412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Филлип Рэн » Атомная проблема » Текст книги (страница 5)
Атомная проблема
  • Текст добавлен: 6 августа 2025, 19:30

Текст книги "Атомная проблема"


Автор книги: Филлип Рэн


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 5 (всего у книги 9 страниц)

II. Защита от поражающего действия ядерных бомб
1. Защита от светового излучения.

Самая надежная защита от светового излучения заключается в том, чтобы не быть застигнутым вспышкой врасплох. Мы уже говорили, что световое излучение распространяется прямолинейно и оказывает лишь поверхностное поражающее действие. Поскольку свечение огненного шара продолжается очень недолго, любая преграда может служить надежной защитой от светового излучения. Один шутник заметил, что, закрывшись обыкновенной газетой, можно защитить себя от ожогов даже вблизи от эпицентра взрыва.

В армии предусмотрена специальная защитная одежда, которая полностью закрывает все части тела. В некоторых случаях весь личный состав в обязательном порядке должен надевать капюшоны, защитные перчатки и специальные очки. Как у личного состава вооруженных сил, так и у гражданского населения необходимо вырабатывать специальные навыки, например умение при появлении сильного света моментально падать и прижиматься к земле. Обычные траншеи, даже без перекрытия, во многих случаях смогут обеспечить надежную защиту от светового излучения.

Для того чтобы не допустить распространения пожаров, необходимо сразу же после объявления тревоги (если она будет объявлена) принять некоторые предупредительные меры, например задернуть занавески и закрыть ставни с целью ограничить распространение светового излучения. Перед уходом в убежище нужно выключить газ и электричество. Кроме того, рекомендуется убрать все легковоспламеняющиеся предметы во дворах, сараях и на чердаках.

Зону поражения световым излучением можно ограничить В значительной мере (до 50 %) путем применения различного рода дымовых завес. Такие способы были испытаны американцами во время проведенных ими в конце 1954 года и в 1955 году многочисленных войсковых учений. В Швеции также занимались этим вопросом в целях защиты гражданского населения. Для ограничения действия светового излучения могут применяться, кроме того, искусственные дожди.

2. Защита от ударной волны.

Для того чтобы защитить себя от действия ударной волны, необходимо укрыться в убежище.

Мы уже говорили, что при расчете оптимальной высоты взрыва ядерной бомбы исходят из того, что избыточное давление в эпицентре при взрыве номинальной бомбы составляет 3–4 кг/см2. Следовательно, вопрос заключается в том, чтобы узнать, можно ли построить такие сооружения, которые смогли бы выдерживать это огромное избыточное давление. Специалисты дают на этот вопрос положительный ответ.

Пусть, например, при взрыве атомной бомбы с тротиловым эквивалентом 80 тыс. т, произведенном на высоте 850 м, избыточное давление в эпицентре достигает 5 кг/см2. Мы взяли высоту 850 м из тех соображений, что чем мощнее бомба, тем выше должен произойти взрыв, чтобы зона поражения увеличилась.

В этом случае для перекрытия убежища шириной в 2,3 м будет достаточна железобетонная плита толщиной в 0,2 м, на которую нужно насыпать слой земли толщиной не меньше метра и утрамбовать ее, чтобы обеспечить за щиту от радиоактивных излучений.

Такое простое убежище обеспечивает полную защиту от атомного взрыва.

В районах, которые по своей важности вероятнее всего могут оказаться объектом атомного нападения – они называются «угрожаемыми зонами», – предусматривается строительство целой сети подобных убежищ. Вне этих наиболее уязвимых районов убежища могут строиться более легкого типа из подручных материалов. Национальная служба гражданской обороны намечает строительство убежищ двух типов: коллективных и на одну семью; первых – для длительного пребывания, вторых – для кратковременного укрытия.

а) Коллективные убежища.

Такие убежища строятся обычно четырехугольной или круглой формы и имеют прочные двери и вентиляцию.

В убежищах четырехугольной формы бетонные стены, пол и перекрытие могут иметь толщину 60, 40 или 30 см в зависимости от того, на какое избыточное давление рассчитано убежище – 10, 5 или 2 кг/см2. В таких полностью заглубленных убежищах люди защищены от действия светового излучения, а если насыпанный сверху слой грунта имеет достаточную толщину, то и от радиоактивных излучений.

При той скорости, какой обладают современные бомбардировщики, населению, для того чтобы укрыться в убежищах, после объявления тревоги остается всего 5 мин. Предполагается, что для рабочих, находящихся на заводе в момент оповещения о воздушной опасности, этот срок будет еще меньше, порядка 3 мин. Подобное обстоятельство приводит к необходимости ограничить время доступа в убежище, а следовательно, установить оптимальную вместимость убежищ примерно в 50 человек. Убежища такого типа нужно будет строить в количестве, достаточном для обеспечения безопасности всего населения.

Если исходить из расчета 1 м2 на 3–4 человека, то для 50 человек будет достаточно убежище площадью в 15 м2, то есть 3х5 м или 4х14 м, а если убежище круглой формы, то радиусом 2–2,5 м. Наиболее сложным является вопрос о дверях и вентиляции. Для таких убежищ предусматриваются двери 0,7х1,8 м и толщиной 40 мм. Эти двери должны выдерживать в течение 8 часов температуру в 1000°. В коллективных убежищах, разумеется, предусматривается не одна, а две двери, промежуток между которыми будет служить тамбуром.

Что касается вентиляции, то в таких убежищах на 1 м2 площади предусматривается подача 300 л свежего воздуха в минуту. Стоимость таких убежищ зависит, конечно, от толщины бетонных стен. Убежище, способное выдерживать избыточное давление в 5 кг/см2, обходится в 150 тыс. франков за одно место, что в общей сложности составляет 7–8 млн. франков. Убежища, выдерживающие избыточное давление в 10 кг/см2, стоят примерно на 20 % дороже, или около 10 млн. франков.

б) Убежища на одну семью.

Коллективные убежища предохраняют человека от действия высокого избыточного давления, которого он не в состоянии выдержать. Убежища семейного типа предназначаются для защиты от небольших избыточных давлений, называемых нами обычными. Эти убежища в большинстве случаев вполне достаточны для неугрожаемой зоны. Двери у них отсутствуют, а вентиляция осуществляется естественным путем, поскольку они представляют собой либо траншеи, либо приспособленные для этой цели подвалы. Во всяком случае, такие убежища себя оправдывают. Для того чтобы проверить, как на них влияют неблагоприятные условия погоды, в Нэнвильском парке построили несколько опытных убежищ семейного типа.

Как мы уже говорили, наиболее опасным является косвенное действие ударной волны. Однако находящиеся в траншее люди будут вне опасности, так как различные предметы, обломки и т. п., которые превратятся под действием ударной волны во «вторичные снаряды», пролетят поверху, и люди ощутят лишь некоторое повышение давления. Кроме этого, укрывшиеся в таких траншеях будут защищены от действия светового излучения. Им останется только защититься от радиоактивного воздействия, сила которого зависит как от высоты взрыва, так и от удаления убежища от эпицентра.

В подвалах следует принять специальные меры безопасности на тот случай, если дом, под которым находится убежище, обрушится. Необходимо усилить потолок подвала, а кроме того, можно установить ряд балок, упирающихся одним концом в капитальную стену, а другим – в крепкий пол.

Разумеется, все указанные выше меры защиты действительны лишь для воздушного взрыва. Если взрыв будет наземным, образуется гигантская воронка; на довольно большом расстоянии от места падения бомбы все будет уничтожено, так что о защите в этой зоне не может быть и речи.

3. Защита от радиоактивных излучений.

При воздушном взрыве опасность представляет лишь проникающая радиация; поэтому, защищаясь от действия ударной волны, то есть укрывшись в бетонированном убежище с достаточно толстым слоем насыпанной сверху земли, человек может рассчитывать на то, что он будет защищен и от проникающей радиации.

Для защиты от проникающей радиации имеется три способа:

а) удалиться от места взрыва

Поскольку интенсивность радиоактивного облучения обратно пропорциональна квадрату расстояния, то при увеличении вдвое расстояния, отделяющего человека от места взрыва, интенсивность облучения уменьшается в четыре раза;

б) выждать

Уровень радиоактивного заражения снижается очень быстро. Если изобразить графически зависимость естественного спада радиоактивности от времени, то получится кривая, напоминающая ветвь равносторонней гиперболы, Например, если через час после взрыва уровень радиации в зараженном районе составляет 100 рентгенов, то через 7 часов он упадет до 10 рентгенов, а еще через 15 часов до 5 рентгенов;

в) укрыться за какой-либо преградой

Сначала необходимо остановиться на понятии слоя половинного ослабления. Это такая толщина материала, которая вдвое ослабляет действие проникающей радиации. Для брони она равна 4 см, для бетона – 12 см, для грунта – 20 см, для воды – 26 см.

Если укрыться за броней толщиной в 4 см, то поглощенная организмом доза радиоактивных излучений будет вдвое меньше той, которую человек получил бы вне укрытия. Если толщину брони увеличить вдвое и довести до 8 см, то поглощенная организмом доза будет составлять уже четверть начальной дозы, отмечающейся вне защитного сооружения. Отсюда нетрудно вывести зависимость между начальной дозой Д0, фактически поглощенной дозой Д, и числом n, показывающим, сколько раз слой половинного ослабления укладывается в толщину защитного материала. Эта зависимость выражается формулой Д=Д0/2n. Если взрыв произошел у поверхности земли или на небольшой высоте, то нужно принять некоторые особые меры безопасности. Очутившись в районе бомбардировки после атомного взрыва, человек рискует вдохнуть вместе с воздухом или проглотить с пищей и водой радиоактивные частицы, испускающие главным образом альфа– и бета-излучения. Поэтому пожарные и спасательные команды должны действовать в защитных комбинезонах и в противогазах. Кроме того, их должен сопровождать представитель службы радиационной разведки с рентгенометром, чтобы следить за временем их пребывания в зараженной зоне и за тем, чтобы доза радиации не превышала установленной допустимой дозы (примерно 25 рентгенов). Все находившиеся в зараженной зоне люди должны в обязательном порядке пройти через дезактивационный пункт и подвергнуться санитарной обработке в той или иной форме в зависимости от степени заражения.

Только время может окончательно уничтожить вредное действие радиоактивных веществ, поэтому зараженные предметы надо изолировать до тех пор, пока их радиоактивность практически исчезнет. Продолжительность изоляции зависит в основном от периода полураспада радиоактивных веществ, которыми заражены эти предметы. Если степень заражения невелика, зараженные предметы можно обмыть водой, во всех остальных случаях их нужно закопать в землю.

Особые меры предосторожности нужно принять, чтобы не допустить заражения продовольствия.

В случае наземного взрыва водородной бомбы нельзя забывать о выпадении радиоактивных веществ из облака. Защита от них обеспечивается довольно просто: если выпадение радиоактивных веществ произошло в районе, где разрушений не было, нужно остаться в домах (лучше всего в нижних этажах) и ждать указаний. Если радиоактивные осадки застигли человека на открытом месте, рекомендуется найти укрытие в земле – тогда полученная доза радиации уменьшится больше, чем на одну десятую.

Специалисты считают, что человек, находившийся на расстоянии 10 км от места взрыва в течении 36 час., получит дозу радиации в 2000 рентгенов, а на расстоянии 250 км – 500 рентгенов.

Эти цифры лишний раз доказывают необходимость организации противоатомной защиты. Впрочем, эта защита не так уж сложна. В результате взрыва водородной бомбы, проведенного американцами 1 марта 1954 года, кроме японских рыбаков, пострадало еще примерно 100 человек, в числе которых были американские солдаты и жители соседних островов. Всем этим людям была немедленно оказана медицинская помощь, так что серьезных последствий не было.

Национальная служба гражданской обороны закупила партию несложных, но надежно работающих и дающих хорошие результаты приборов. Купленные дозиметры обошлись примерно по 15 тыс. франков, а рентгенометры – по 95 тыс. франков. Эти приборы будут распределены между различными департаментами.

Для лучшей организации противоатомной защиты нужно, чтобы все знали, каким опасностям они подвергаются при взрыве атомной бомбы. Желательно, чтобы всякий, кто этого еще не знает и хочет узнать, получил бы необходимую информацию. Люди больше всего боятся неизвестного, поэтому последствия атомного нападения могут оказаться катастрофическими.

В заключение надо сказать, что в случае атомной войны каждому придется выбирать одно из двух: либо эвакуироваться (это не всегда окажется возможным, но для большей части женщин, детей, стариков, одним словом, для всех тех, чье присутствие не принесет пользы, эвакуация должна быть обязательной), либо укрыться в убежище. Тот, кто не сделает ни того, ни другого, погибнет.

Но чтобы бороться и создавать, надо жить. Поэтому каждый должен выполнять все указания квалифицированных инструкторов Национальной службы гражданской обороны.

Часть вторая
ИСПОЛЬЗОВАНИЕ АТОМНОЙ ЭНЕРГИИ В МИРНЫХ ЦЕЛЯХ

Теперь мы подошли к рассмотрению второй стороны проблемы, а именно к вопросу о мирном использовании атомной энергии… Возможности, которые открывают перед нами различные способы использования атомной энергии, огромны. Можно утверждать, что открытие атомной энергии будет иметь для человечества не меньшие последствия, чем имели изобретение паровой машины и открытие электричества. Революция, вызванная открытием атомной энергии, отличается от всех предшествовавших ей промышленных революций тем, что происходит в совершенно новых экономических, общественных и политических условиях. С конца 1942 года, когда Ферми построил первый ядерный реактор, мы, сами того не подозревая, вступили в атомный век.

Прежде чем говорить о тех возможностях, которые откроет перед нами атомная энергия в будущем, мы попробуем нарисовать картину энергетических потребностей в международном и национальном масштабах. Затем мы кратко изложим принцип действия и назначение ядерных реакторов, после чего остановимся на работах, проделанных в этой области во Франции. Мы коснемся вопроса о преимуществах атомной энергии в экономическом и социальном плане и закончим рассмотрением тех последствий, которые может иметь для гражданской обороны использование атомной энергии в широком масштабе.

Глава VII
Энергетические потребности

Прежде чем перейти к рассмотрению этого вопроса в национальном масштабе, мы остановимся на мировых энергетических потребностях. Приводимые ниже данные заимствованы нами из речи, произнесенной председателем Женевской конференции по мирному использованию атомной энергии на открытии конференции в августе 1955 года.

I. Мировые энергетические потребности

Рассмотрим эту проблему с двух точек зрения: с точки зрения потребления, то есть спроса на энергию, и с точки зрения производства энергии, то есть ее предложения.

Энергия может быть определена как способность производить работу. Количество энергии, которое человек имеет в своем распоряжении для удовлетворения различных нужд, некоторым образом характеризует степень цивилизации общества, к которому он принадлежит. Открытие человеком новых источников энергии происходило в жестокой борьбе с природой и изменяло мир больше, чем использование мускульной силы человека и животных на протяжении тысячелетий. Мы живем в эпоху господства «количества», и ничто не может заменить этот фактор. Необходимо отметить, что энергия может принимать самые различные формы и что следует отличать энергию, производящую материальные блага, от энергии, создающей комфорт; это две крайние точки в общей гамме различных способов использования энергии.

Энергия является, пожалуй, самым важным фактором, определяющим богатство любой страны. Для измерения любых величин нужно иметь единицу измерения.

Энергия может измеряться в самых различных единицах, начиная от калорий, которые служат для измерения тепловой энергии, и кончая электроновольтом, принятым в ядерной физике. Следует отметить, что не всегда различные формы энергии удобно измерять одними и теми же единицами, будь то килограммы условного топлива, киловатт-часы или термии. В настоящее время стремятся разработать таблицу коэффициентов, которые позволяла бы сравнивать между собой различные формы энергии.

1. Потребление энергии.

Сравнивая очень большие количества энергии, специалисты чаще всего употребляют либо единицы электричества, прочно вошедшего в наш быт (мегаватт-час, равный 103 киловатт-часов, или 106 ватт-часов), либо специальные единицы, обозначаемые буквой Q (энергия в 1Q соответствует тому количеству энергии, которое выделяется при сгорании 33 млрд. т угля). Благодаря этому мы можем делать сравнения в мировом масштабе, пользуясь привычными для нас числами.

В единицах Q можно выразить рост потребления энергии, связанной с изменением условий жизни человеческого общества.

а) Количество израсходованной во всем мире энергии с начала нашей эры до середины XIX века составляло 9–10 Q, что соответствует в среднем 1/2 Q за 100 лет. Разумеется, потребление энергии из века в век росло, причем особенно быстрый рост наблюдался в XVII и XVIII столетиях. Поэтому считается, что в середине прошлого века мировой расход энергии был порядка 1 Q за столетие.

б) За период с 1850 по 1950 год мировое потребление энергии составило примерно 5 Q.

Экономический и Социальный совет ООН довольно точно подсчитал количество энергии, израсходованной во всем мире за 1952 год. Согласно этим подсчетам, в 1952 году во всем мире было израсходовано 10,2 млрд. мгвт-ч энергии, причем это количество распределялось следующим образом: промышленность – 5,8 млрд. мгвт-ч-, бытовые нужды – 3,3 млрд. мгвт-ч, транспорт – 0,8 млрд. мгвт-ч, сельское хозяйство – 0,3 млрд. мгвт-ч.

Отсюда можно сделать вывод, что потребляемая энергия распределяется неравномерно и что потребности в энергии совершенно не соответствуют энергетическим ресурсам.

в) Оценивая перспективы в области энергетики, необходимо учитывать ряд факторов.

Первый фактор – рост населения.

В начале нашей эры на всем земном шаре жило около 300 млн. человек. К середине XVII века эта цифра удвоилась. Но особенно быстрый рост населения наблюдался в течение последних 50 лет. Так, в 1900 году общая численность населения земного шара оценивалась в 1,5 млрд. человек. В 1920 году она достигла 1,8 млрд., в 1930 году – 1,99 млрд., в 1940 году – 2,2 млрд., в 1950 году – 2,5 млрд. и, наконец, в 1954 году – 2,6 млрд. человек. Таким образом, за 34 года численность населения на земле увеличилась на 50 %!

В 1954 году четыре государства имели население свыше 100 млн. человек: США (162 млн.; по состоянию на 1 мая 1956 года – 167,65 млн.), СССР (216 млн.), Индия (377 млн.), Китай (574 млн.). Шесть государств имели население от 50 до 100 млн. человек: Великобритания и Германия (по 50 млн.)[9]9
  Учитывается население только Федеративной Республики Германии. – Прим. ред.


[Закрыть]
, Бразилия (57 млн.), Пакистан и Индонезия (по 80 млн.), Япония (88 млн.). Два государства имели население от 30 до 50 млн. человек: Франция (43 млн. в 1954 году; по состоянию на 20 мая 1956 года – 43,5 млн.) и Италия (47 млн.). Наконец, около 20 государств имели в 1954 году население от 10 до 30 млн. человек.

Из этих цифр видно, какое место в мире занимает Франция по количеству населения. Если сравнить эти цифры с данными о количестве населения в 1937 году, то видно, что население Советского Союза и Соединенных Штатов Америки выросло в одинаковых размерах, а именно на 27 %. Что касается плотности населения на квадратный километр, то она для разных стран неодинакова: в СССР она составляет примерно 10 человек, в США – около 20, а во Франции – 80 человек (точнее, по состоянию на 1 мая 1956 года – 79).

Всем известно, что потребление энергии находится в прямой зависимости от национального дохода страны. Больше всего энергии расходуют наиболее развитые в промышленном отношении и, следовательно, наиболее богатые страны. На первом месте стоят США (37 % всей потребляемой в мире энергии), затем идут СССР (15 %) и Англия.

В настоящее время прирост населения на земном шаре составляет 35 млн. человек в год. Это значит, что каждый день население земли увеличивается на 100 тыс. человек, или на 4 тыс. человек в час, то есть больше чем на одного человека в секунду!

Согласно подсчетам, к концу XX века население земного шара составит 3,5–5 млрд. человек, а к 2050 году оно достигнет 11 млрд. человек!

Второй фактор – рост индивидуальных потребностей.

Сам человек за 8 часов работы производит энергию, не превышающую 0,5 квт-ч. Согласно имеющимся данным, современный человек, то есть житель развитого в промышленном отношении государства, потребляет ежедневно в среднем 23 квт-ч, что соответствует мускульной энергии 45 человек. Принимая во внимание, что ежегодный прирост потребления энергии на одного человека составлял в период с 1860 по 1900 год 2,2 %, в период с 1900 по 1939 год – 2,5 %, а в настоящее время равен 4 %, можно полагать, что в ближайшем будущем потребление энергии возрастет в еще больших масштабах.

Третий фактор – индустриализация новых обширных районов.

В этой связи прежде всего следует подумать об азиатских странах, а именно о Китае и Индии, которые в ближайшие десятилетия будут испытывать все большие и большие потребности в энергии. Достаточно напомнить, что Северная Америка, население которой составляет 7 % населения земного шара, потребляет 40 % всей производимой в мире энергии, в то время как Азия, Африка и Латинская Америка, население которых в сумме составляет 60 % человечества, расходуют всего 20 % энергии.

Если бы все страны мира достигли такого же уровня развития промышленности, как США, им потребовалось бы в 6 раз больше энергии. Поэтому существует опасность, что развитие народов, которое мы считаем нормальным, может затормозиться.

Учитывая эти факторы, надо полагать, что к концу XX века, то есть через одно поколение, мировое потребление энергии достигнет примерно 10 Q за столетие, а к 2050 году оно поднимется до 70 Q! Если выразить это в мегаватт-часах, можно сказать, что в 2000 году потребление энергии составит 84 млрд. мгвт-ч; это втрое больше того количества энергии, которое предположительно будет израсходовано в 1975 году (27 млрд. мгвт-ч).

В переводе на условное топливо это составит: в 1955 году – 3 млрд. т, в 1975 году – 6 млрд. т и в 2000 году – 15 млрд. т.

В общем, в 2000 году мировые потребности в энергии будут в 6–8 раз выше, чем в настоящее время.

2. Энергетические ресурсы.

Мы видели, что спрос на энергию громаден. А каковы же возможности удовлетворения этой огромной потребности, каковы мировые энергетические ресурсы?

а) Горючие ископаемые

В настоящее время от 80 до 85 % всей вырабатываемой в мире энергии производится за счет сжигания так называемых горючих ископаемых: каменного угля, нефти, газа. Гидроэлектроэнергия, как и мускульная, покрывает лишь менее 21 % мировой потребности в энергии. Остальная часть общего количества энергии, то есть около 15 %, получается за счет сжигания дерева и отходов сельскохозяйственного производства. Мы видим, что доля всех других источников энергии, кроме горючих ископаемых, незначительна. Поскольку серьезного увеличения этой доли нельзя добиться даже для гидроэлектроэнергии, которая пока имеет весьма ограниченные возможности, для обеспечения постоянно растущего спроса на энергию нужно, чтобы доля горючих ископаемых продолжала повышаться.

До 1880 года основным видом топлива было дерево. Затем его сменил каменный уголь. До 1900 года каменный уголь обеспечивал 90 % всей вырабатываемой в мире энергии, однако в последующие годы его доля стала уменьшаться, а доля нефти, газа и воды – расти.

Согласно статистическим данным, мировая добыча угля в 1955 году составила примерно 1600 млн. т, превысив добычу предыдущего года на 8,3 %. За исключением Великобритании, добыча угля возросла во всех странах, обладающих крупными запасами каменного угля, и главным образом в Соединенных Штатах Америки, Советском Союзе и Китае. Количество добытого в этих странах угля соответствует половине выработанной во всем мирз энергии.

По подсчетам ученых, общие запасы горючих ископаемых, имеющих промышленное значение, не превышают 50–100 Q. Если считать эти цифры точными и верить подсчетам будущих потребностей в энергии, то можно сделать вывод, что через несколько столетий все запасы горючих ископаемых, которые, по мнению геологов, накапливались в земной коре в течение 250 млн. лет, будут полностью исчерпаны.

Приведенные выше данные говорят о том, что в ближайшем будущем – для одних стран несколько раньше, для других несколько позже – произойдет разрыв между спросом на энергию и ее производством. Поэтому крайне необходимо отыскать новые источники энергии.

Для решения этого вопроса имеется много возможностей. Можно использовать энергию морских приливов и морских течений, геотермическую энергию, энергию ветра. Действительно, ведь именно благодаря рациональному использованию ветряной мельницы Голландия добилась в XVII веке такого расцвета. Но самые большие надежды возлагаются на использование солнечной энергии. Для того чтобы наглядно показать значение этого вида энергии, напомним, что солнечные лучи, падающие на Париж, должны приносить буквально за несколько мгновений 50 млн. квт лучистой энергии. Впрочем, до земли доходит лишь незначительная часть этой энергии, источник которой находится на удалении 150 млн. км от нашей планеты.

б) Ядерное горючее

Согласно статистике, мировые запасы урана и тория соответствуют энергии порядка 1500–2000 Q. Иными словами, ядерное горючее способно в самый короткий срок заменить обычные горючие ископаемые и обеспечить удовлетворение мировых потребностей в энергии в течение многих веков – конкретно этот срок будет зависеть от роста потребления энергии, который заранее предугадать очень трудно.

Содержание урана в руде, конечно, различно в зависимости от вида руды. По самой низкой оценке среднее содержание урана в верхних слоях земной коры равно одному грамму на тонну.

Следовательно, этого металла в земной коре содержится не меньше, чем меди, свинца или цинка, в 100 раз больше, чем серебра, и в 1000 раз больше, чем золота. Урановые руды встречаются довольно часто. Общее количество ядерного горючего в земной коре (считая ее толщину равной 60 км) оценивается в 100 триллионов тонн. Наиболее значительными месторождениями урановых руд являются залежи в Бельгийском Конго, в Иоахимстале и Колорадо. Кроме того, собираются начать разработку крупных месторождений в Канаде, Южной Африке и Австралии. Мировая добыча урановой руды в настоящее время составляет примерно 10 тыс. т. Специалисты считают, что сейчас можно добывать ежегодно 1 млн. т природного урана, причем добыча 1 кг урана обойдется около 10 тыс. франков.

Из этих руд получают металлический уран. После того как получен природный металлический уран, из него очень сложными способами (например, способом газовой диффузии) извлекаются изотопы, в том числе уран 235. Чтобы лучше понять трудности, связанные с разделением изотопов урана, нужно сравнить стоимость килограмма природного урана, равную 30–40 долларам, со стоимостью килограмма урана 235, достигающей 25 тыс. долларов. Строительство завода, производящего 3,35 т обогащенного до 90 % урана из 1000 т природного урана, обошлось бы в 160 млрд. франков!

Из тория также можно получать уран 235. На Женевской конференции по мирному использованию атомной энергии много говорилось о возможностях, которые открывает перед нами использование тория. По заявлению некоторых ученых, 1 т природного тория может заменить 7 т урана.

Но, если мы обеспечены запасами энергии по меньшей мере на десять поколений, что произойдет, когда ядерное горючее будет в свою очередь израсходовано? На этот вопрос, который при нормальном ходе событий возникнет не раньше, чем через несколько веков, можно, как нам кажется, ответить уже теперь. Ядерное горючее, о котором мы говорили выше, то есть уран и торий, является источником энергии, высвобождающейся в процессе деления их ядер. В военных целях эти вещества служат для производства атомных бомб, подобных тем, которые были сброшены на Хиросиму и Нагасаки. Однако, как мы видели выше, существуют еще термоядерные бомбы основанные на принципе соединения ядер легких элементов, таких, как водород и его изотопы. Эти могучие разрушительные средства помогли доказать возможность получения ядерной энергии путем синтеза. По мнению председателя Женевской конференции по мирному использованию атомной энергии, через 20 лет учёные найдут способы получения и контролируемого использования этого нового вида энергии. Термоядерная энергия, которую следовало бы скорее называть энергией синтеза, будет обладать большими преимуществами перед энергией, получаемой в результате деления ядер. Она будет дешевле и при прочих равных данных более мощной, чем энергия деления ядер. Но самое главное ее преимущество будет заключаться в том, что ее применение не связано с опасностью радиоактивного заражения, являющейся серьезным препятствием для использования атомной энергии в мирных целях.

Нам кажется, что использование термоядерной энергии будет осуществлено раньше, чем через 20 лет, особенно если учесть недавнее открытие антипротона. Сейчас идут разговоры о создании при помощи взрыва термоядерных бомб подземных котлов диаметром в несколько сот метров, которые смогут питать теплоэлектростанцию в течение нескольких месяцев, а также о том, чтобы в огромные воронки, образованные взрывами термоядерных бомб, направить морскую воду и заставить ее вращать установленные у края таких воронок турбины. Впрочем, разве Булганин и Хрущев не заявили во время своей поездки в Англию в конце апреля 1956 года, что русские уже нашли практическое решение этого вопроса? Что думать об этих заявлениях? Возможно, что не все в них соответствует действительности, но бросается в глаза то обстоятельство, что если примерно год назад крупнейшие специалисты говорили, что использование термоядерной энергии в мирных целях станет возможным не раньше чем через 25 лет, то теперь это является вопросом всего лишь нескольких лет, а может быть даже и месяцев.

Как только использование термоядерной энергии станет реальным фактом, энергетическая проблема будет снята с повестки дня, так как запасы водорода в природе практически неограниченны. На нашей планете водород очень распространен; например, он входит в состав воды, которая покрывает три четверти земной поверхности.


    Ваша оценка произведения:

Популярные книги за неделю