления лампочки от карманного фонаря. К нижнему контакту (это может быть вырезанная из латуни пластинка) присоедините конец пружины, изготовленной из медной или железной проволоки. Пружину делают, навивая проволоку на какой-нибудь стержень. Пружина должна получиться такая, чтобы от веса двух батареек она растягивалась бы на половину своей длины. Сложите батарейки одну на другую (они будут соединены последовательно) и, убедившись с помощью лампочки, что между ними хороший контакт, обклейте их бумагой. Затем с помощью проволоки присоедините к концу пружины верхний контакт батарейки и пропаяйте место соединения.
Внутри нижней крышечки приклейте фанерный кружок, а на нем смонтируйте латунный контакт. В него упрется донышко нижней батарейки, когда наш прибор будет собран. Провод от этого контакта выведите наружу и подсоедините к боковому контакту лампочки на верхней крышечке. Сбоку корпуса прибора, вдоль него с двух сторон прикрепите по две петельки из проволоки.
Соберите прибор. Батарейки нужно подвесить на пружине под верхней крышечкой. Дно нижней батарейки должно находиться на нижнем контакте. Вверните лампочку – она будет гореть. Держа прибор вертикально, лампочкой вверх, быстро опустите его, не выпуская из рук. Если лампочка в момент опускания на мгновение погаснет и снова загорится, значит, все в порядке. Иначе придется сделать другую пружину: изменить ее диаметр или толщину проволоки, из которой она изготовлена.
После проверки прибора смонтируйте его на предварительно обработанной доске длиной два метра и шириной пятнадцать сантиметров. Наверху доски сделайте петлю, чтобы доску можно было вертикально повесить на стену, а внизу прикрепите небольшую полочку, к которой приклейте резиновый мячик. Снизу вверх вдоль доски, обогнув резиновый мячик, натяните две капроновые рыболовные лески.
Лески должны быть расположены на расстоянии диаметра изготовленного прибора и проходить в его проволочные петли с обеих сторон. Лески хорошо натяните и закрепите наверху. Когда прибор будет поднят, он не должен касаться доски.
Приступим к опыту. Прибор с горящей наверху лампочкой вы поднимаете до самого верха. Горящая лампочка сигнализирует, что висящий на пружине груз (батарейки) имеет вес. Отпустите прибор. В момент падения наступает состояние невесомости. Груз (батарейки) перестает оттягивать пружину. Нижний контакт размыкается, и лампочка гаснет. Когда прибор упадет на амортизатор-мячик, состояние невесомости прекращается, и лампочка загорается вновь. Чтобы лампочка не горела зря, сбоку цилиндра – корпуса прибора – сделайте выключатель. Тогда можно будет зажигать лампочку только во время опытов.
Состояние невесомости у нашего прибора символически выражается тем, что лампочка гаснет. Но если вы хотите, можно сделать наоборот: лампочка будет загораться тогда, когда невесомость наступает.
Невесомость вокруг нас
На Земле очень часто приходится встречаться с явлением если не полной невесомости, то частичной потери веса. В земных условиях она продолжается очень недолго.
Вам, конечно, приходилось спускаться в лифте. Особенно заметна частичная потеря веса в момент начала опускания лифта.
А на качелях? Когда качели опускаются, происходит тоже частичная потеря веса.
При занятиях водным спортом, при прыжках с вышки в воду или при прыжках на батуте, когда гимнаст парит в воздухе, наступает состояние полной потери веса, полной невесомости.
Вы, наверное, наблюдали полеты акробатов под куполом цирка, прыжки из-под купола в натянутую сетку. Каждый прыжок – это несколько секунд невесомости.
Затяжные прыжки парашютистов, когда они летят еще с ускорением, тоже пример состояния невесомости.
Но самое продолжительное состояние периодической потери веса наступает во время шторма на море. Когда палуба «уходит из-под ног», наступает потеря веса, многие переносят это с трудом и заболевают так называемой морской болезнью.
Итак, невесомость проявляется во время свободного падения.
Космический корабль, летящий вокруг Земли, находится в состоянии свободного падения. На него действует сила притяжения Земли, и он все время падает.
Но ему сообщена такая скорость, что он упасть не может и летит по своей орбите, описывая вокруг Земли виток за витком.
И все, что находится в космическом корабле, когда он движется по своей орбите вокруг Земли, тоже притягивается Землей, но на опоры не давит, находится в состоянии невесомости. Поэтому космонавту безразлично – сидеть ли в кресле или летать в кабине. Опоры-то нет все равно. Вы часто видели по телевидению, как в кабине летают ручки, блокноты и другие незакрепленные предметы.
Но нужна большая предварительная тренировка, чтобы привыкнуть к состоянию невесомости. И не только привыкнуть, но и работать много дней подряд.
ОПЫТЫ С ТЕПЛОТОЙ
Теплота – основа жизни
Жизнь на Земле существует благодаря лучистой энергии Солнца и атмосфере. На Земле живут самые разнообразные животные и растения. И приспособились они к самым различным температурам в пределах от 50–58 градусов тепла до 60–70 градусов мороза. А в некоторых районах мороз доходит даже до еще более низких температур.
О том, как живые существа приспосабливаются к сильному холоду, может послужить пример с пингвинами. В Антарктиде при очень низкой температуре пингвины даже выводят птенцов.
Но ни одно живое существо не выдержало бы холода в космическом пространстве, так же как не выдержало бы температуры на поверхности Венеры, где она доходит до сотен градусов тепла.
И когда космонавты отправляются в космическую пустыню– где нет среды, которая могла бы нагреться Солнцем, нет ничего, что могло бы задержать и отразить солнечные лучи, а поэтому возможен самый лютый холод, – принимаются все меры к тому, чтобы внутри корабля было достаточно тепло.
Воздух в кабине космического корабля или орбитальной станции поддерживается такого же давления и такого же состава, как и на Земле. А температура – такой, к какой люди привыкли. Все это обеспечивают приборы, которые автоматически регулируют и состав, и влажность, и температуру, и давление маленькой атмосферы корабля или станции.
Только состояние невесомости дает почувствовать космонавтам, что они не на Земле, а на крошечной искусственной планете, созданной человеческим разумом, которая мчится с огромной скоростью в пустом, мертвом космическом пространстве…
Горячие лучи сквозь космическую пустоту
Итак, все живое на Земле обязано своим существованием Солнцу. Что же из себя представляет этот могучий источник жизни?
Солнце – это раскаленный газовый шар. Предполагается, что в его недрах при огромных температурах и давлениях непрерывно происходит термоядерная реакция превращения водорода в гелий. Эта бурная реакция сопровождается выделением колоссального количества тепловой энергии. Тепловая энергия Солнца излучается во все стороны в виде лучистой энергии. Земле достается ее крошечная частица.
Но и этой частицы оказалось достаточно, чтобы на Земле возникла жизнь: выросли могучие леса, появились живые существа.
И почти все виды энергии на Земле обязаны своим происхождением Солнцу. Сейчас стали использовать Солнце и как непосредственный источник энергии. На Земле строят установки, которые улавливают солнечные лучи и заставляют их нагревать воду либо прямо превращаться в электрическую энергию. Вы знаете, что на искусственных спутниках Земли и на космических кораблях, орбитальных станциях, автоматах, путешествующих по Луне или направленных к планетам, куда они посланы для исследований, основным источником энергии является Солнце. Солнечная энергия для космических аппаратов улавливается с помощью солнечных батарей и превращается в электрический ток.
Энергия Солнца приходит к нам на Землю в виде тепловых лучей, преодолевая миллионы километров безвоздушного пространства. Такой способ передачи теплоты, когда она передается без нагревания промежуточной среды, называется лучеиспусканием.
Проделайте такой опыт. Обхватите пальцами баллончик невключенной электрической лампочки. Вы почувствуете холод стекла. Включите на 2–3 секунды лампочку. Пока она горела, вы ощущали в ладони и пальцах, в которых зажата лампочка, тепло. Но как только лампочка погасла, вы по-прежнему чувствуете холод стекла.
Ни стекло, ни газ, которым теперь заполняют лампочки на смену выкачанному из них воздуху, не успели нагреться. Руку грели тепловые лучи, исходившие из раскаленной нити.
Раньше лампочки делали пустыми внутри – из них выкачивали воздух. Такие лампочки представляли маленькую модель распространения солнечного тепла ко всем планетам через безвоздушные просторы Вселенной.
Но и на газонаполненной лампочке вы можете убедиться, что согревают руки лучи, а не стекло, которое еще не успело нагреться.
От горячего к холодному
Вы сейчас познакомились с лучеиспусканием, способом передачи теплоты в виде лучистой энергии без нагревания промежуточной среды. Но существуют и другие способы распространения теплоты. Один из них называется теплопроводностью.
Вам приходилось брать за ручку кастрюльку, в которой только что закипела вода. Ручка, если она металлическая, очень горячая. Конечно, специально никто ее не грел, грели кастрюльку, но теплота от горячей кастрюльки перешла в ручку, и она нагрелась.
Тепло переходило по металлу постепенно. Раньше такое передвижение теплоты сравнивали даже с движением текущей воды.
Разные твердые вещества по-разному проводят тепло. Лучше всего это делают металлы. Но и среди металлов есть чемпионы по теплопроводности. К ним относятся так называемые «благородные металлы» – платина, золото, серебро. Их широко применяют в ответственных электрических схемах, приборах, аппаратах.
Чтобы посмотреть, как по-разному металлы проводят тепло, проделайте следующий опыт.
Возьмите две чайные ложки: одну серебряную, другую из никелевого сплава. Прикрепите к ним каплями стеарина скрепки для бумаг. Вложите ложки в стакан, чтобы ручки со скрепками торчали из него в разные стороны.
Налейте в стакан кипяток. Ложки нагреются. У серебряной ложки стеарин расплавится, и скрепка отпадет. У другой ложки скрепка или совсем не отпадет, или отпадет позже, когда ложка нагреется сильнее.
Конечно, ложки должны быть одинаковые по форме и размеру. Если нет серебряной ложки, возьмите такие, какие у вас есть, но только из разных металлов. Где нагревание произойдет быстрее, тот металл лучше проводит тепло, более теплопроводен.
Из твердых веществ хуже всего проводит тепло керамика, пластмасса, дерево, ткань. Вот поэтому ручки у чайников или сковородок делают из пластмассы или дерева. А если ручка металлическая, то, чтобы не обжечь пальцы, приходится пользоваться тряпкой. Она тоже плохо проводит тепло и предохраняет руку от ожога, служит теплоизоляцией.
Вес – регулировщик теплоты
В природе существует еще один способ распространения теплоты – конвекция. Он наблюдается в жидкостях и газах. Основана конвекция на том, что участки жидкости или газа при нагревании становятся менее плотными и поднимаются вверх, а более холодные, более тяжелые слои опускаются вниз. Источник тепла обычно помещается внизу, поэтому происходит непрерывное передвижение нагретых слоев вверх, а холодных вниз. Но при невесомости, например, в помещении орбитальной станции, такой способ распространения тепла не действует. Ведь вес – регулировщик теплоты – отсутствует.
Чтобы проследить, как происходит конвекция у жидкостей, проделайте такой опыт.
Возьмите гладкую металлическую пластинку, например ровную металлическую крышку от стеклянной банки из-под консервов, положите на нее несколько кристаллов марганцевокислого калия, капните на них каплю воды и покройте тонким слоем стеарина. Края лепешки из стеарина плотно прилепите к пластинке. Налейте в стакан воду, накройте его пластинкой так, чтобы стеариновая лепешка оказалась внутри стакана. Придерживая стакан рукой, переверните его вверх дном.
Поставьте пластинку со стаканом на две опоры, чтобы к ней, ее средней части, был снизу доступ для свечи.
Поднесите к тому месту пластинки, над которым приклеен стеарин, горящую свечу. Лепешка, нагревшись, оторвется от пластинки, и поток горячей воды, окрашенный в фиолетовый цвет, устремится вверх. Вы увидите циркуляцию окрашенных потоков воды: теплые струйки идут вверх, холодные – вниз.
Опыт, демонстрирующий циркуляцию воздушных тепловых потоков, проделайте так. Возьмите стекло от керосиновой лампы, а если его нет, то бутылку из-под кефира с ровно отрезанным дном.
Поставьте ламповое стекло на горящую свечку. Она быстро погаснет. Свежий воздух к ней не поступает. Горячий воздух с продуктами горения устремляется вверх, а свежему воздуху пройти негде. Но если вы в ламповое стекло вставите полоску из плотной бумаги, она разделит внутреннее пространство на две половины: в той, где находится свеча, горячий воздух с продуктами горения по-прежнему будет идти вверх, а свежий, более холодный воздух будет притекать к свече сверху – по другую сторону перегородки.
Чтобы убедиться, что перегородка играет важную роль в снабжении свечи свежим воздухом и что без нее циркуляции воздуха не будет, выдерните бумажную полоску. Свеча моментально погаснет.
Заслон от теплоты
Зимой, в мороз выходя на улицу, вы применяете теплоизоляцию, попросту говоря, надеваете теплое пальто или шубу. Воздух, который содержится между волокнами ваты или меха, лишен возможности циркулировать от теплого к холодному, а сам по себе воздух, как и всякий газ, плохой проводник тепла. Поэтому пройдет много времени, пока вы почувствуете при сильном морозе, что шуба перестает греть.
Хотя нужно сказать, что шуба вообще никогда не греет, она только помогает сохранять то тепло, которое у нас есть.
Итак, для того чтобы предохранить что-либо от холода, применяется теплоизоляция. Но и от излишнего тепла приходится принимать теплоизоляционные меры. Когда космический корабль (речь идет о спускаемом аппарате, в котором находятся космонавты) с огромной скоростью летит в атмосфере Земли, его стенки трутся о воздух и сильно нагреваются. Чтобы предохранить экипаж, а если это автоматическое устройство, летавшее в районе Луны или какой-либо планеты, то для сохранения находящихся там приборов применяют теплоизоляционный, теплостойкий чехол. Он состоит из слоев плохо проводящих теплоту материалов, материалов, которые способны выдержать высокую температуру.
Уже говорилось о том, что газы плохо проводят тепло. Чтобы в этом убедиться, можно проделать следующий опыт.
Возьмите алюминиевую тарелочку от детской посуды, поставьте ее на небольшой огонь и, когда она достаточно нагреется, налейте на нее половину чайной ложки воды. Вода не испарится мгновенно, как следовало бы ожидать. Вода перекатится плоским шариком – сфероидом на самое низкое место тарелочки и замрет там на раскаленном металле.
Кажется странным, что вода не превращается сразу в пар. Конечно, вода испаряется, но этот самый пар, в который превращается вода, и предохраняет большую сфероидальную каплю от раскаленного металла. Пар в данном случае оказывается отличной теплоизоляцией.
Этот же опыт можно проделать и в упрощенном варианте. Когда вы гладите белье, переверните утюг и, если он достаточно нагрет, брызните на него водой. Она сразу превратится в маленькие круглые шарики, которые быстро покатятся по утюгу. Эти мелкие шарообразные капельки тоже не испарились мгновенно, их тоже защитила от жара утюга паровая прослойка, «паровая подушка». На этой «паровой подушке» водяные шарики и пропутешествовали по раскаленному утюгу.
Сейчас существуют аппараты, передвигающиеся на «воздушной подушке» – немного отрываясь от земли или воды. Мощные вентиляторы дуют вниз и создают такую плотную «воздушную подушку», что она выдерживает вес всего аппарата вместе с находящимся на нем экипажем. В нашем опыте происходило нечто похожее на этот способ передвижения. Только у нас с вами была не воздушная, а «паровая подушка» и создавала ее раскаленная поверхность металла.
Проделайте еще такой опыт.
Возьмите несколько маленьких кусочков сухого льда, положите их на гладкую поверхность алюминиевой тарелки. Наклоняйте тарелку в разные стороны. Кусочки сухого льда будут легко скользить по гладкой поверхности. Теплая поверхность алюминиевой тарелки (ее температура отличается от температуры сухого льда по крайней мере на 100 градусов) помогает углекислому газу более бурно выделяться. Под кусочками сухого льда получаются «углекислые подушки», на них и происходит скольжение.
Расширение при нагревании
Всем хорошо известно, что при нагревании тела расширяются. В термометрах ртуть или подкрашенный спирт находятся в маленьком баллончике. При нагревании ртуть или спирт расширяются и в виде столбика движутся по тончайшему каналу. Когда наступает тепловое равновесие, столбик останавливается, и на шкале можно увидеть, какая сейчас температура среды, которая окружает термометр.
А вот другой случай, когда можно убедиться, что тела при нагревании расширяются. Иногда в стеклянном флаконе притертая пробка так туго сидит, что ее не вытащишь. Очень большое усилие применить опасно – можно отломить горлышко и порезать руки. Поэтому прибегают к испытанному способу: к горлышку подносят горящую спичку, а флакон поворачивают, чтобы горлышко равномерно прогрелось. Пламени одной спички достаточно, чтобы стекло горлышка от нагревания расширилось, а пробка, не успевшая нагреться, легко вынулась.
Это случаи бытового применения физического закона. Можно проделать опыты, которые наглядно покажут, как изменяют свою длину металлы при нагревании и при охлаждении.
Вырежьте в деревянном кружке или бруске выемку, воткните в один ее край иголку, а ушко иголки положите на другую сторону выемки. В ушко вставьте вторую иголку и слегка воткните ее в дерево. Поднесите к первой иголке горящую свечку. Иголка нагреется, немного удлинится и наклонит вторую иголку, вставленную в ушко.
Сделайте тепловые весы. Для этого возьмите прямой кусок медной проволоки толщиной 1–2 миллиметра, длиной около 40 сантиметров. Воткните конец этой проволоки в отверстие, просверленное в деревянной палке примерно такой же длины, и подвесьте получившееся коромысло тепловых весов за середину на нитке. Уравновесьте его. Может быть, для этого нужно будет подрезать деревянную палочку или, наоборот, подвесить к ней небольшой груз, например кусочки бумаги. Можно добиться равновесия и передвигая точку подвеса коромысла. Осветите коромысло настольной лампой, чтобы на стене один его конец, например медный, давал тень. На этом месте укрепите на стене белую бумагу и отметьте карандашом положение тени, когда коромысло висит строго горизонтально. Затем возьмите две зажженные свечи и подставьте их под медную проволоку. Когда она хорошо нагреется, она удлинится, и равновесие нарушится. Потому что нарушилось соотношение плеч. Конец проволоки опустится на несколько миллиметров. Это будет хорошо видно по тени на стене. Если свечи убрать, медная проволока остынет, станет короче, то есть такой, какой была до нагревания, и коромысло наших тепловых весов, вернее, его тень встанет на свою метку.