Текст книги "Атомная проблема"
Автор книги: Филлип Рэн
сообщить о нарушении
Текущая страница: 4 (всего у книги 9 страниц)
Глава V
Поражающее действие термоядерных бомб
Атомные взрывы в Хиросиме и Нагасаки были реальным фактом, поэтому, говоря о размерах разрушений, причиненных этими взрывами, мы имеем дело с точными цифрами.
И наоборот, когда речь идет о действии более мощных бомб, например термоядерных, приводятся лишь приближенные цифры, к которым следует относиться совсем иначе. В первом случае данные являются математически точными, во втором – грубо приближенными, иногда фантастическими.
Адмирал Страусс, ведающий испытаниями американских ядерных бомб, часто ошибался в своих расчетах вдвое, а то и больше. Это лишний раз доказывает, что подход к реальным результатам атомных взрывов в Японии должен быть совсем иным, чем к результатам, полученным путем экстраполяции.
Образующийся в результате взрыва термоядерной бомбы огненный шар имеет гораздо большие размеры, чем при взрыве атомной бомбы. Радиус огненного шара термоядерной бомбы (в 2000 раз мощнее номинальной) спустя несколько секунд после взрыва достигает нескольких километров. Грибовидное облако, возникшее в результате взрыва 1 марта 1954 года, имело высоту порядка 40 км и максимальную ширину в верхней части около 160 км. Температура в центре шара, по мнению специалистов, была порядка миллиарда градусов.
Вопрос о распределении энергии термоядерного взрыва по поражающим факторам пока еще мало изучен.
Возьмем для примера термоядерную бомбу, равную по мощности 2 тыс. номинальных бомб (то есть имеющую тротиловый эквивалент 40 млн. т), и попробуем определить ее поражающее действие на основе данных о взрыве номинальной бомбы. При этом нужно учитывать, что поражающее действие ядерных бомб не возрастает прямо пропорционально увеличению их мощности.
I. Ударная волнаПри определении действия ударной волны обычно руководствуются следующей формулой: механическое действие взрыва, или действие ударной волны, пропорционально корню кубическому из мощности бомбы.
Как надо понимать эту формулу?
Кубический корень из 2000 равен примерно 13. Тогда из сказанного выше вытекает, что нужно взять числа, характеризующие действие ударной волны сброшенной в Хиросиме бомбы, и умножить их на 13. Получаются следующие данные:
– в радиусе 10 км все будет сметено с лица земли, за исключением некоторых особо прочных здании;
– в радиусе от 10 до 20 км будут частично или полностью разрушены внутренние части зданий, и во всей этой зоне нужно будет эвакуировать все оставшееся в живых население;
– в радиусе от 20 до 30 км будут наблюдаться значительные разрушения. Не исключено, что в целях безопасности окажется целесообразным эвакуировать население.
Ущерб, наносимый такой бомбой, настолько велик, что его даже трудно себе представить.
Вышеприведенная формула, по-видимому, была подтверждена результатами проведенных испытаний ядерных бомб, причем иногда они даже превосходили расчетные данные. Это объясняется тем, что трудно заранее определить с достаточной точностью мощность новых бомб, и здесь скорее нужно идти обратным путем: по фактическому действию бомбы определять ее мощность.
II. Световое излучениеДля расчета действия светового излучения также существует формула: действие светового излучения пропорционально корню квадратному из мощности бомбы.
Квадратный корень из 2000 равен примерно 45. Если считать, что эта формула правильна, то для расчета поражающего действия светового излучения бомбы в 2000 раз мощнее номинальной нужно соответствующие данные номинальной бомбы умножить на 45. Тогда получится, что все незащищенные люди получат смертельные ожоги в радиусе 60 км.
К счастью, эта цифра слишком преувеличена. Мы уже говорили, что данные о поражении световым излучением по результатам взрыва в Хиросиме действительны только при очень хорошей видимости. Определяя воздействие светового излучения на объекты, расположенные на большом удалении от эпицентра взрыва, следует учитывать поглощение световой энергии молекулами входящих в состав воздуха газов и вводить соответствующий поправочный коэффициент. Последний составляет от 1/3 до 1/2. Интересно отметить, что раньше его считали равным 1/2 теперь же принимают равным 1/3. Другими словами, в настоящее время наблюдается тенденция к сокращению завышенных ранее цифр. Во всяком случае, действие светового излучения термоядерной бомбы, равной по мощности 2000 номинальных бомб, характеризуется следующими данными:
– в радиусе 20–30 км от эпицентра взрыва – смертельные ожоги;
– в радиусе 30–50 км – сильные ожоги.
В некоторых случаях для определения поражающего действия светового излучения полезно руководствоваться тем, что световой импульс в данной точке пространства примерно пропорционален мощности ядерной бомбы.
При этом, разумеется, предполагаются одинаковые метеорологические условия, причем в качестве исходных данных берутся результаты действия светового излучения, наблюдавшиеся при взрыве сброшенной на Хиросиму бомбы.
Если, например, при взрыве номинальной бомбы световой импульс на расстоянии 2 км от эпицентра взрыва равен 3 кал/см2, то при взрыве в 2000 раз более мощной бомбы он будет составлять 6000 кал/см2. Для такого незначительного расстояния поправочный коэффициент не будет играть особой роли, хотя для больших дистанций его значение очень велико.
Эти приблизительные данные позволяют сделать следующий важный вывод: если атомная бомба, в которой 60 % всей освобождающейся энергии выделяется в форме ударной волны, является оружием механического действия, то термоядерная бомба – это прежде всего оружий зажигательного действия.
III. Проникающая радиация и радиоактивное заражениеТермоядерная бомба оказывает значительно большее радиоактивное воздействие, чем атомная бомба. Следует различать действие проникающей радиации и радиоактивное заражение местности и воздуха.
1. Действие проникающей радиации.
Действие проникающей радиации, образующейся в результате взрыва атомного детонатора, незначительно по сравнению с действием ударной волны и светового излучения. И наоборот, нейтронный поток, который при взрыве атомной бомбы незначителен по сравнению с гамма-излучением, при взрыве термоядерной бомбы имеет очень большую интенсивность.
Можно сказать, что в каждой данной точке доза гамма-излучения прямо пропорциональна мощности бомбы.
Наконец, при взрыве термоядерной бомбы возникает очень сильная наведенная радиоактивность. Она возникает в результате того, что огненный шар, увеличиваясь в размерах, обычно касается земли, за исключением тех случаев, когда взрыв происходит на большой высоте. Это является новой[8]8
Наведенная радиоактивность имеет место и при взрыве атомной бомбы, хотя в этом случае она обычно бывает слабее вследствие меньшей интенсивности нейтронного потока. – Прим. ред.
[Закрыть] и очень важной чертой, характеризующей взрыв термоядерной бомбы.
2. Заражение местности и воздуха.
Взрыв термоядерной бомбы, произведенный у поверхности земли, может сопровождаться интенсивным выпадением радиоактивных веществ из облака.
Вместе с грибовидным облаком, образующимся при взрыве, в атмосферу поднимается большое количество частиц, которые под действием потока нейтронов становятся радиоактивными. Так, например, в результате взрыва, произведенного американцами 1 марта 1954 года, когда бомба была взорвана на башне высотой 50 м, островок Элугелаб взлетел на воздух, и на его месте образовалась воронка радиусом 1 км и глубиной 60 м. Специалисты считают, что вместе с грибовидным облаком в воздух было поднято до 20 млн. м3 вещества, из которого состоял коралловый островок; радиоактивность облака через час после взрыва достигла, по-видимому, 1012 кюри.
Можно предполагать, что в результате взрыва бомбы, в 2000 раз мощнее сброшенной на Хиросиму, в воздух взлетят сотни миллионов тони грунта. Более тяжелые частицы, разумеется, упадут в непосредственной близости от места взрыва, а остальные будут выпадать постепенно в зависимости от их размеров. Так, например, частица диаметром 75 микронов (микрон равен одной тысячной миллиметра) опустится на землю через 8 часов после взрыва, частица диаметром 15 микронов – через неделю, 10 микронов – через месяц и 5 микронов – через 3 месяца. Полагают, что самые мелкие частицы могут оставаться в атмосфере до 10 лет. Что касается радиоактивности, то, по подсчетам специалистов, она через 24 часа после взрыва уменьшается в 50 раз по сравнению с той, которая отмечалась через час после взрыва, а по истечении 6 суток уменьшается еще в 20 раз.
В этой связи нельзя не сказать несколько слов о катастрофе, постигшей 1 марта 1954 года японских рыбаков. Небольшое японское рыболовное судно «Фукурю-мару», имевшее на борту 23 человека, находилось в момент испытания водородной бомбы в 130 км от места взрыва. В 4 часа утра рыбаки увидели, как небо на горизонте внезапно осветилось, а спустя несколько минут до них донесся страшный грохот. Между 6 и 7 часами утра солнце скрылось за тучами, и с неба начал падать белый пепел. Он состоял из радиоактивной коралловой пыли – мельчайших частиц расплавленного карбоната кальция с осевшими на них продуктами деления. Выпадение пепла продолжалось несколько часов. Только после того, как моряки почувствовали себя больными и не могли больше продолжать работу, хозяин принял решение вернуться в порт Яидзу, куда судно прибыло 13 марта.
В Японии, по всей вероятности, было известно о проводимых в Тихом океане испытаниях. После медицинского осмотра рыбаков было установлено, что они получили сильную дозу радиации порядка нескольких сот рентгенов. Пострадавших поместили в больницу, а судно сожгли. Однако из 40 т рыбы, доставленных в порт «Фукурю-мару», часть уже продали. Это заставило предать происшествие гласности, так как среди населения началась паника.
Сначала думали, что этот случай был чем-то исключительным. В действительности же выпадение радиоактивных веществ из облака представляет собой самое обычное явление. При наземном взрыве водородной бомбы эти радиоактивные вещества могут заразить местность в полосе длиной 200–300 км и шириной 100 км, создавая таким образом опасность для населения, живущего далеко от объекта атомного нападения.
Английские ученые считают, что в результате испытания водородной бомбы, проведенного русскими в ноябре 1955 года, в атмосферу было поднято примерно 500 кг радиоактивной пыли. При благоприятном ветре этого количества хватило бы, чтобы уничтожить всякую жизнь на площади в 250 тыс. км2, что превышает территорию Великобритании..
Наконец, для сравнения этих данных с природными явлениями напомним, что во время извержения вулкана Кракатау в Индонезии в 1883 году было выброшено около 20 млрд. м3 грунта.
Глава VI
Защита от ядерных бомб
I. Постановка вопросаПри обсуждении вопроса о необходимости организации противоатомной защиты населения бросается в глаза, что возражения, выдвигаемые против организации такой защиты, всегда немногочисленны. К чему же они сводятся?
Во-первых, утверждают, что войны больше не будет: тот факт, что существующие в настоящее время военные группировки обладают ядерным оружием, является якобы гарантией мира.
Этот аргумент представляется нам несколько наивным. Если бы дело действительно обстояло так, то непонятно, почему начиная с 1945 года самые различные страны ведут бешеную гонку вооружений и почему во Французском бюджете на военные расходы ежегодно предусматривается более 1000 млрд. франков!
Как нам кажется, будущие войны будут двух типов: локальные и мировые, причем ядерное оружие будет применяться лишь в мировых. Возможно, что в будущем мировые войны будут происходить не так часто, как в прошлом; локальные же войны будут всегда. Разве после 1945 года мы не были свидетелями подобных войн в Корее, Индокитае и Северной Африке? Такой двойственный характер будущих войн заставляет иметь вооруженные силы, построенные по классическому образцу, и, кроме того, специальные формирования на случай будущего мирового конфликта. Именно поэтому две французские дивизии, входящие в состав НАТО, численностью в 12 тыс. человек каждая были реорганизованы в соединения, приспособленные к ведению боевых действий в условиях применения атомного оружия.
Но есть ли опасность того, что локальная война перерастет в мировую? История говорит, что войны существовали всегда, несмотря на многочисленные пакты о вечном мире, подписанные между различными странами.
Нужно ли напоминать в этой связи о «великом проекте» Сэлли, предложившем создать европейскую федерацию из 15 государств с единой армией и флотом, о плане, разработанном после Тридцатилетней войны Уильямом Пенном, в основе которого лежали моральные санкции, о плане вечного мира, предложенном аббатом Сен-Пьером, о планах Руссо, Канта, Меттерниха и, наконец, Лиги Наций?
У всех этих планов была одна и та же судьба. Людям всегда нравились состязания на арене, победители становились даже национальными героями. Поэтому войны являются своего рода привычкой и традицией людей. Можно ли утверждать, что современные люди отличаются от целых поколений своих предков?
Кроме того, в настоящее время землю населяет 2,5 млрд. человек. Если верить подсчетам, через 100 лет численность населения на земле достигнет 11 млрд. человек. Нет ли оснований опасаться, что увеличение численности населения явится одной из причин международных конфликтов в будущем?
Во-вторых, говорят, что, если даже мировая война разразится, ядерное оружие не будет использовано.
Опровергнуть это возражение очень легко. Разве в середине XV века, когда стало широко применяться огнестрельное оружие, люди вернулись к луку и стрелам? Развитие вооружения всегда шло по восходящей линии. Каждый использовал то оружие, которым он располагал, и пытаться утверждать обратное бессмысленно. Иногда в этой связи ссылаются на пример боевых отравляющих веществ. Однако, если в ходе второй мировой войны 1939–1945 годов газы не применялись, это отнюдь не значит, что так же произойдет и с ядерным оружием. Нельзя сравнивать вещи совершенно разного плана, какими являются отравляющие вещества и ядерное оружие: ведь только последнее представляет собой стратегическое оружие, способное обеспечить мировое господство.
Возможно, что та или иная военная группировка государств, зная, что у противника тоже есть атомное оружие, не решится первой его применить. Однако никакая воюющая сторона не может быть уверена, что ей удастся нейтрализовать противника, поэтому боязнь ответного удара может навести одного из воюющих на мысль, что если он «упустит удобный момент», то противник может такой момент не упустить.
Следует также предусматривать возможность непредвиденных осложнений, с которыми встретится тот или иной блок, обладающий ядерным оружием, в локальной войне. И кто поручится, что в этом случае он не попытается использовать свое ядерное оружие, несмотря на все принятые ранее обязательства?
Если бы у Гитлера в 1944 году было это страшное оружие, он наверняка воспользовался бы им, и тогда ни один корабль союзников не достиг бы на рассвете 6 июня 1944 года побережья Нормандии. Уже совсем недавно, во время войны в Корее, один американский генерал был готов применить ядерное оружие против китайцев. В тот момент, когда американские войска чуть было не были сброшены в море, заголовки американских газет призывали: «Бросайте ее!» – и весь мир знал, о чем идет речь!
Атомная бомба является дешевым оружием, и это важное обстоятельство может оказать определенное влияние на способы ведения войны в будущем. Как мы видели, одна бомба с тротиловым эквивалентом 20 тыс. т производит такие же разрушения, как 200 обычных десятитонных бомб или 100 тыс. снарядов 155-мм орудия. Чтобы сбросить на цель 200 десятитонных бомб, требуется 200 самолетов, считая, что самолет может поднять всего одну такую бомбу. Один самолет стоит 600–800 млн. франков. При массированном воздушном налете потери в самолетах составляют примерно 5 %. Беря за основу эту цифру (которая, впрочем, в будущих войнах будет гораздо выше), можно подсчитать, что из 200 самолетов на свои базы не вернутся 10, что в денежном выражении составит 6–8 млрд. франков. К этому надо прибавить неоценимые людские потери (полное обучение одного экипажа обходится примерно в 25 млн. франков). Но это еще не все: для того чтобы 200 самолетов могли подняться в воздух, требуются аэродромы, которые стоят миллиарды… Короче говоря, отсюда можно сделать два вывода:
– ядерная бомба стоит в 10 раз дешевле, чем необходимые для получения того же результата обычные бомбы;
– для того чтобы сбросить на противника атомную бомбу, требуется в 50 раз меньше людей, чем для доставки эквивалентного количества обычных бомб.
Эти два обстоятельства могут оказаться решающими, и не исключена возможность, что в будущем для бомбардировок станут использовать в основном ядерные бомбы разного калибра. Мысль о доминирующем значении ядерного оружия была сформулирована следующим образом: «Один самолет, одна бомба, один город».
Термоядерные бомбы, как мы уже говорили, еще дешевле атомных.
Выше уже отмечалось, что дефект массы в реакциях деления ядер составляет всего 0,1 %, в то время как в реакциях синтеза он равняется 0,7 %. Поэтому в первом приближении можно сказать, что при равном весе термоядерная бомба дает в 7 раз больше энергии, чем атомная.
На Женевской конференции по мирному использованию атомной энергии Комиссия по атомной энергии США привела цифры, позволяющие заключить, что термоядерная энергия в сотни раз дешевле энергии, получаемой в результате деления ядер тяжелых элементов.
В сентябре 1955 года в одном из своих выступлений доктор Лэпп привел несколько интересных данных. В термоядерных бомбах, равных по мощности испытанным в марте – апреле 1954 года на Эниветоке, себестоимость 1 т тротилового эквивалента составляла 1 цент. Исходя из этого, можно подсчитать, что бомба, равная по мощности 2000 номинальных бомб, то есть имеющая тротиловый эквивалент 40 млн. т, стоила бы 150 млн. франков. По сравнению с эффектом, который дает такая бомба, эта цена представляется весьма незначительной.
Из сказанного можно сделать следующий вывод: чем мощнее бомба, тем она дешевле и тем легче ее применить. Что же помешает воюющей стороне, обладающей такими бомбами, использовать их для достижения решающего успеха?
Третье возражение является для нас наиболее интересным. Если будет сброшена атомная бомба, говорят противники организации противоатомной защиты населения, разрушения будут настолько велики, что не помогут никакие средства, и поэтому незачем тратить деньги на организацию этой иллюзорной защиты.
Прежде всего необходимо уточнить термин «защита». В зависимости от применявшихся средств поражения изменялись формы и способы ведения войны. В XIII веке, когда лучник, тщательно прицелившись, пускал стрелу, противник, почти не имел возможности уклониться, однако и вероятность попадания стрелы также была незначительной. Затем появились катапульты, которые метали ядра через стены крепостей и одним таким ядром убивали или ранили сразу несколько вражеских воинов. В этот период поражение живой силы, по определению Жюля Мока, носит «ремесленную форму». Прошли века, наступил период «поражения малыми сериями». Этот период мир переживал к началу первой мировой войны, когда один хорошо замаскированный станковый пулемет или удачно расположенное 75-мм орудие выводили из строя десятки, а иногда и сотни вражеских солдат. Затем с увеличением калибра орудий и веса бомб наступил период «поражения крупными сериями». Сюда можно отнести массированные воздушные налеты на некоторые города во время второй мировой войны, когда число жертв и масштабы разрушений были огромны.
С появлением первых атомных бомб поражение стало носить почти тотальный характер в радиусе одного километра, а с появлением термоядерной бомбы оно стало тотальным в полном смысле этого слова, так как радиус действия водородной бомбы превышает размеры любой цели, в том числе и большого города.
Человечество платит дань прогрессу, и какому прогрессу! Упомянутый нами незащищенный воин, в которого стрелял из лука меткий стрелок, подвергался большой опасности, точно так же как пехотинец, который находился в нескольких метрах от разорвавшегося 75-мм снаряда. Для крупнокалиберных снарядов зона поражения увеличивается до нескольких десятков метров. Для человека же, находящегося вне укрытия в радиусе 1 км от эпицентра взрыва атомной бомбы типа сброшенной на Хиросиму, возможность остаться в живых практически сводится к нулю. По этому поводу иронически говорят, что каждый незащищенный человек в этой зоне будет убит трижды, так как сначала он погибнет от ожогов, затем, вероятно, будет задавлен обломками зданий и, наконец, получит смертельную дозу радиации!
При взрыве термоядерной бомбы типа испытанной американцами в марте – апреле 1954 года незащищенный человек погибнет в радиусе 10 км от эпицентра.
Следовательно, с ростом мощности средств поражения возможность остаться в живых для незащищенных людей уменьшается. Отсюда ясно, что вопрос об организации защиты встает еще более остро. Однако об абсолютной защите не может быть и речи, так как понятие «абсолютного» в этой области вообще немыслимо. Другими словами, опасность гибели возрастает. Следовательно, увеличивая мощность бомбы, приходится сознательно идти на увеличение числа жертв при ее применении, и эта мысль, с точки зрения человечности недопустимая и ужасная, должна сделать людей достаточно разумными, чтобы предотвратить войну, ибо, если она начнется, остановить ее будет невозможно.
Если в зоне смертельного поражения мало что можно будет сделать, то за ее пределами работы будет масса, и каковы бы ни были средства защиты, они окажутся недостаточными, так как разрушения будут настолько сильными, что их могут представить себе лишь те, кто сам пережил во время второй мировой войны воздушные налеты на Лондон и Гамбург. В десятикилометровой полосе, расположенной вокруг зоны смертельного поражения радиусом 10 км, окажется много заваленных под обломками людей и много домов будет охвачено пожаром. Для того чтобы иметь возможность оказать помощь тысячам людей, которые страдают и ждут помощи, резервы должны располагаться на достаточном удалении от эпицентра взрыва и в неуязвимых местах.
Приведем несколько цифр, характеризующих необходимое количество средств медицинской помощи.
Из 70 тыс. человек, погибших в Хиросиме, каждый второй погиб от ожогов. Это показывает, что при атомном нападении число людей, получивших ожоги третьей степени, будет исчисляться тысячами, а может быть, и десятками тысяч. Для того чтобы оказать медицинскую помощь пострадавшему, у которого обожжено 40 % всей поверхности тела, нужно 40 кислородных подушек, 10 литров плазмы, 2 литра крови, 25 литров сыворотки и 4 км бинта! Для лечения человека, получившего дозу радиации в 200–400 рентгенов, необходимо 1/4 литра крови и 2 литра сыворотки ежедневно в течение 6 недель. Донор же может давать не более 350 см3 крови раз в две недели.
Возможно, что в будущей мировой войне для достижения решительной победы будут стремиться уничтожить все людские резервы противника. Поэтому сохранение людского потенциала является для каждой страны жизненно важным делом. Большинство иностранных государств понимают это и не жалеют средств на организацию эффективной противоатомной защиты населения.
Рассмотрев вопрос о целесообразности этой защиты, посмотрим, в какой мере человек может защитить себя от поражающего действия ядерных бомб.








