412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Филлип Рэн » Атомная проблема » Текст книги (страница 6)
Атомная проблема
  • Текст добавлен: 6 августа 2025, 19:30

Текст книги "Атомная проблема"


Автор книги: Филлип Рэн


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 9 страниц)

Следовательно, ближайшее будущее, как нам кажется, уже обеспечено, а за отдаленное будущее также вряд ли следует опасаться.

Когда проблема использования термоядерной энергии будет решена, можно будет утверждать, что проблема обеспечения энергии не возникнет практически ни для одного из будущих поколений, тем более что к тому времени будет найден способ использования других видов энергии, например солнечной.

II. Энергетические потребности Франции

Как обстоит дело во Франции? Какое значение может иметь здесь ядерная энергия по сравнению с обычными источниками энергии и какие выгоды принесет ее использование? Вот вопросы, на которых мы сейчас остановимся.

1. Спрос на энергию

Спрос на энергию во Франции характеризуется следующими цифрами:

а) годовое потребление угля, которое с начала XX века изменилось весьма незначительно, составляет сейчас около 70 млн. т. Есть основания полагать, что в будущем эта цифра сократится, поскольку потребление угля железнодорожным транспортом и расход его на отопление уменьшается из года в год. Однако нужно принять во внимание то обстоятельство, что тепловые электростанции будут расходовать все больше и больше угля;

б) потребление нефтепродуктов на транспорте было до сих пор довольно низким. Оно увеличивается ежегодно примерно на 7 %. В 1955 году потребление нефтепродуктов на территории метрополии составило 15,6 млн. т – вдвое больше, чем в 1949 году;

в) в 1955 году во Франции было израсходовано 49,4 млрд. квт-ч электроэнергии, то есть на 9,1 % больше, чем в 1954 году. За период с 1946 по 1956 год потребление электроэнергии во Франции возросло в 2,6 раза.

Следует добавить, что по потреблению электроэнергии на душу населения (1060 квт-ч) Франция занимает седьмое место в мире после Норвегии (6450 квт-ч), Соединенных Штатов Америки, Швейцарии, Великобритании, Западной Германии и Бельгии. В общем можно сказать, что в 1954 году потребление электроэнергии на душу населения во Франции составило в переводе на условное топливо 105, а в 1915 году – 112 млн. т.

2. Производство энергии.

а) Добыча угля во Франции остается примерно на одном и том же уровне, не превышая 55–60 млн. т в год.

Если сравнить эту цифру с другой, характеризующей потребление, то мы увидим, что Франция испытывает хронический дефицит в угле, главным образом в коксе. Этот дефицит, который приходится покрывать за счет импорта, составляет примерно 15 млн. т в год.

В 1953 году во Франции было добыто 54,3 млн. т угля, в 1954 году – 56,3 млн. т. В 1955 году добыча угля во Франции, несмотря на уменьшение количества рабочих, занятых в угольной промышленности, достигла уровня рекордного 1952 года. В 1955 году было добыто 57,4 млн. т, что превышает добычу 1938 года на 20 %. Основных угольных бассейнов во Франции около десятка; наиболее значительными из них являются бассейны департаментов Нор и Па-де-Кале (29 млн. т в 1955 году) и Лотарингии (13 млн. т).

Запасы каменного и бурого угля во Франции оцениваются в 12 млрд. т. Следовательно, угля во Франции хватит примерно на 200–250 лет. Другими словами, через 4–5 поколений основная часть угольных запасов Франции будет исчерпана.

б) Добыча нефти во Франции в 1955 году впервые превысила 1 млн. т и достигла 1,036 млн. т против 700 тыс. т в 1954 году, 556 тыс. т в 1953 году и всего 56 тыс. т в 1946 году. Нефтеперерабатывающие заводы в 1955 году дали 23 млн. т нефтепродуктов против 22 млн. т в 1954 году. Это вдвое больше продукции 1949 года и вчетверо – продукции 1938 года. На нефтеперерабатывающих заводах было переработано 25 млн. т сырой нефти, или на 1 млн. т больше, чем в 1954 году.

Что касается газа, то в 1953 году Управление национализированными предприятиями газовой промышленности отпустило потребителям 3,14 млрд. кубометров газа. Это является рекордной цифрой, так как в 1954 году было отпущено всего 2,97 млрд. кубометров. Подобный рост в 6 % объясняется проведенными работами по модернизации и укрупнению газовых предприятий (45 газовых заводов в 1955 году были закрыты), а также введением в строй новых заводов.

Трудно сказать, в каких размерах будет расти добыча нефти и газа в будущем. Последние геологические изыскания, проведенные в основном на юго-западе Франции, позволяют надеяться на значительный рост. Можно полагать, что ежедневная добыча газа составит 1 млн. кубометров в 1957 году, 4 млн. кубометров в 1958 году и 12 млн. кубометров в 1961 году. Если будут открыты новые месторождения природного газа, то стоимость его будет на 30 % ниже стоимости жидкого топлива. Следует отметить, что геологическое строение Западной Европы и последние изыскания, проведенные в Аквитанской низменности во Франции (Парантиз, Лак) и в долине реки По в Италии (Кортемаджиоре), дают основание полагать, что если в этих странах затратить необходимые средства, то можно будет добиться значительного увеличения доли нефти и природного газа в выработке энергии, которая в настоящее время равна всего 2 %.

в) Почти половину всей производимой во Франции электроэнергии дают гидроэлектростанции, вторую половину – тепловые электростанции.

В 1955 году было выработано примерно 50 млрд. квт-ч электроэнергии, из них 85 % (42 млрд. квт-ч) пошли на промышленные цели, а 15 % (7,5 млрд. квт-ч) были израсходованы на бытовые нужды. Потребление тока высокого напряжения в 1955 году увеличилось по сравнению с предыдущим годом на 10 %, а тока низкого напряжения – на 61 %. Из наиболее крупных потребителей электроэнергии следует отметить черную металлургию (14 %, всего потребляемого количества электроэнергии), электрохимию и электрометаллургию (12 %) и железнодорожный транспорт (7 %). Расход электроэнергии на бытовые нужды возрос во Франции на 11 %, то есть более чем на 2 млрд. квт-ч. Это объясняется резким увеличением числа электроприборов личного пользования, обладание которыми, по взглядам французов, неразрывно связано с понятием комфорта.

Производство гидроэлектроэнергии достигло в 1955 году 25 млрд. квт-ч, что на 5,4 % больше, чем в 1954 году (Альпы-Рона – 65 %, Центральный массив – 20 %, Пиренеи – 15 %).

Дальнейшее увеличение выработки гидроэлектроэнергии зависит от ассигнований на строительство новых электростанций. Не исключено, что увеличения производства гидроэлектроэнергии можно будет добиться также путем использования некоторых других источников (например, энергии морских приливов в бухте Мон-Сен-Мишель), что даст возможность с небольшими затратами увеличить производство гидроэлектроэнергии в ближайшие 20 лет на 40 млрд. квт-ч. Но, как только будет достигнут уровень в 60 млрд. квт-ч в год, стоимость электроэнергии, вырабатываемой гидроэлектростанциями, может стать выше получаемой на тепловых электростанциях. Впрочем, специалисты считают, что если начать постройку гидростанций во всех удобных для этого местах, то через 20 лет все возможности в этой области будут исчерпаны.

Выработка электроэнергии на тепловых электростанциях достигла: В 1955 году 23,95 млрд. квт-ч, или на 12,41 % больше, чем в 1954 году.

Если общее количество производимой во Франции энергии выразить в миллионах тонн условного топлива, то мы получим следующие данные: 1954 год – 71 (уголь – 56, гидроэлектроэнергия – 14,5, газ – 0,51, 1955 год – 73,5 (57,5+15,5+0,5).

Если сравнить цифры, характеризующие наши энергетические потребности, с данными о фактическом производстве энергии, то мы увидим, что в 1954 году мы имели дефицит в 34 млн. т условного топлива, а в 1955 году – уже 38,5 млн. т. Надо полагать, что и впредь этот дефицит будет постоянно расти и в 1965 году составит 50–60 млн. т условного топлива.

Вытеснение горючих ископаемых должно идти очень быстрыми темпами. Однако количество электроэнергии, которое произведут атомные электростанции в 1965 году, будет составлять, как полагают, всего 2 млрд. квт-ч. Полная замена горючих ископаемых, используемых для производства электроэнергии, ядерным горючим произойдет только лет через двадцать, а пока, чтобы покрыть постоянно растущие потребности в энергии, нужно развивать наши обычные способы ее производства. Поэтому Управление национализированными предприятиями по производству электроэнергии считает необходимым построить во Франции в ближайшие десять лет 13 тепловых электростанций. Стоит даже вопрос о том, чтобы построить эти электростанции в радиусе 40 км от Парижа, что совершенно непонятно, так как эти электростанции должны будут работать на каменном угле или на мазуте и, следовательно, будут выбрасывать в атмосферу окись углерода и сернистый газ, который, соединяясь с влагой воздуха, образует серную кислоту, не менее вредную для каменных зданий, чем для легких человека.

Принимая во внимание быстрый рост потребностей в энергии, будущее внушает серьезные опасения. Поэтому Франция, как, впрочем, и другие страны, особенно заинтересована в атомной энергии, которая, как нам кажется, сможет обеспечить замену существующих в настоящее время и быстро истощающихся «классических» энергетических ресурсов.

Глава VIII
Принцип действия и возможности ядерного реактора
I. Устройство ядерного реактора

Ядерный реактор состоит из следующих пяти основных элементов:

1) ядерного горючего;

2) замедлителя нейтронов;

3) системы регулирования;

4) системы охлаждения;

5) защитного экрана.

1. Ядерное горючее.

Ядерное горючее является источником энергии. В настоящее время известны три вида расщепляющихся материалов:

а) уран 235, который составляет в природном уране 0,7 %, или 1/140 часть;

6) плутоний 239, который образуется в некоторых реакторах на базе урана 238, составляющего почти всю массу природного урана (99,3 %, или 139/140 частей).

Захватывая, нейтроны, ядра урана 238 превращаются в ядра нептуния – 93-го элемента периодической системы Менделеева; последние в свою очередь превращаются в ядра плутония – 94-го элемента периодической системы. Плутоний легко извлекается из облученного урана химическим путем и может быть использован в качестве ядерного горючего;

в) уран 233, представляющий собой искусственный изотоп урана, получаемый из тория.

В отличие от урана 235, который содержится в природном уране, плутоний 239 и уран 233 получаются только искусственным путем. Поэтому их называют вторичным ядерным горючим; источником получения такого горючего служат уран 238 и торий 232.

Таким образом, среди всех перечисленных выше видов ядерного горючего основным является уран. Этим и объясняется тот громадный размах, который принимают во всех странах поиски и разведка урановых месторождений.

Энергию, выделяющуюся в ядерном реакторе, сравнивают иногда с той, которая выделяется при химической реакции горения. Однако между ними существует принципиальное различие.

Количество тепла, получаемое в процессе деления урана, неизмеримо больше количества тепла, получаемого при сгорании, например, каменного угля: 1 кг урана 235, равный по объему пачке сигарет, теоретически мог бы дать столько же энергии, сколько 2600 т каменного угля.

Однако эти энергетические возможности используются не полностью, поскольку не весь уран 235 удается отделить от природного урана. В результате 1 кг урана в зависимости от степени его обогащения ураном 235 эквивалентен в настоящее время примерно 10 т каменного угля. Но следует учесть, что использование ядерного горючего облегчает транспортировку и, следовательно, значительно снижает себестоимость топлива. Английские специалисты подсчитали, что путем обогащения урана они смогут добиться увеличения получаемого в реакторах тепла в 10 раз, что приравняет 1 т урана к 100 тыс. т каменного угля.

Второе отличие процесса деления ядер, идущего с выделением тепла, от химического горения заключается в том, что для реакции горения необходим кислород, в то время как для возбуждения цепной реакции требуется лишь несколько нейтронов и определенная масса ядерного топлива, равная критической массе, определение которой мы уже давали в разделе об атомной бомбе.

И, наконец, невидимый процесс деления ядер сопровождается испусканием чрезвычайно вредных излучений, от которых необходимо обеспечить защиту.

2. Замедлитель нейтронов.

Для того чтобы избежать распространения в реакторе продуктов распада, ядерное горючее должно быть помещено в специальные оболочки. Для изготовления таких оболочек можно использовать алюминий (температура охладителя при этом не должна превышать 200°), а еще лучше бериллий или цирконий – новые металлы, получение которых в чистом виде сопряжено с большими трудностями.

Образующиеся в процессе деления ядер нейтроны (в среднем 2–3 нейтрона при делении одного ядра тяжелого элемента) обладают определенной энергией. Для того чтобы вероятность расщепления нейтронами других ядер была наибольшей, без чего реакция не будет самоподдерживающейся, необходимо, чтобы эти нейтроны потеряли часть своей скорости. Это достигается путем помещения в реактор замедлителя, в котором быстрые нейтроны в результате многочисленных последовательных столкновений превращаются в медленные. Поскольку вещество, используемое в качестве замедлителя, должно иметь ядра с массой, примерно равной массе нейтронов, то есть ядра легких элементов, в качестве замедлителя с самого начала применялась тяжелая вода (D20, где D – дейтерий, заместивший легкий водород в обычной воде Н20). Однако теперь стараются все больше и больше использовать графит – он дешевле и дает почти тот же эффект.

Принято считать, что в реакторах мощность в 1 квт соответствует примерно 1000 нейтронов на 1 см3, поэтому иногда мощность реактора измеряется в нейтронах.

Тонна тяжелой воды, покупаемой в Швеции, обходится в 70–80 млн. франков. На Женевской конференции по мирному использованию атомной энергии американцы заявили, что в скором времени они смогут продавать тяжелую воду по цене 22 млн. франков за тонну.

Тонна графита стоит 400 тыс. франков, а тонна окиси бериллия – 20 млн. франков.

Вещество, используемое в качестве замедлителя, должно быть чистым, чтобы избежать потерь нейтронов при их прохождении через замедлитель. В конце пробега нейтроны имеют среднюю скорость около 2200 м/сек, в то время как их начальная скорость была порядка 20 тыс. км/сек. В реакторах выделение тепла происходит постепенно и может контролироваться в отличие от атомной бомбы, где оно происходит мгновенно и принимает характер взрыва.

В некоторых типах реакторов на быстрых нейтронах замедлитель не требуется.

3. Система регулирования.

Человек должен иметь возможность по своему желанию вызывать, регулировать и останавливать ядерную реакцию. Это достигается при помощи регулирующих стержней из бористой стали или из кадмия – материалов, обладающих способностью поглощать нейтроны. В зависимости от глубины, на которую регулирующие стержни опускаются в реактор, количество нейтронов в активной зоне увеличивается или уменьшается, что в конечном счете дает возможность регулировать процесс. Управление регулирующими стержнями осуществляется автоматически при помощи сервомеханизмов; некоторые из этих стержней в случае опасности могут мгновенно падать в активную зону.

Сначала высказывались опасения, что взрыв реактора причинит такой же ущерб, что и взрыв атомной бомбы. Для того чтобы доказать, что взрыв реактора происходит лишь в условиях, отличающихся от обычных, и не представляет серьезной опасности для живущего no соседству с атомным заводом населения, американцы намеренно взорвали один так называемый «кипящий» реактор. Действительно, произошел взрыв, который мы можем охарактеризовать как «классический», то есть неядерный; это лишний раз доказывает, что ядерные реакторы могут строиться вблизи населенных пунктов без особой опасности для последних.

4. Система охлаждения.

В процессе деления ядер выделяется определенная энергия, которая передается продуктам распада и образующимся нейтронам. Эта энергия в результате многочисленных столкновений нейтронов превращается в тепловую, поэтому для того, чтобы предупредить быстрый выход реактора из строя, тепло необходимо отводить. В реакторах, предназначенных для получения радиоактивных изотопов, это тепло не используется, в реакторах же, предназначенных для производства энергии, оно становится, наоборот, основным продуктом. Охлаждение может осуществляться при помощи газа или воды, которые циркулируют в реакторе под давлением по специальным трубкам и потом охлаждаются в теплообменнике. Отданное тепло может использоваться для нагревания пара, вращающего соединенную с генератором турбину; подобное устройство будет представлять собой атомную электростанцию.

5. Защитный экран.

Для того чтобы избежать вредного воздействия нейтронов, могущих вылететь за пределы реактора, и предохранить себя от испускаемого в процессе реакции гамма-излучения, необходима надежная защита. Ученые подсчитали, что реактор мощностью в 100 тыс. квт выделяет такое количество радиоактивных излучений, что человек, находящийся от него на расстоянии 100 м, получит за 2 мин. смертельную дозу. Для обеспечения защиты персонала, обслуживающего реактор, строятся двухметровые стены из специального бетона со свинцовыми плитами.

Первый реактор был построен в декабре 1942 года итальянцем Ферми. К концу 1955 года в мире насчитывалось около 50 ядерных реакторов (США —2 1, Англия – 4, Канада – 2, Франция – 2). К этому следует добавить, что к началу 1956 года было запроектировано еще около 50 реакторов для исследовательских и промышленных целей (США – 23, Франция – 4, Англия – 3, Канада – 1).

Типы этих реакторов очень разнообразны, начиная от реакторов на медленных нейтронах с графитовыми замедлителями и природным ураном в качестве топлива до реакторов, работающих на быстрых нейтронах и использующих в качестве топлива уран, обогащенный плутонием или ураном 233, получаемым искусственным путем из тория.

Кроме этих двух противоположных типов, существует еще целый ряд реакторов, различающихся между собой либо составом ядерного горючего, либо типом замедлителя, либо теплоносителем.

Очень важно отметить, что, хотя теоретическая сторона вопроса в настоящее время хорошо изучена специалистами во всех странах, в практической области различные страны не достигли еще одинакового уровня. Впереди других стран идут США и Россия. Можно утверждать, что будущее атомной энергии будет зависеть в основном от прогресса техники.

II. Что можно получать в ядерном реакторе?

Ядерный реактор позволяет:

– производить плутоний;

– вырабатывать тепловую энергию;

– получать радиоактивные изотопы.

Реакторы, называемые первичными[10]10
  Термины «первичный реактор» и «вторичный реактор» в советской литературе по ядерной технике не приняты. Искусственное ядерное горючее может получаться либо в так называемых воспроизводящих реакторах, либо в реакторах-размножителях. Реакторы, используемые главным образом для производства энергии, называются энергетическими. – Прим. ред.


[Закрыть]
, служат для получения плутония, поэтому тепло является в них лишь побочным продуктом. Обычно считают, что в таком реакторе на каждые 1000 квт мощности производится в день 1 г плутония. Таким образом, Маркульский реактор G-1, имеющий мощность 40 тыс. квт, должен ежегодно давать около 15 кг плутония.

Так называемые вторичные реакторы предназначаются в основном для производства тепловой энергии; получаемый при этом плутоний является побочным продуктом.

1. Реактор – источник тепловой энергии.

Как мы уже говорили выше, энергия, высвобождающаяся в результате деления ядер урана, выступает в форме тепловой энергии. Последняя в определенных условиях может либо превращаться в электрическую, либо непосредственно использоваться в качестве источника движения в транспортных силовых установках.

Рассмотрим в общих чертах эти основные способы использования ядерной энергии.

а) Атом как «источник электроэнергии».

Мощность ядерных реакторов измеряется в киловаттах. Но это, так сказать, тепловые киловатты. Чтобы перевести их в электрические, нужно применить формулу Карно с учетом качества производимого тепла, которое зависит от температуры поступающей из реактора жидкости.

На современных тепловых электростанциях коэффициент полезного действия достигает 25 %, в то время как на первых атомных электростанциях он пока не превышает 10–15 %. Это объясняется тем обстоятельством, что расщепление уранового горючего в реакторах не может быть доведено до конца, так как в результате многочисленных столкновений с ядрами урана нейтроны «загрязняют» ядерное горючее, что приводит к замедлению, а в некоторых случаях и к полному прекращению цепной реакции. Например, в реакторе, построенном в Сакле, температура теплоносителя на выходе равна 130°, в реакторе G-1–220°, в реакторе G-2 (второй строящийся в Маркуле реактор) – 280°. В реакторе, установленном на подводной лодке «Наутилус», удается нагреть воду до 315°. Через два года специалисты надеются довести температуру теплоносителя на выходе из реактора до 500°. Тогда к.п.д. на атомных электростанциях будет примерно таким же, как и на тепловых.

При таком невысоком к.п.д. количество электроэнергии, которое можно получать на ядерных электростанциях, сравнительно невелико. Например, мощность реактора G-1 составляет 40 тыс. квт. Но поскольку это только тепловые киловатты, а к.п.д. этого реактора равен 12 %, количество получаемой из этого тепла электроэнергии не будет превышать 5 тыс. квт. Между тем для обеспечения работы самого реактора требуется затратить энергию в 8 тыс. квт. Отсюда можно заключить, что реактор G-1 потребляет больше энергии, чем производит. Впрочем, нельзя забывать, что этот реактор предназначается не для выработки электроэнергии, а для получения плутония.

Лет через пять на земном шаре, вероятно, будет до десятка крупных атомных электростанций мощностью от 100 до 200 тыс. квт каждая.

К 1975 году эта цифра, по всей вероятности, увеличится вдвое. В Великобритании атомные электростанции будут покрывать 40 % всех потребностей в электроэнергии, в остальных странах Европы – 10 %, в США и Канаде – 15–20 %, а в Советском Союзе, по-видимому, еще больше.

Наконец, ученые считают, что к 2000 году атомные электростанции будут обеспечивать удовлетворение трех четвертей мировой потребности в электроэнергии.

Следует отметить, что электричество на атомных электростанциях вырабатывается за счет тепла, являющегося промежуточным продуктом. Поскольку электрические заряды в ядерной реакций не используются и пропадают даром, возникает вопрос, нельзя ли получать электричество непосредственно без промежуточной стадии, что, без сомнения, значительно повысило бы к.п.д. атомных электростанций. Есть все основания полагать, что в ближайшем будущем ученым удастся создать специальные конденсаторы, и эта задача будет решена.

б) Атом как «источник движущей силы».

Одним из основных назначений ядерного реактора является получение электроэнергии, однако ядерная энергия может быть использована также и в качестве источника движения.

Наибольший интерес представляет использование ядерной энергетической установки на подводных лодках, так как она освобождает подводную лодку от того тяжелого груза весом 700–800 т, каким являются запас горючего и аккумуляторы. Первая американская атомная подводная лодка «Наутилус», спущенная на воду в январе 1954 года, к маю 1956 года прошла уже 37 тыс. миль, что в 1,5 раза больше длины земного экватора. Экипаж этой подводной лодки состоит из 85 матросов и 11 офицеров.

«Наутилус» может без дополнительной заправки совершить путешествие вокруг земли. Его подводная скорость, согласно официально опубликованным данным, составляет более 20 узлов. Надводное водоизмещение достигает 2800 т, вооружение – 6 торпедных аппаратов. Механизмы силовой установки занимают половину длины всей лодки, то есть 90 м из 180. В качестве горючего используется обогащенный уран, основным конструкционным материалом, по всей вероятности, является цирконий.

Вторая американская подводная лодка «Си Вулф» была спущена на воду в 1956 году. Внешне она похожа на «Наутилус», но силовая установка имеет другую конструкцию. Кроме этого, ведется строительство еще двух атомных подводных лодок: «Скейт» и «Суорд-фиш».

По имеющимся данным, в настоящее время в США закончено проектирование еще четырех атомных подводных лодок. Специалисты считают, что стоимость атомной подводной лодки в серийном производстве в общем не будет превышать стоимости обычной подводной лодки (20–25 млн. долларов). Опытные образцы, разумеется, будут стоить в 2–3 раза дороже.

Что касается надводного флота, то атомными силовыми установками будут снабжаться, по всей вероятности, тяжелые военные корабли, например авианосцы, и крупные торговые суда. Атомный двигатель значительно облегчит проблему обеспечения кораблей топливом; не исключена возможность, что будущие корабли с атомными силовыми установками при спуске на воду будут снабжаться таким количеством ядерного горючего, которого им хватит до полного выхода из строя.

Хотя в США уже давно ведутся работы по созданию самолета с атомным двигателем, производство таких самолетов, как нам кажется, в ближайшее время осуществлено быть не может, так как атомный двигатель пока еще очень тяжел и громоздок. Но эти недостатки в скором времени будут устранены, и тогда дальность полета атомных самолетов будет ограничиваться только физическими возможностями экипажа.

Что касается использования атомной энергии в двигательных установках наземного транспорта, то здесь, вероятно, придется еще немного подождать. В настоящее время говорят лишь о строительстве атомных локомотивов. Об атомных автомобилях пока нет еще и речи, однако не исключено, что наши внуки будут ездить на машинах только с такими двигателями.

Через пятьдесят лет мир, по-видимому, очень сильно изменится; атомная энергия, которая сейчас делает лишь свои первые шаги, явится причиной глубоких преобразований.

2. Реактор как источник получения радиоактивных изотопов.

Мы знаем, что в природе существует 92 естественных элемента. Кроме этого, в природе существует несколько сот естественных изотопов, а физикам удалось получить искусственным путем еще более тысячи изотопов. Открытие таких изотопов само по себе не имело бы особого значения, если бы среди них не было радиоактивных веществ, называемых радиоизотопами или радиоэлементами. Благодаря своему свойству радиоактивности эти изотопы заняли важное место в науке и получили широкое практическое применение. В природе существует около 40 естественных радиоактивных изотопов, искусственных же радиоактивных изотопов гораздо больше.

Большинство искусственных радиоактивных изотопов в настоящее время получают в ядерных реакторах, подвергая вещество облучению нейтронами; их можно также извлекать из продуктов распада урана. Для производства некоторых радиоактивных изотопов можно использовать протоны высоких энергий, получаемые в ускорителях.

Попадая в ядро какого-либо элемента, нейтрон увеличивает на единицу массовое число А этого элемента, в результате чего образуются новые элементы; некоторые из них обладают свойствами радиоактивности. Так, обычный кобальт, имеющий массовое число 59, превращается в радиоактивный кобальт 60.

Основное преимущество искусственных радиоактивных изотопов заключается в дешевизне их получения и простоте применения.

Обнаружить наличие радиоактивных изотопов сравнительно нетрудно при помощи счетчиков Гейгера – Мюллера, которыми измеряют радиоактивные излучения. Это позволяет прослеживать путь атомов радиоактивных изотопов, называемых поэтому «мечеными атомами».

Невозможно даже в общих чертах описать все способы применения радиоактивных изотопов, число которых увеличивается с каждым днем. Поэтому мы ограничимся описанием лишь наиболее известных способов их использования в медицине, промышленности и сельском хозяйстве.

а) Применение радиоактивных изотопов в медицине.

Радиоактивные изотопы играют в медицине большую роль. Они позволяют установить диагноз, излечить от болезни или по крайней мере замедлить ее развитие, а главным образом – лучше понять физиологические процессы, происходящие в организме.

Благодаря применению радиоактивных изотопов удалось достигнуть значительных успехов в борьбе против рака. Наиболее эффективным способом лечения рака является внутреннее облучение. При старых методах радиотерапии под действием радиоактивных излучений могли поражаться – а иногда даже совсем разрушаться – и здоровые клетки. В настоящее время удается вводить источник радиоактивности непосредственно в опухоль, не поражая при этом нормальной ткани.

Одним из наиболее наглядных методов лечения рака радиоактивными изотопами является облучение при помощи так называемой кобальтовой пушки. Кобальтовая пушка заменяет лечение рентгеновскими лучами и радием и является более экономичной и практичной по сравнению с ними. Тридцать граммов радиоактивного кобальта стоимостью 17 500 долларов испускают такое же количество излучения, как и кусок радия стоимостью 50 млн. долларов, или 17,5 млрд. франков. Кроме того, радий – очень редкий элемент. За 50 лет во всем мире было получено лишь около 2,5 кг радия. Напомним, что этот ценный металл был открыт в 1898 году Пьером Кюри и Марией Склодовской-Кюри совместно с сотрудничавшим с ними Бемоном. Для того чтобы получить 1 г радия, нужно переработать 3 т урановой руды. Кобальт 60 очень сильно отличается от радия периодом полураспада: он имеет период полураспада примерно 5,5 лет, в то время как радий – 1622 года. Кобальт может применяться либо для местного облучения, например в форме игл, подобных радиевым, либо для общего облучения (кобальтовая пушка).

Для лечения заболеваний различных желез употребляются радиоактивные изотопы тех элементов, которые поглощаются этими железами. Так, для лечения рака щитовидной железы применяется радиоактивный иод, который поглощается этой железой.

Некоторые заболевания, например рак мозга, можно лечить радиоактивным золотом. Маленькие шарики из смеси радиоактивного золота с радиоактивным фосфором вводятся в опухолевую ткань, которая разрушается под действием радиоактивных излучений, причем соседние ткани остаются невредимыми.

Скорость тока крови в организме можно измерять, добавляя в кровь красные кровяные тельца, меченные радиоактивным фосфором. При помощи радиоактивного фосфора можно также обнаружить белокровие. Если организм здоров, то через 4–5 дней с мочой уходит 50 % радиоактивного фосфора, а если болен – то лишь 10 %.

Наконец, благодаря радиоактивным изотопам удалось установить, что прежнее представление об обмене веществ в организме было ошибочным. Ученые заметили, что живой организм не сразу выбрасывает неусвоенные питательные вещества. Обновление веществ происходит непрерывно: новые клетки врастают в ткань, в то время как умершие и, следовательно, ненужные клетки разрушаются. Так, например, радиоактивный кальций позволил установить, что костные ткани человека постоянно обновляются.


    Ваша оценка произведения:

Популярные книги за неделю