355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Филипп Уокер » Электронные системы охраны » Текст книги (страница 12)
Электронные системы охраны
  • Текст добавлен: 11 октября 2016, 22:54

Текст книги "Электронные системы охраны"


Автор книги: Филипп Уокер



сообщить о нарушении

Текущая страница: 12 (всего у книги 20 страниц)

Наружные радарные системы

При рассмотрении типов зон перекрытия подчеркивалось, что для испытаний необходимо участие человека. Практически невозможно создать манекен, чьи отражающие характеристики в МКВ-диапазоне совпадают с человеческими. Манекен не способен также имитировать всю гамму добавочных частот отраженного излучения, возникающего при движении конечностей, а она крайне важна для прибора, работающего на допплеровском принципе. Чем меньше рост нарушителя, тем меньше мощность эха и дистанция надежного обнаружения. На близком расстоянии радар обнаруживает все. Поэтому близко летящая птица также способна вызвать ложную тревогу. Методы исчисления зон перекрытия могут сослужить, таким образом, хорошую службу при создании радара, малочувствительного к наружным помехам.

Основным доводом в пользу создания зоны необычной формы служит то, что если цель (птица) не "высвечивается" передатчиком, то на приемнике нет эха и ложной тревоги. То же самое верно и в случае попадания птицы только в зону перекрытия передатчика. Энергия, отраженная от нее, не даст эха в зоне чувствительности приемника. Чуть дальше от радара, там, где по схеме датчик не имеет чувствительности, допплеровский сигнал от птицы появится может, но если удачно подобрано перекрытие зон излучения передатчика и чувствительности приемника, эхо будет слишком слабым для срабатывания.

Эхо от человеческого тела будет достаточно сильным для реальной тревоги во всей области наложения зон излучения передатчика и чувствительности приемника. Разделение конусов перекрытия возможно при раздельной установке друг над другом передатчика и приемника. Дистанция между ними должна быть примерно 100 длин волны (для 3-х сантиметровых волн это примерно 300 мм, или 3 метра). При большей длине рабочей волны появляется необходимость в технических компромиссах для создания достаточно надежной системы. Однако компромиссные варианты окупаются снижением чувствительности к малым целям.

При использовании диапазона 3 см в периметровых системах ложные тревоги могут быть вызваны дождем или градом, но разделение передатчика и приемника устранит их.

Удачные и неудачные варианты практического использования

Еще до начала обсуждения микроволновых детекторов необходимо уточнить, что радар установлен там, где это необходимо для конкретного случая.

Большие участки пространства

В целом, МКВ-устройства способны перекрывать большую площадь в расчете на детектор, чем любой другой метод сейсмического или пространственного обнаружения. Ширина лицензируемых диапазонов такова, что позволяет установить несколько раздельных детекторов с индивидуальными рабочими частотами для еще большего увеличения охраняемой площади. Широкий разброс частот внутри разрешенного диапазона практически исключает риск случайной работы детекторов на близких частотах, появления наведенного допплеровского сигнала и ложной тревоги.

Положительные качества микроволновых датчиков, работающих на больших площадях, еще ярче проявляются, если радары установлены на потолке или перекрытии крыши. Зона перекрытия таким образом увеличивается вдвое по сравнению с расположением на стене или колонне. Учитывая, что размеры нормального пучка 120-150 градусов в одной плоскости и 60-75 градусов в другой, нет необходимости направлять его на стены, окна и двери, где повышается риск ложных тревог.

Благодаря большей, по сравнению с ультразвуком, длине волны, микроволновое излучение менее чувствительно к внешней вибрации и к помехам из окружающей среды вообще. А поскольку МКВ-излучение пронизывает такие тонкие материалы, как колеблемая сквозняком бумага или картон, и делает это тем лучше, чем больше длина волны, то увеличение этой длины в разумных пределах улучшает надежность охраны складских помещений.

Площади среднего размера

Дать определение "охраняемой площади среднего размера" труднее. Возможно, под площадью среднего размера лучше всего понимать такую площадь, перекрытие которой потребует одного детектора и, возможно, второго для ликвидации непросматриваемой зоны. Выбор подходящего для такого помещения способа пространственного обнаружения – дело хозяйское, хотя иногда приходится действовать и методом исключения. Например, в офисах слишком многое может заставить ультразвуковой радар "нервничать", и лучше использовать его микроволновый аналог, не направляя его на окна и разделительные легкие перегородки.

Малые площади

С уменьшением площади и возрастанием риска на работу систем пространственного обнаружения начинают все сильнее влиять конструктивные особенности стен, потолка, пола, дверей и окон. Расстояние до них уменьшается, и растет, соответственно, возможность ложных срабатываний. Если проникновение в помещение не слишком затруднено, например, через окна в магазине, тогда лучше использовать ультразвуковые детекторы, не направленные на границы территории. В жестких строительных конструкциях, особенно не имеющих окон, более пригодны микроволновые устройства. Если риск не слишком велик, то приемлемы и более дешевые инфракрасные приборы пассивного действия, описанные в главе 17.

Запатентованные устройства

Как и в случае с ультразвуковыми устройствами, микроволновые детекторы производятся многими фирмами. Однако нельзя не отметить, что большинство запатентованных устройств не блещет оригинальностью и не использует полностью всех технических и эксплуатационных возможностей МКВ.

Одной из первых фирм, появившихся на рынке с микроволновым детектором на диодах Ганна, была "Shorrock Security Systems". Ныне ассортимент продукции этой компании включает в себя работающие в диапазоне 3 см стационарные переносные камуфлированные модификации (виды) МКВ-детекторов.

Фирма "Racal Security" после длительных исследований добилась снижения силы тока питания МКВ-детекторов со 150 миллиампер, потребных для диода Ганна, до 25 миллиампер. Основой прибора является полевой транзистор на базе арсенида галлия (тиристор), генерирующий волны длиной 3 см.

Конструкторам на этапе создания систем и задания спецификации оборудования важно помнить, что правительственные органы большинства стран ограничивают максимальную мощность выходного сигнала МКВ систем охраны, чтобы избежать засорения эфира радиопомехами. Ограничивается и рабочая частота устройства. Для диапазона 3 см типичными рабочими частотами разных стран являются:

для Франции – 9,900 мегагерц;

для Германии – 9,470 мегагерц;

для Великобритании – 10,687 мегагерц (в помещении);

10,587 мегагерц (на открытом воздухе);

для США – 10,525 мегагерц.

Кроме "Shorrok Security Systems" на создании систем наружной микроволновой радарной сигнализации специализируется фирма "Bridgend Technologies Lid".

Эта фирма выпускает датчики, учитывающие направление перемещения, что позволяет снизить процент ложных срабатываний от продольных периодических колебаний в зоне действия пучка и не реагировать на предельно большой допплеровский сдвиг частот с целью подавления сигналов от быстро движущихся птиц и машин. "Bridgend Technologies Ltd" рекомендует также устанавливать радар достаточно высоко, чтобы он не реагировал на наземные помехи от мелких животных.

Хотя многие другие методы обнаружения дешевле микроволнового, МКВ-детекторы незаменимы в зонах высокого риска проникновения, и поэтому в данном контексте о них не стоит, может быть, говорить так много.

В главе 17 вам встретится ссылка на так называемые комбинированные устройства при описании инфракрасных систем пассивного действия. Инфракрасный пассивный детектор в них сочетается со средствами ультразвукового, микроволнового или микрофонного обнаружения. Для поднятия тревоги должны сработать оба устройства (см. главу 19).

Темы для обсуждения

Уже упоминалось, что системы сигнализации тоже подвержены веяниям моды. В особенности это верно для систем пространственного обнаружения, где соперничают три основных метода – ультразвуковой, микроволновый и пассивный инфракрасный. Чтобы сделать обоснованный выбор, специалисту необходимо быть в курсе последних достижений в каждой из этих областей и следить за появлением иных эффективных методик. Практический опыт специалиста должен сочетаться со знанием цены одного устройства, всей системы, надежностью обнаружения, риска ложных срабатываний и иных труднопредсказуемых интересов заказчика. При таком количестве переменных величин единственным практичным путем поиска приемлемой комбинации могла бы быть организация дискуссионных групп и обобщение их опыта, мыслей и знаний. Подобные дискуссии дадут возможность руководству фирм, производящих системы сигнализации, нащупать надежную основу дальнейшей работы с учетом полезного афоризма – "Стандартизация хороша лишь на время".

ГЛАВА 17

ПАССИВНЫЕ ИНФРАКРАСНЫЕ ДЕТЕКТОРЫ

В главе 14 обсуждалось использование активных инфракрасных комплексов "передатчик – приемник" для создания систем сигнализации. В название был специально включен термин "активный", чтобы провести границу между устройствами с источниками инфракрасного излучения и без них. Последние получили название инфракрасных пассивных детекторов.

Как известно, большинство наиболее полезных для человека открытий было сделано случайно. Говорят, что однажды внимательный инженер осматривал сломанную из-за отказа лампы активную систему и вдруг заметил короткий сигнал на выходе приемника, когда напротив прошел его коллега. Точно не известно, было ли все именно так, или пассивные инфракрасные системы родились из научного знания о том, что люди сами активно излучают инфракрасный свет в форме тепла. Может быть, два или более исследователя разными путями пришли к одному и тому же выводу в одно время, и обе истории содержат долю истины. Можно предполагать подсознательно, что пассивный инфракрасный метод идеален для обнаружения нарушителей.

Возможности и трудности

Если среда, в которой движется нарушитель, той же температуры, что и его тело, инфракрасные устройства пассивного действия никуда не годятся. В возможности их широкого применения есть оговорка – удастся или нет найти эффективный способ измерения разности температур или, по крайней мере, ее выявления. Я впервые понял важность подобного устройства для создания систем сигнализации, когда прочитал, что один из американских изобретателей декларирует возможность при помощи своего прибора обнаружить собаку на расстоянии в 100 ярдов. "Не приведи господь", – подумал я тогда. Ведь речь шла фактически о патентованном генераторе ложных тревог. Тем не менее, я написал ему письмо, но ответа не получил. В тот период мне стало ясно, что технологические компоненты удобной в практическом пользовании пассивной инфракрасной системы сигнализации еще не разработаны. Позже они появились. Особых успехов в их разработке достигли Германия, США и Великобритания. Трудно гарантировать, но, по-моему, 80-е годы войдут в историю как период, когда все три системы пространственного обнаружения – ультразвуковые, микроволновые и инфракрасные устройства пассивного действия – достигли возраста возмужания.

Чувствительные элементы ИК систем

Пользователя, конечно, больше волнует результат. Но все же интересно отметить, что на путях прогресса различные страны отдают предпочтение разным светочувствительным материалам инфракрасного диапазона. В Германии используется танталит лития, а в Великобритании – керамика на свинцово-циркониево-титановой основе. Сравнительно недавно американская фирма "Pennwalt Corporation" разработала пьезоэлектрическую пленку "Купаг". В пассивных инфракрасных детекторах этот материал используется, потому что он обладает не только пьезоэлектрическим, но и фотоэлектрическим качествами.

Чтобы прибор обладал достаточной различающей способностью, в его инфракрасный "глаз" должен поступать не постоянный, а переменный по мощности поток энергии. К счастью для создателей систем охраны, нарушитель достаточно быстро меняет характер этого потока теплом своего тела. Кроме того, для воздействия на чувствительный элемент энергию надо несколько сфокусировать. К сожалению, стекло – далеко не лучший проводник инфракрасных лучей, и обычные линзы для фокусировки не подойдут. Надо искать что-то иное.

Фокусирующие элементы

Чтобы преодолеть ограничения, налагаемые свойствами обычных оптических линз, используется два метода. Вопервых, применяются зеркала. Читатели наверняка помнят " комнаты смеха" в парках отдыха. Там были установлены искажающие или так называемые "кривые" зеркала. Одно такое зеркало может отразить высокого и худого нарушителя как маленького и толстого. А второе зеркало сожмет этот образ в точку, если зеркала установлены под верным углом друг к другу. Это значит, что он сфокусирован.

При всей своей эффективности зеркальная фокусировка – метод недостаточно гибкий и пригоден только лишь для создания очень малого числа конфигураций зон перекрытия. Потребность в гибкой методике привела к тому, что многие службы безопасности приняли на вооружение линзы Френеля. Вы, наверное, видели их в прожекторах и на маяках, а также в видоискателях зеркальных фотокамер.

Какой бы тип линз не использовался, при прохождении через них мощность пучка будет падать. Соответственно, снизится и чувствительность прибора. Пунктир на рисунке показывает, насколько толстой была бы обычная выпуклая линза. Использование ступенчатой френелевской линзы снижает толщину стекла и потери энергии во много раз. Кроме того, эффективность линзы и точность фокусирования могут быть достигнуты заменой стекла на пластмассу. Вот пример гибкости возможного конструирования: фирма "Chartland Electronics Ltd" выпускает пластмассовую линзу размером 50х40 мм, способную заменить индивидуальные линзы для 24 раздельных пучков ИК-излучения.

Одно-, двух– и четырехэлементные ИК-детекторы

Ранние модели инфракрасных детекторов пассивного действия, как правило, использовали один пироэлектрический чувствительный элемент в каждом детекторном комплексе. Вскоре практика дала ответ на двойной вопрос: "Работает ли система? Можно ли ее вывести из строя?" Оказалось, что при всех достоинствах прибора как детектора, он излишне склонен давать ложные срабатывания. Ответом на это затруднение стало создание двухэлементных детекторов. Один из элементов генерирует позитивное напряжение при воздействии тепла, другой – негативное, они включены в цепь параллельно, поодиночке или блоками, и при воздействии теплового излучения на оба элемента вырабатываемый ток взаимпогашается, не вызывая сигнала тревоги. Сочетание линз и детекторов должно быть таким, чтобы тепло от нарушителя воздействовало лишь на один чувствительный элемент, который, в свою очередь, выработает ток для подачи тревоги. А вот изменения в температуре окружающей среды, звуковой шум и солнечный свет должны действовать на оба элемента сразу и при этом взаимопогашаться.

Возможны одно-, двух– и четырехэлементные детекторы. Сравнивая их устойчивость к ложным срабатываниям, стоит отметить, что пассивные инфракрасные (ПИК) детекторы реагируют на движение "поперек шерсти", то есть прямых, сходящихся в точке приема, а ультразвуковые и микроволновые допплеровские датчики – на приближение и удаление от прибора.

Двухэлементный детектор хорош, но вероятность ложных тревог все же остается. Поэтому появились четырехэлементные приборы. Например, разработанный фирмой "Pulnix" прибор "Quad Element Detector" сочетает в себе две пары пироэлектрических элементов. Выходные сигналы обеих пар поступают в блок обработки сигналов, который подает тревогу лишь после превышения обоими некоторого порогового значения.

Фирма "Racal Guardall" также разработала четырехэлементную систему "Type DX20:20" на базе пироэлектрических элементов фирмы "Philips". За счет обработки последовательности сгенерированных, сигналов на детекторах, микропроцессор различает человека, пересекающего охраняемую зону, и источник тревоги. Однако все вышеперечисленные ухищрения не помогут, если у злоумышленника или его сообщника есть возможности вывести ПИК-детектор из строя в рабочее время. ПИК-устройства мало используются в зонах высокого риска из за мнения о том, что перекрытие зоны обзора слишком легко выводит их из строя. Существуют варианты установки детекторов, которые затрудняют завешивание их маскирующими материалами, и в этом плане очень выгодно их размещение на потолках. Тем не менее, даже там их можно опрыскать маскирующим веществом, при условии, что преступнику удастся сделать это незаметно.

Чтобы ПИК-системы могли достойно конкурировать с допплеровскими ультразвуковыми и микроволновыми детекторами, усилия разработчиков были сконцентрированы на решении проблемы борьбы с маскировкой. "Pulnix "встроил в приборы серии РА 5020/5045 (четырехэлементные) так называемые детекторы ослепления, которые и распознают маскировку.

Области применения ПИК-систем сигнализации

Наиболее подходящие области применения обусловлены природой различных зон перекрытия, получаемых с помощью френелевских линз. Если вытянуть руку ладонью вниз и развести пальцы, то можно наглядно представить себе наиболее распространенную форму такой зоны.

Угол охвата в принципе может быть любым – от нескольких градусов до 180 градусов при установке на стене и полного кругового обзора, доступного потолочному датчику. Другой вариант – пальцеобразная зона, ориентированную в вертикальной плоскости для слежения за полом. Некоторые модели имеют дополнительно зону обзора, расположенную вертикально вниз по стене, чтобы исключить проползание под ПИК-устройством сигнализации.

Области применения ИК-пассивных детекторов очень схожи с использованием допплеровских ультразвуковых и микроволновых датчиков.

Возможно, больший интерес представляет использование ПИК-датчиков для создания так называемой шторной или тонкослойной зоны. Двухэлементный прибор видит только один "палец", составленный из двух близко расположенных зон чувствительности. Хотя толщина их мала, электронное устройство способно обнаружить вход и выход из зоны слежения. 90 градусов перекрытия достигаются в другой плоскости. Такая защита используется в картинных галереях, на проходных или у окон служебных и торговых помещений. Поворот "шторки" в горизонтальную плоскость позволяет перекрыть такие уязвимые места в здании, как стеклянные крыши. Для жилых помещений особенно ценна установка детектора лучом вниз. Таким образом, создается "занавес" от потолка почти до пола. При правильной оценке просвета, необходимого для прохода мелких животных, снижается риск ложных срабатываний. Подобная схема обеспечивает слежение за дверьми и окнами, поэтому этот небольшой просвет у пола не опасен.

Всегда хорошо, если прибор системы сигнализации годится еще для чего-нибудь. Наиболее часто ПИК используется при охране наружного периметра в сочетании с прожектором, включаемым при срабатывании прибора. Для "своего" человека это – ориентир, для злоумышленника – сдерживающий фактор.

Несколько фирм разрабатывают подобные системы, а компания "Linteck Ltd"из Блэкберна специализируется только на их производстве. Вспыхнувший прожектор может автоматически светить некоторое время и гаснуть, а специальный датчик отключает его в дневное время. В комбинации с прожектором чувствительность ПИК-детектора к движущимся объектам и способность подавать сигнал тревоги остаются прежними. Пример – ПИК-устройство сигнализации в сочетании с 500-ваттным прожектором. Оно используется для охраны наружных периметров зон высокого риска, стройплощадок, жилых помещений, а также для внесигнального освещения дорожек и рекламных щитов при приближении к ним.

Что делать с ложными срабатываниями?

Опыт защиты от ложных срабатываний ультразвуковых и микроволновых допплеровских датчиков помог разработчикам ПИК-детекторов. Они позаимствовали способы подавления таких общих для всех трех систем сигнализации источников ложных срабатываний, как наведение и сетевые помехи, вибрация, радиаторы центрального отопления и повышенная чувствительность. Специфическими для ПИК систем являются помехи от яркого солнечного света и фар автомобилей, шумы в звуковом и инфразвуковом диапазоне. На звуковые волны ПИК-детекторы реагируют подобно пьезоэлектрическим приемникам. Электроника этих детекторов работает во всем диапазоне частот. В иных системах сигнализации подобный разброс за ненадобностью сведен до минимума. Почти все эти специфические трудности преодолеваются двух– и четырехэлементными приборами. Чтобы решить, достаточно ли успешно, применительно к конкретной ситуации, ПИК-система справляется с ложными срабатываниями в одиночку, при помощи четырехэлементных датчиков, или стоит застраховаться описанными в главе 19 комбинированными устройствами, вам следует ознакомиться с факторами, перечисленными в разделе "Темы для обсуждения" этой главы.

Темы для обсуждения

Если соображения моды важны при выборе метода обнаружения нарушителя, насколько высоко котируются ПИКсистемы? Если им отдается предпочтение, то происходит ли это из-за низкой цены на прибор и его установку или из-за эксплуатационных преимуществ? А может быть, соображения моды ныне не играют никакой роли? Не приходится ли на самом деле пользователю решать вопрос о том, что же требуется от детектора – защитить зону обычного или повышенного риска защитить зону обычного или повышенного риска?

ГЛАВА 18

МИКРОФОННЫЕ УСТРОЙСТВА

Приставка "микро" (от греческого "микрос" – маленький) слишком часто и не всегда к месту используется в языке радиоэлектроники. Ее наличие в названии прибора вполне может ничего не дать в понимании его функций. Однако слово "микрофон" столь часто употребляется в разговорах о радио, телевидении, телефонах и громкоговорительных системах, что вопросов о его значении просто не возникает. В рабочих целях мы можем определить термин "микрофон" так: это мембранное устройство, служащее для превращения акустической и механической энергии в электрические сигналы, которые могут быть усилены и переданы по проводам в любое необходимое место.

Сейсмические датчики

Ни микрофоны, ни сейсмические датчики изначально не предназначались для систем сигнализации. Последние, например, создавались как особый тип микрофона для геологической разведки буровых скважин. Эти устройства должны были иметь большую прочность в конструкции, чтобы выстоять против ударной волны зондирующего взрыва на поверхности и большую чувствительность, чтобы улавливать легчайшее эхо взрыва в глубине земли и его колебания под влиянием залежей ископаемых.

Впервые они были применены службами безопасности при охране наружных периметров и пользовались большой популярностью. На оградах они хорошо различали звуки сверху и снизу, но нечетко реагировали на боковые сигналы, так как не обладали способностью подавлять шум ветра. По мере накопления практического опыта стало очевидно, что они слишком чувствительны для использования в системах сигнализации и перегружают электронику обилием правильных, но нежелательных сигналов. Это свело на нет такое полезное качество сейсмических датчиков, как различающая способность.

Наиболее широко использовались ранние модели сейсмических датчиков, выпускавшиеся французской фирмой "Sercel". Позже на рынке появились варианты приборов этого типа, различающая способность которых могла меняться соответственно характеру окружающей среды. Кстати, подобная ситуация достаточно часто встречается в мире систем сигнализации. Особенности конструкции или сам базовый физический принцип дают чувствительность детектора, слишком высокую для конкретной ситуации, и ее приходится уменьшать, чтобы достигнуть приемлемого сочетания точного обнаружения и процента ложных срабатываний.

Фирма "Sercel" разработала так же очень интересный способ подачи сигнала об опасности на центральный пульт службы безопасности объекта. Каждой зоне прослушивания соответствовала вертикальная "термометрическая" шкала, светящийся столбик которой двигался в зависимости от интенсивности сигнала. Это позволяло обнаружить направление приближения потенциального злоумышленника еще до того, как мощность звука переходила за критическую отметку.

Пьезоэлектрические датчики

Подарком природы стоило бы считать то, что некоторые минералы, например, кварц, при сжатии вырабатывают электричество. Зримые аналогии помогут нам понять использование пьезоэлектриков. Представьте, что на полированной поверхности стола лежит маленькая деревянная или пластиковая игральная " кость". Если мы нажмем на одну из ее сторон, она сдвинется без видимого сопротивления. Если нажать сверху, кость не сдвинется, но, очевидно, слегка сплющится. Теперь мысленно прижмем ту же " кость" на внутреннюю поверхность витрины магазина в любое место и с силой ударим по окну снаружи. Стекло, может, и не сломается, но прогнется. На " кость" это никак не подействует. Но если ее "зажать" между окном и чемто твердым, препятствующим движению стекла, она сомнется.

Специально обработанный кусочек кварца на месте косточки выработает при этом электрический ток. Этот сигнал уже может быть использован в системе сигнализации.

Преимущество такой системы в том, что ток возникает только при сжатии и отпускании кристалла, а напряжение растет пропорционально нажиму. Другими словами, оно будет зависеть от ускорения. В физике эта величина обозначается буквой "а", отсюда и названия запатентованных приборов типа "а-детектор".

На практике вместо кварца используются синтетические материалы типа титанита бария. Этот тот же сплав, который упоминался в качестве излучателя в ультразвуковых датчиках в главе 15.

Оконные пьезодатчики

В предыдущем разделе речь шла об ударе по стеклу витрины. Знать о подобных попытках полезно, но чаще всего это – ложные тревоги. Гораздо важнее заметить уже разбитое стекло. Сделать это можно при помощи все той же чувствительности пьезодетекторов к ускорению. Когда стекло бьется, оно издает сложную гамму звуков (в том числе и в ультразвуковом диапазоне). Происходит это из-за быстрых и медленных изгибов стекла в момент удара. В таких условиях пьезоэлектрические устройства вырабатывают ток максимального напряжения. Достижение этого пика однозначно сигнализирует о реальной опасности.

Пьезодатчики для охраны стен и оград

Благодаря высокой способности чувствительных к ускорению пьезоэлектрических материалов различать высоко– и низкочастотные сигналы, они весьма подходят для охраны. Большинство естественных колебаний этих преград – низкочастотные, а вот вибрация при попытке проникновения имеет высокую частоту.

Поскольку вырабатываемое напряжение прямо пропорционально ускорению, то можно перевернуть формулу и полюбопытствовать, какое смещение необходимо для каждой частоты колебаний, чтобы получить определенное напряжение. Такой подсчет даст нам величину различающей способности прибора.

Для получения напряжения требуется, к примеру, смещение на десятую долю дюйма при частоте в 10 гц. Согласно правилу прямой пропорции, то же напряжение будет получено при частоте в 100 гц смещением на сотую долю дюйма, а при 1000 гц – на тысячную. Реакция пьезоэлектрических детекторов на редкие сигналы, например, от разрезания проволочного ограждения, впечатляет. Но на самом деле этими свойствами пьезоэлектриков воспользовалось крайне мало фирм-производителей сигнализационного оборудования. И это – несмотря на сочетание в них всех преимуществ инерционных датчиков с бесконтактным срабатыванием.

Датчики на основе электретного кабеля

Английское выражение " прижаться ухом к земле" значит "быть осведомленным". Службы промышленной безопасности нуждаются в этом прежде всего. Специально для их нужд и был создан электретный микрофон-кабель (Патент США No 3 673 482). Так же, как сейсмический детектор и пьезоэлектрический микрофон, электретный кабель должен быть соединен с источником информации – землей, оградой, дорожным полотном и т.д.

А вот отличается он от своих собратьев тем, что передает в точности все, что "слышит". Вы помните, что пьезоэлектрические датчики, чувствительные к ускорению, почти не воспринимают низкие частоты (подобно инерционным ЭУ), а сейсмические детекторы, наоборот, тяготеют к низким частотам.

Мы уже убедились в том, что полезно, конечно, когда датчик фильтрует сигналы, уменьшая число ложных срабатываний, но хуже, когда он отсекает хоть один раз то, что указывает на реальную опасность. Электретный кабель "слышит" все, оставляя труд по сортировке сигналов на долю создателей электронной системы его обслуживания.

Если вы уже знакомы с использованием электретного микрофона в громкоговорительных и радиовещательных устройствах, то могли бы предположить, что этому разделу место в главе 21 под подзаголовком "Устройства наведенного поля". Это верно, если бы эта книга была об электронной "начинке" систем сигнализации, но речь-то идет о прикладных применениях электроники. Ведь в тех случаях, когда прибор связан с нашей повседневной жизнью, для нас важнее сначала понять, что он делает, а уже потом – как он устроен.

Электрет – это диэлектрический материал конденсатора, предварительно заряженного на все время пользования путем подачи на диэлектрик высокого напряжения, близкого к пробивному для этого диэлектрика. Было открыто, что подобным свойством постоянно удерживать на себе электрический заряд обладают некоторые вещества из группы флюорэтиленов. Это открытие практически перечеркнуло использование старых микрофонов, требовавших подведения к ним высокого напряжения. Такое электрическое поле ведет себя подобно магнитному. Это отражено и в названии "Электрет", являющимся сочетанием английских слов "electric" (электрический) и "magnetic" (магнитный).

Малейшего давления на покрытие, произведенного, например, проволокой в ограде, которая прогнулась под ногой нарушителя, достаточно, чтобы появился сигнал, передаваемый на пульт управления. Конечно, совершенно очевидно, что ограда периметра, обнесенная столь чувствительным кабелем, будет генерировать огромное число сигналов от самых слабых воздействий.

Преодолеть эту какофонию можно тщательным конструированием и испытанием электронных систем обработки сигнала. Причем, испытывать систему следует до поставки ее заказчику. Для наладки оборудования, как правило, необходимо на основе расчетов, эксплуатационного опыта и полевых испытаний выделить набор типичных ситуаций возникновения ложной тревоги, смоделировать их, записать их электронное отображение и создать погашающую электронную модель-зеркало. Точно так же должен быть зафиксирован "почерк" сигналов о реальной опасности. Затем необходимо выделить характеристики, максимально различающие электронное отображение истинной и ложной тревоги.


    Ваша оценка произведения:

Популярные книги за неделю