355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Федор Полканов » Мы и её величество ДНК » Текст книги (страница 8)
Мы и её величество ДНК
  • Текст добавлен: 7 октября 2016, 19:16

Текст книги "Мы и её величество ДНК"


Автор книги: Федор Полканов



сообщить о нарушении

Текущая страница: 8 (всего у книги 11 страниц)

Ген. Что это такое?

Бывают моменты, когда полезно оглянуться назад, на пройденный путь. Именно такой момент настал для нас с тобой, читатель, – нам нужно вспомнить Менделя.

Он не мог заглянуть в глубь клетки, не было тогда еще самого термина – ген, но Мендель проследил путь генов, ориентируясь на их проявление, на признаки, которые они вызывают. И Мендель четко себе представлял, что наследственные задатки в зиготе парные, однако не смешиваются, а при образовании гамет разделяются, и парность их восстанавливается при оплодотворении.

Как же представлял себе Мендель наследственный задаток – ген? Прежде всего как частицу. Он не позволял себе теоретизировать. Это был экспериментатор, теории которого лишь обобщали эксперимент. Итак, наследственный задаток, по Менделю, – частица, нечто изначальное, неделимое, подобное атому, каким представляли его в те времена.

Вслед за Менделем пришли в науку новые люди и новые мысли. Моргану и его соратникам дело представлялось уже иначе. Теоретический взор ученого – он проникает через любые преграды – проник и сквозь клеточную оболочку. Гены для Моргана тоже частицы – именно он окончательно формулирует корпускулярную теорию наследственности. Но эти частицы уже объединены, они составляют группы сцепления – хромосомы. «Бусы на нитке» – вот, образно говоря, представления Моргана о расположении генов. Они ни в чем не нарушают менделевское теоретическое видение, а дополняют и развивают его. Теория становится стройной, однако все еще грешит недостатками – в ней нет места взаимосвязям и взаимодействиям внутри генотипа. Недостаток понятный и даже простительный: и Мендель и Морган – экспериментаторы, а главная заповедь любого экспериментатора – делать выводы, только непосредственно вытекающие из эксперимента.

Жизнь не стоит на месте, наука развивается, пополняется новыми данными, и вот уже экспериментаторы нового времени, сперва американец А. Стертевант, а затем молодые в ту пору советские исследователи Н. П. Дубинин и Б. Н. Сидоров, переместив ген из одной хромосомы в другую, обнаруживают, что меняется его проявление. Эффект положения! Открытие, сразу же внесшее в науку представления о связях и взаимных воздействиях. Теперь уже ген – все еще «висящая на нитке бусина» – не независим от генотипа. Напротив, выступает на первый план роль генотипа как целого.

Дубинин работал с линией дрозофилы, у которой хорошо была изучена мутабильность в первой хромосоме. И вдруг мухи устроили «сюрприз»: исследователи ввели во вторую хромосому инверсию – изменение, при котором часть хромосомы как бы переворачивается, порядок расположения генов в ней меняется на обратный. Из-за этой перестройки, легко осуществляемой путем скрещиваний, сильно изменилась мутабильность первой хромосомы.

Следовательно, мутабильность, то есть частота, с которой происходят генные перестройки, возникают мутации, зависит от всего генотипа в целом. Но мутации, в конечном итоге, – результат воздействия того или иного фактора среды, и значит, внешнее и внутреннее объединяется в единый взаимосвязанный комплекс.

Дубинину не было еще двадцати лет, когда скрупулезные эксперименты привели его к мысли поистине дерзкой – о делимости гена! Частица Менделя, корпускул Моргана, единица, представлявшаяся первичной и изначальной, как представлялся исследователям прошлого первичным и изначальным атом, оказывается довольно сложной, ее даже можно разделить кроссинговером! Целая серия превосходных экспериментов, подтверждающих эту мысль, была проведена сорок лет назад Дубининым и другими молодыми исследователями под руководством А. С. Серебровского. Вот мы и приблизились к современному понятию о гене – ген как участок ДНК. Если эксперименты прошлого лишь наводили на мысль о взаимосвязях между генами одной хромосомы и в генотипе в целом, то теперь эти связи стали настолько ясны, что даже... утратилось строгое представление о границах, разделяющих гены! Можно ли теперь сказать, что ген – корпускул, частица? И да и нет! Да, потому что он ведет себя как отдельность, частица в скрещиваниях. Нет, потому что не обнаружишь, где, собственно, проходит грань между «бусинами». Таким образом, современные представления, не отвергая, усложняют представления прошлого.

Проблема тонкой структуры гена сейчас одна из основных и главных проблем генетики. Мы в нее не будем вникать, однако кое-что, быть может, и не самое главное, но зато понятное, я расскажу.

Как происходит химическая мутация? Вопрос спорный и сложный, но вот один из возможных путей: для этого достаточно заменить в нуклеотидной цепочке лишь одну пару оснований. На практике возможен такой путь. 5-бромурацил, сокращенно называемый БУ, – это тимин, у которого метильная группа замещена бромом. По мнению Фриза, мутация под его воздействием происходит так: БУ в паре оснований А – Т замещает тимин. Однако при последующих делениях БУ не может сохраниться, так как у него нет сродства с аденином, он не составляет с ним пары. В результате из пары А – БУ может возникнуть пара БУ – Г. Гуанин, таким образом, уже заместил аденин. Но и с гуанином БУ не составит пары, поэтому при последующем удвоении нити ДНК БУ неизбежно будет заменен на Ц, и в нуклеотидной цепочке вместо первоначальной пары А – Т окажется новая пара: Г – Ц. А это уже мутация.

Но если замена одной пары нуклеотидов означает мутацию, то не следует ли считать, что каждая из пар в цепочке – обособленный ген? К сожалению, эту заманчивую возможность приходится, попросту говоря, отбросить. Ген – несравненно более сложное образование, недаром его можно разделить кроссинговером. Верно, что замена одной пары оснований – мутация, но неверно, что пара оснований – ген. По всей видимости, большинство генов включает в себя сотни нуклеотидных пар.

Что же представляет собой ген с точки зрения современной генетики? Сейчас ученые атакуют ген с трех сторон. Так, по поведению в скрещиваниях, по внешнему проявлению в виде контролируемого геном признака мы должны вслед за Морганом считать ген за единицу наследственности и даже признавать его относительную неделимость. Это чисто генетический подход. Другие исследования, биохимические, обнаруживают в составе гена тысячи нуклеотид; изменения хотя бы в одной их паре уже мутация. И наконец ген с точки зрения цитологической. Не так давно я с удовольствием развернул перед недоверчивым читателем фотографию хромосом из слюнных желез дрозофилы: «Видишь исчерченность? Смотри и удивляйся: это и есть гены». Сейчас я не собираюсь отказываться от своих слов, однако должен признаться: для сегодняшней генетики этих фактов уже недостаточно. И цитологи подбираются к гену новым путем: через электронную микроскопию.

Изучение тонкой структуры гена привело к выделению некоторых единиц. Так наименьший участок, который может быть выделен при помощи кроссинговера, называют реконом. Опыты на вирусах показали, что величина рекона 0,02% перекрестов. Следующая из выделенных единиц – мутон. Это наименьшее число нуклеотидных пар, изменение которых может вызвать мутацию. Исходя из описанной теории Фриза, мутоном может быть одна пара нуклеотид. Однако мутон, выделенный за счет генетической комбинаторики, составляет 0,05% перекреста. Третьей генетической единицей, которую выделили в последнее время, является цистрон. Очень трудно охарактеризовать его, не прибегая к изложению большого дополнительного материала. Однако по своему действию, по функциям цистрон соответствует старому доброму понятию «ген». По своей протяженности на ДНК цистрон больше рекона и мутона, так как внутри гена возможен перекрест, а изменение одной нуклеотидной пары внутри гена уже мутация.

Итак, каково сейчас состояние проблемы гена? Она в пути. Большие открытия и свершения и позади, и происходят сегодня, н впереди.


ГЛАВА ПЯТАЯ. ГЕНЕТИКА И СЕЛЕКЦИЯ,

в которой с высот теоретических придется нам перебраться на высоты практические. Тут автор заранее просит у читателя извинения: не сможет он вместе с ним совершить траверс хребта, именуемого селекцией; он поведет читателя лишь на некоторые вершины, с которых, впрочем, не так уж сложно обозреть весь горный хребет.

Н. И. Вавилов о селекции

Не было в нашей биологии фигуры крупнее, чем академик Николай Иванович Вавилов. «Мы только потому не говорим про Вавилова «гений», что он наш современник» – так сказал о Николае Ивановиче в конце тридцатых годов один крупный биолог.

В XX веке науки усложнились, специализировались. Теперь даже две смежные области нельзя уже знать в совершенстве.

Однако сказанное относится к людям, способным, даже талантливым, для гениев же законы не писаны. Вавилов был не только крупнейшим генетиком, но и крупнейшим ботаником-систематиком, географом и организатором биологической науки. Человек высочайшей культуры, Вавилов владел многими языками и во время бесчисленных своих экспедиций разговаривал с жителями на их родных наречиях.

Ни в царской России, ни в Советской республике первых лет не существовало научно организованной системы селекции. И если теперь эта система существует, то во многом тут заслуга Вавилова. Он создал ВИР – Всесоюзный институт растениеводства. Поставить на службу советскому народу флористическое богатство всего мира – грандиозная задача, истинно вавиловская по масштабу! Под его руководством и во многом его руками создан был при ВИРе фонд сортов культурных растений, собранных со всего света. Эта «копилка» и по сей день верно служит селекционерам. Лучшая из наших пшениц, Безостая-1, создана академиком Лукьяненко в результате гибридизации, одним из компонентов которой был сорт, вывезенный Вавиловым из Аргентины. Сотни селекционеров и по сей день пользуются накопленными Вавиловым богатствами.

Вавилов был первым президентом Всесоюзной сельскохозяйственной академии. Под его руководством в академии велась большая плодотворная работа. По инициативе Вавилова была создана разветвленная по всему СССР сеть селекционных и опытных станций. И наконец, именно Вавилов создал при Академии наук СССР Институт генетики и был первым его директором.

Н. И. Вавилов.

Энергичный, наделенный колоссальнейшим обаянием, Вавилов умел группировать вокруг себя лучшие силы. Это был деятель не только нашей, но и мировой науки. И не случайно съехались в ту пору к нам генетики со всего света, чтобы работать в вавиловском институте, в том числе такие крупнейшие, как Меллер и Бриджес: в СССР перемещался в ту пору центр мировой генетической науки.

Противники генетики еще недавно противопоставляли Вавилова Ивану Владимировичу Мичурину, изображали этих двух ученых, как непримиримых врагов. На самом деле именно Вавилов поддержал Мичурина, обратил внимание на его работы. И Мичурин помнил об этой поддержке, ценил Вавилова.

Жизнь Вавилова отдана науке и людям. Добрые дела не забываются, не гибнут, не умирают. Ему еще но поставлен памятник, но есть памятники другие: сотни статей и книг, целая литература о Вавилове. И не только литература. Академик П. М. Жуковский подсчитал: за счет селекции, в результате работы созданной Вавиловым селекционной системы, мы получаем ежегодно приблизительно 25% урожая. Четверть каравая страны – памятник, достойный Вавилова!

В переводе на русский слово «селекция» означает «отбор». Но селекция в современном значении этого слова – понятие очень широкое. Вавилов насчитывал в ней семь разделов: это учение об исходном материале, о наследственной изменчивости, о роли среды, теория гибридизации, теория селекционного процесса, учение о направлениях селекционной работы, частная селекция (учение о селекции отдельных видов). Мы не можем даже вкратце остановиться на этих разделах. Лишь на отдельных примерах покажем, как генетика осуществляет свою роль теоретической базы для селекции.

Мода и пушистое золото

Рояль-пастель, паламино, алеутская, пастель «дыхание весны»... Не правда ли, пышные названия? А относятся они все к норкам – пушным зверькам, разводимым во многих совхозах. Мех норок моден на западе, идет на экспорт, вот и приходится генетикам-звероводам, в частности члену-корреспонденту АН СССР Д. К. Беляеву, называть своих норок звонкими, часто иностранными словами.

Замечательные породы норок выведены с учетом законов Менделя. Окраска шкурки! Этот признак наследуется обычно просто. Так, порода рояль-пастель отличается от норок дикого типа лишь тем, что один из генов, обуславливающий окраску, заменен у нее на рецессив. Нетрудно себе представить, что достаточно появиться хотя бы одной норке такого типа, чтобы во втором поколении их оказалось уже несколько, если исходная норка самка, или же много – если самец.

Норки совхозные. Вверху – белая и серебристо-голубая; внизу – стюарт-пастель, паламино.

Первое поколение от скрещивания рояль-пастеля с диким типом окажется по шкурке дикого типа. Но при скрещивании гибридов между собой выщепится рецессив в количестве около 25% потомков, при возвратном же скрещивании норок типа рояль-пастель будет 50%.

Часто скрещивания бывают сложные. Так, при скрещивании платиновой и алеутской все потомство первого поколения окажется дикого типа, однако при спаривании гибридов между собой произойдет расщепление по формуле 9:3:3:1, или 56% «диких», 19% платиновых, 19% алеутских пастель и 6% новой, сапфировой окраски.

Менделевские моно– и дигибридные скрещивания в звероводстве применяются не только для выведения зверьков новых окрасок. Мода изменчива. Часто случается, что, например, ныне модные платиновые норки через год-другой цену теряют: модницы хотят паламино! В этом случае селекционер, работающий в совхозе, пользуясь законами Менделя, может и даже обязан молниеносно перестроить маточное стадо на производство паламино.

Считая, что роскошный хвост, воротник и штанишки – рецессивные признаки, составьте схему, позволяющую все эти признаки объединить.

Менделевская комбинаторика применяется в селекции очень широко. Безусловно, большинство скрещиваний, особенно при межсортовых и межпородных гибридизациях, оказываются сложными, вовсе не легко поддающимися учету. Зачастую в формировании признака принимает участие много генов. В этих случаях расщепления не обнаруживаются столь ясно, как, например, у норки или при скрещивании рыжих и черно-бурых лис. Однако и здесь они происходят, и селекционеры пользуются их результатами.

Когда дети урожайней родителей

Это было в XVIII веке. Молодая в ту пору Российская академия привлекала к работе иностранных ученых. Среди них был немец Кёльрейтер – ботаник-гибридизатор, о котором помнит наука и по сей день. В какой-то мере он был предшественником Менделя, хотя не об этом пойдет сейчас речь.

Кёльрейтер работал в Ботаническом саду в Петербурге. Он получал много различных гибридов, в том числе между видами табака. Вот эти-то гибриды и оказались удивительными: превосходили по размерам, по мощи родителей.

Это явление было названо гибридной мощностью или гетерозисом.

С гетерозисом люди встречались задолго до опытов Кёльрейтера, только не обращали на него того внимания, которое это явление заслуживает. Издавна люди скрещивали осла и лошадь для получения мулов и лошаков. Тут тоже был гетерозис, однако не по размерам, а по выносливости, по неприхотливости.

В наши дни не перечислишь случаев, когда гибриды оказываются мощнее, урожайней родителей, – так много их обнаружено.

А не хочется ли вам самим получить гибриды, которые будут по весу в несколько раз превосходить родителей? Сделать ото можно в аквариуме. Нужно запустить туда десяток мальков пецилий и столько же мальков меченосцев. Когда рыбешки подрастут, всех самцов пецилий нужно высадить (у самцов, в отличие от самок, анальный плавник свернут в трубочку). Также нужно высадить почти всех меченосцев, оставив лишь одного узкого, стройного самца с длинным мечом на хвостовом плавнике. После этого хотя бы от одной из самок (а может быть, и от многих) удастся получить гибриды. Сперва они будут похожи на мальков пецилий, однако вскоре наступит время, когда станут они похожи на самих себя – на гибридов.

Это широкие, мощные рыбы, они крупнее по размерам обоих родительских видов, а по весу превосходят их в несколько раз, порою в десять и больше.

На практике гетерозис начал широко применяться с 30-х годов нашего века. А пришли люди к его использованию, изучая явление, противоположное гибридной мощности, – угнетение, которое наступает у растений-перекрестноопылителей в результате длительного самоопыления. Однажды две хилые линии[1] 1
  Линией называют группу растений или животных со сходной или одинаковой наследственностью. Сходство генотипов достигается близкородственными скрещиваниями в течение нескольких поколений.


[Закрыть]
кукурузы, угнетенные длительным близкородственным спариванием (инцухтом), скрестили между собой. Тут-то и произошло чудо: потомство оказалось на редкость мощным – сильно превосходило по урожайности даже лучшие из сортов.

Открытие это было сделано одновременно в СССР и США. А в 1950 году в Соединенных Штатах уже 80% посевных площадей кукурузы засевались гибридными семенами. Но гибридные семена использовали и раньше. Во время войны, в 1943 году, президент Рузвельт говорил: США не испытывает в эти трудные годы недостатка в продовольствии благодаря тому, что генетики открыли гетерозис у кукурузы. И это понятно: кукуруза в условиях США не только заменитель хлеба, не только источник для получения пищевых круп, но и превосходный корм, на котором развивается животноводство и птицеводство.

Развернуты работы по получению гетерозисной кукурузы и в СССР. Как они ведутся на практике? Первоначально линии кукурузы разводят с применением принудительного самоопыления. При этом устраняют гетерозиготность, материал становится генетически чистым. До чего же чахлые получаются таким путем инцухт-линии! Однако это селекционеров отнюдь не пугает. Важно получить таких линий побольше, чтобы потом, скрещивая их между собой, отобрать наилучшие пары, дающие наибольший взлет урожайности. В 1963 году М. И. Хаджинов, Г. С. Галеев и другие получили за эту работу Ленинскую премию. Гетерозисные семена дают прибавку к урожаю в 25-30%!

Селекционная работа весьма трудоемка: приходится изолировать растения, початки помещать в полиэтиленовые пакеты. Но на первых этапах масштабы посевов невелики – маленькие деляночки,– и селекционер с помощниками справляется. Но вот линии размножены. Теперь надо получать семена с промышленными целями. Тут уже применение ручного труда для обрезания метелок, скрещивания просто недопустимо: его стоимость съест стоимость прибавки к урожаю. И вот здесь-то и пригодилось открытие М. И. Хаджинова, сделанное им в тридцатых годах под руководством Вавилова: открытие так называемой цитоплазматической мужской стерильности. Суть его в том, что у линии специально сконструированного генотипа самоопыление становится невозможным. А это значит, что не нужно обрывать метелки. Скрещиваемые линии достаточно посадить в соседних рядах, и между ними произойдет переопыление. Природа, таким образом, берет на себя наиболее трудоемкую часть работы.

Однако то, что полезно для получения гетерозисных семян, может оказаться вредным в дальнейшем. При посевах на тысячах гектаров кукуруза должна быть плодовитой при любом осеменении. Но генетики и тут нашли выход. На последнем этапе семеноводства в гибридное семя вводят гены – восстановители плодовитости.

Открытие цитоплазматической мужской стерильности и генов восстановителей плодовитости позволило использовать гетерозис у многих растений, где раньше о нем не имело смысла даже мечтать. Так, межлинейные гибриды сорго дают прибавку к урожаю в 40—80%, у лука – 30—45%. Сейчас в Японии все сорта репчатого лука, идущие в посев, – гетерозисные гибриды, а из 33 сортов капусты гибридны 26. А кто не знает знаменитых болгарских томатов? С середины лета до поздней осени, ровнехонькие, плод к плоду, идут они на экспорт во все страны Европы. И эти томаты получены из гетерозисных гибридных семян.

Гетерозисные формы имеют большое значение не только в сельском хозяйстве, но и в лесоводстве. Известны гетерознсные гибриды у лиственниц, елей, берез, ведутся работы по получению таких гибридов и у сосны. При отборе среди гибридов нередко находят удивительно стойкие и быстророслые формы, так называемые «плюс-деревья», и если речь идет о породе, которую можно размножать вегетативно, каждое такое «плюс-дерево» – сокровище для лесного хозяйства. Но и для семеноводства «плюс-деревья» играют немалую роль.

Очень перспективно применение гетерозиса при семеноводстве пшениц. Эта главная хлебная культура человечества, наш основной кормилец, еще на глазах нынешнего поколения начнет давать гетерозисные сверхурожаи по 70—100 центнеров с гектара!

Гетерозис находит применение не только в растениеводстве, но и в птицеводстве, в свиноводстве, в прудовом рыбоводстве и во многих других отраслях животноводства.


    Ваша оценка произведения:

Популярные книги за неделю