355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Айсберг » Радио?.. Это очень просто! » Текст книги (страница 16)
Радио?.. Это очень просто!
  • Текст добавлен: 5 октября 2016, 22:42

Текст книги "Радио?.. Это очень просто!"


Автор книги: Евгений Айсберг



сообщить о нарушении

Текущая страница: 16 (всего у книги 19 страниц)

Комментарии к четырнадцатой беседе

Связь через общие сопротивления

Экранирование позволяет устранить или уменьшить паразитные связи, вывиваемые магнитной индукцией или емкостью. Тем не менее остаются другие связи, которые могут возникать из-за сопротивлений, являющихся общими для нескольких цепей.

Когда через одно и то же сопротивление (хотя бы источник высокого напряжения) протекают переменные токи нескольких ламп, каждый ток создает на нем переменное падение напряжения, которое будет влиять на напряжения всех электродов ламп. В зависимости от знака таких связей они также могут вызвать либо самовозбуждение, либо значительное уменьшение усиления.

Опасным является падение напряжения на общем сопротивлении, обусловленное переменной составляющей токов ламп; постоянные же составляющие из-за их неизменности не могут вызвать появления нежелательного взаимодействия. Поэтому для устранения связей этого рода объявляют борьбу переменным составляющим анодных токов, применяя соответствующие цепи развязки, т.е. короткие индивидуальные пути низкого сопротивления.


Цепи развязки

Так как основная функция переменной составляющей анодного тока заключается в создании переменного напряжения в цепи связи, на выходе из этой цепи ее функции заканчиваются. Наиболее просто заставить ее вернуться в исходную точку, т.е. на катод, создав ей путь с помощью конденсатора достаточной емкости. Чтобы помешать ей пойти тем же путем, что и постоянная составляющая, на этом пути устанавливается активное или индуктивное сопротивление, препятствующее ее прохождению.

Таким образом, мы вновь сталкиваемся с обычным способом разделения двух составляющих анодного тока (см. рис. 142): конденсатор пропускает переменную составляющую и задерживает постоянный ток, а сопротивление или coответствующим образом подобранная индуктивность, пропуская постоянный ток, является препятствием для переменной составляющей.

Для развязки в ветвях постоянного тока применяют активные сопротивления, причем одновременно используют падение напряжения на сопротивлении развязки для установления на каждой лампе оптимального значения анодного напряжения.

Емкость конденсатора развязки должна быть тем большей, чем ниже частота подлежащих развязке токов и чем меньше сопротивление развязки. По высокой частоте используют конденсаторы порядка 0,1 мкф; этого вполне достаточно, потому что на частоте 1 000 кгц (соответствующей длине волны 300 м) емкостное сопротивление составляет лишь 1,5 ом. По низкой частоте используют конденсаторы развязки порядка 20 мкф, эта большая емкость совершенно не является излишней роскошью, так как ее сопротивление на частоте 50 гц составляет 150 ом.


Выполнение цепей развязки

При выполнении монтажа элементы развязки должны размещаться как можно ближе к лампе и цепи связи, с тем чтобы переменные составляющие возвращались на катод наикратчайшим путем.

На практике конденсаторы развязки соединяют иногда не с катодом, а с отрицательным полюсом высокого напряжения, что заставляет переменную составляющую пройти и через конденсатор, включенный параллельно резистору в катоде. Это не рекомендуется, так как эквивалентная емкость двух последовательно соединенных конденсаторов, через которые должен пройти ток на пути к катоду, меньше емкости самого маленького из этих двух конденсаторов. Но так все же поступают по той причине, что очень удобно присоединять все ведущие к отрицательному полюсу высокого напряжения провода к толстому проводу заземления или металлической массе шасси; предпочтение, впрочем, следует отдать первому решению. Напомним, что экраны катушек, ламп и проводников тоже должны быть соединены с шасси (корпусом).

Однако теперь, когда мы показали, какую пользу приносят развязки, отметим, что многие приемники работают лучше… без цепей развязки. Это объясняется тем, что паразитные связи могут создать обратную связь с благоприятной усилению полярности, не доводя схему до порога генерирования. Именно по этой причине встречаются случаи, когда недорогой приемник, в котором по соображениям экономии пренебрегли цепями развязки, отличается очень хорошей чувствительностью. Однако этот почти парадоксальный факт не должен заставить нас усомниться в пользе цепей развязки, потому что лучше стать хозяином обратной связи и сознательно применять ее там, где она полезна, чем предоставить случаю определить характер действия обратной связи.

Комментарии к пятнадцатой беседе

Проблема питания

Для питания приемника требуются два источника тока: источник высокого напряжения, дающий анодный ток, и источник низкого напряжения, дающий ток накала. Первый должен иметь постоянное напряженке 100–250 в. Накал, за исключением специальных ламп для батарейных приемников, может осуществляться как постоянным, так и переменным током.

Для смещения, как мы уже видели, не требуется самостоятельного источника питания, так как необходимое для этого напряжение получают из анодной цепи за счет падении напряжения на сопротивлении, включенном в цепь катода.

Оставим в стороне батарейные приемники, где батареи или аккумуляторы дают все необходимые напряжения и где используются лампы прямого накала, потребляющие очень малый ток при напряжении порядка 2 или 1,5 в.


Питание от сети переменного тока

Наиболее распространены приемники с питанием от сети переменного тока.

Провод с вилкой служит для подведения напряжения от штепсельной розетки через выключатель, служащий для включения приемника, к трансформатору электропитания. Из вполне разумной предосторожности в этой цепи следует установить плавкий предохранитель, который при случайном коротком замыкании перегорает и отключает электросеть.

Первичная обмотка трансформатора может иметь отводы, рассчитанные на различные напряжения сети (127 или 220 в). Обычно трансформатор электропитания имеет три вторичные обмотки: для накала ламп, накала кенотрона и для высокого напряжения. Все три обмотки очень часто снабжаются выводами от средней точки.

В большинстве случаев применяются двуханодные кенотроны; при желании выпрямлять только один полупериод всегда можно соединить оба анода, превратив их в общий анод. Накал кенотронов раньше был 4 в (европейские лампы) или 2,5 в (американские лампы). В настоящее время напряжение накала большинства кенотронов 6,3 в. Все более широкое применение находят кенотроны с подогревным катодом, что позволяет снимать высокое напряжение непосредственно с катода (а не со средней точки обмотки накала кенотрона).

Выводы концов вторичной обмотки высокого напряжения, дающей анодным ток, соединены с анодами кенотрона, а средняя точка этой обмотки представляет собой отрицательный полюс высокого напряжения. Не следует упускать из виду, что напряжение, попеременно подаваемое на аноды кенотрона, снимается только с половины, а не со всей обмотки. Так, при общем напряжении вторичной обмотки 600 в в каждый данный момент выпрямляется напряжение 300 в; поэтому не следует пытаться искать выпрямленное напряжение 600 в.

Изготовители трансформаторов электропитания имеют хорошую привычку указывать не только напряжения на вторичных обмотках, но и величины токов. Не следует ошибаться в истолковании последних значений: это не величина тока, которую обмотки будут давать во всех случаях, а только значения, которые не нужно превышать, чтобы не вызвать ненормального нагрева трансформатора. Чем толще проволока, из которой сделана обмотка, и, следовательно, чем меньше ее сопротивление, тем больший ток может быть получен без значительного нагрева. Чтобы узнать ток каждой обмотки, достаточно подсчитать общее сопротивление подключенной к ней цепи и применить закон Ома.


Фильтр

Полученный после выпрямления ток имеет одно направление, но он еще не постоянный в полном смысле этого слова. Перед использованием его следует предварительно сгладить фильтром. Ток до выпрямления можно рассматривать как состоящий из суммы двух токов – постоянного и переменного. В этом случае проблема сглаживания фильтром сводится к тому, чтобы пропустить постоянную составляющую и полностью задержать переменную составляющую.

В цепях развязки нам уже приходилось сталкиваться с решением аналогичной проблемы. Оно заключается в создании для переменном составляющей удобного пути через конденсатор и преграждении пути в другом направлении с помощью индуктивного сопротивления, пропускающего постоянную составляющую. В качестве такого сопротивления берут дроссель с относительно небольшим активным сопротивлением, который устанавливают на пути тока (в наиболее простых приемниках используют активное сопротивление – резистор). Конденсатор, служащий для отвода переменной составляющей, включается параллельно выходу выпрямителя. И, наконец, изготовление фильтра завершается установкой на выходе фильтрующей ячейки второго конденсатора, предназначенного для подавления остатков переменной составляющей, которые могли пройти через дроссель (рис. 89).

В случае необходимости особо тщательно сгладить ток можно включить последовательно две фильтрующие ячейки; два находящихся в середине конденсатора могут быть заменены одним общим для обеих ячеек (емкость этого конденсатора должна быть вдвое больше емкости каждого из внешних конденсаторов).

Так как частота изменений очень мала (при сети 50 гц частота составляет 100 гц, потому что при выпрямлении вместо каждого периода мы получаем два изменения тока по числу полупериодов), индуктивности и емкости должны иметь относительно большие величины. Индуктивности в несколько десятков генри выполняются в виде обмоток на стальных сердечниках. Емкость конденсаторов составляет несколько микрофарад, и от применения конденсаторов с твердым диэлектриком, как, например, парафинированная бумага, пришлось отказаться из-за их недопустимо больших размеров. В этом случае используются конденсаторы специального типа, получившие название электролитических конденсаторов.


Электролитические конденсаторы

Конденсаторы этого типа содержат жидкость или тестообразную массу, носящую название электролита. В электролит погружена обкладка из алюминия, имеющая относительно большую площадь.

При приложении напряжении между электролитом и алюминием (последний подключается к положительному полюсу) сразу же начинается разложение электролита, в результате чего алюминий покрывается пленкой (являющейся диэлектриком) и ток прекращается. Толщина этой пленки ничтожна (порядка тысячной доли миллиметра), и понятно, как велика емкость такого конденсатора, обкладками которого являются алюминий и электролит.

Отметим, что в отличие от конденсаторов, которые мы до сих пор разбирали, электролитический конденсатор имеет определенную полярность: алюминиевую обкладку обязательно нужно подключать к положительному полюсу.

При изменении полярности рискуют испортить конденсатор. Следовательно, не следует включать такой конденсатор на переменное напряжение (если только на него не наложено постоянное напряжение большей величины и соответствующем полярности).

Каждый тип конденсатора рассчитан на определенное рабочее напряжение, указываемое заводом-изготовителем, которое не следует превышать. Емкость конденсатора в известной мере зависит от напряжения на обкладках и при повышении напряжения несколько уменьшается.

Пробой электролитического конденсатора под воздействием мгновенного перенапряжения (когда между его обкладками проскакивает искра) – не очень большая беда, потому что слой окиси алюминия может сразу же восстановиться.

Этого нельзя сказать о бумажном конденсаторе; от искры бумага обугливается и тем самым теряет свойства изолятора, в результате чего между обкладками образуется более или менее явное короткое замыкание.

Электролитические конденсаторы обычно выпускаются в металлических корпусах, которые образуют контакт с электролитом и служат для подключения отрицательного полюса. Наиболее распространены электролитические конденсаторы емкостью в десятки микрофарад. Их используют не только в фильтрах, но и для развязки в цепях низкой частоты я особенно для развязки сопротивлений смещения. В связи с этим отметим, что современные оконечные лампы (в последнем каскаде низкой частоты) обычно бывают с подогревным катодом и поэтому напряжение смещения также снимается с сопротивления в цепи катода.


Нагревание нитей накала

Если раньше в Европе было повсеместно принято единое напряжение накала 4 в (а в Америке 2,5 в), то теперь оба континента пришли к соглашению, приняв в качестве единого стандарта для накала переменным током напряжение 6,3 в. Это не исключает существования большого количества типов ламп с разными напряжениями накала вплоть до 110 в (что устраняет необходимость в понижающем трансформаторе накала).

В приемниках, работающих от сети переменного тока, нити накала подключаются непосредственно к накальной обмотке трансформатора (рис. 90).

Иное дело при работе приемника от сети постоянного тока. В связи с тем, что в этом случае нельзя применять трансформатор, снижающий напряжение сети до любой заданной величины, нити накала ламп соединяют последовательно (разумеется, необходимо, чтобы все лампы могли исправно работать при одном и том же токе накала). При этом используют лампы не только с напряжением накала 6,3 в, но также и с более высоким напряжением, особенно в оконечном каскаде. Если суммарное напряжение окажется меньше напряжения сети, то избыток нужно погасить с помощью резистора.

Так, например, приемник, имеющий пять ламп, из которых четыре с напряжением накала 6,3 в и одна 25 в, требует для последовательно соединенных нитей накала 6,3·4 + 25 = 50,2 в. При напряжении сети 110 в нужно погасить с помощью резистора около 60 в. При токе накала 0,3 а по закону Ома потребуется резистор сопротивлением 60:0,3 = 200 ом.

Разумеется, при этом более половины энергии рассеивается в виде тепла на резисторе и система оказывается мало экономичной. Однако это единственный способ, оправдываемый недостаточной гибкостью постоянного тока. Гасящее сопротивление иногда размещается в шнуре для включения приемника в сеть.


Питание приемника от сети постоянного тока

Для анодного питания приемников, работающих от сети постоянного тока, не возникает (и не без основания) необходимости в выпрямлении тока, однако сглаживание фильтром и здесь не менее необходимо, так как постоянный ток сети имеет небольшие пульсации, легко снимаемые хорошим фильтром.

Так как повысить напряжение сети постоянного тока с помощью трансформатора невозможно, следует максимально уменьшить падение напряжения в индуктивности фильтра, чтобы напряжение, подаваемое на аноды ламп, не оказалось слишком низким. Поэтому в случае фильтрации пульсаций сети постоянного тока катушки фильтра изготавливают из относительно толстой проволоки (чтобы снизить активное сопротивление), уменьшают количество витков и компенсируют уменьшение индуктивности с помощью конденсаторов большой емкости. К счастью, для рабочих напряжений порядка 110 в имеются электролитические конденсаторы емкостью более 100 мкф.


Приемники с универсальным питанием

Мы сочли целесообразным довольно подробно рассмотреть устройство приемников с питанием от сети постоянного тока не по причине их широкого распространения. Такие приемники выпускаются очень редко, но имеется большое количество приемников с универсальным питанием, которые могут включаться в сеть как переменного, так и постоянного тока. Устройство таких приемников мало чем отличается от устройства приемников с питанием от сети постоянного тока.

В приемниках с универсальным питанием нити накала также соединяются последовательно, причем в цепь включается гасящее сопротивление.

В цепи высокого напряжения (рис. 149) перед фильтрацией ток сети проходит через одноанодный кенотрон (пли двуханодный с соединенными анодами).


Рис. 149. Схема питания приемника с универсальным питанием.

1 – электросеть; 2 – нити накала ламп; 3 – фильтр; 4 – выпрямленное анодное напряжение.

При включении приемника в сеть переменного тока выпрямляется один полупериод, все же остальное происходит, как в нормальной схеме питания при работе от сети переменного тока. При постоянном токе в сети могут иметь место два случая. Если включить шнур приемника в штепсельную розетку так, что катод кенотрона окажется соединенным с положительным полюсом, то ток не сможет пройти и приемник будет молчать. При правильном же включении ток свободно пройдет через кенотрон и, хотя он не требует выпрямления, тем не менее разделит участь переменного тока.

Отметим также, что приемники на постоянном токе и приемники с универсальным питанием включаются непосредственно в сеть, так как обычное промежуточное звено – трансформатор – в них отсутствует. Однако сеть может иметь достаточно высокий потенциал по отношению к земле. Поэтому такие приемники можно заземлять только через маленькую емкость, которая, свободно пропустив высокочастотные колебания из антенны, окажется препятствием для опасного замыкания сети на землю.

Комментарии к шестнадцатой беседе

Прямое усиление

Рассмотренные до сих пор радиоприемники принадлежали к категории приемников с прямым усилением. Перед детектированием ток высокой частоты, поступивший из антенны, усиливался в одном или нескольких каскадах. Однако такое усиление не может быть очень большим, так как, несмотря на любые предосторожности по экранировке и развязке, трудно избежать паразитных обратных связей, если количество высокочастотных каскадов превышает один или два. Трудности увеличиваются с повышением частоты, причем это относится не только к обратным связям, но и к возможности получения достаточного усиления. Поэтому на коротких волнах (очень высоких частотах) усиление высокой частоты оказывается мало эффективным.

Кроме того, увеличение высокочастотных каскадов неизбежно влечет за собой увеличение количества одновременно настраиваемых колебательных контуров, что также порождает разнообразные трудности.

Вывод напрашивается сам собой. Приемник прямого усиления может применяться лишь тогда, когда не требуется высокая чувствительность. Он особенно рекомендуется для местного приема и обычно не предназначен для приема удаленных станций, что осуществляется с помощью супергетеродина.


Принцип супергетеродина

В супергетеродинном приемнике начинают с того, что предварительно преобразуют высокую частоту в более низкую, после чего можно осуществить большое усиление. Какова бы ни была частота сигнала в антенне, ее преобразуют в одну и ту же для данного приемника частоту, называемую промежуточной частотой. В этом случае основные каскады усиления в приемнике – каскады промежуточной частоты – рассчитаны только на одну частоту; следовательно, при переходе с одной станции на другую нет необходимости в изменении их настройки. Так как работа ведется на более низкой частоте (которая тем не менее еще относится к области высоких частот), чем максимальная возможная частота принимаемого сигнала, усиление очень эффективно и паразитные связи легко устранимы.

Определив таким образом принцип и основные преимущества супергетеродина, рассмотрим, какие средства используются для его осуществления.



Преобразователи частоты на двух лампах

Преобразование частоты основано на явлении биений, физическая сущность которых наблюдается на множестве примеров при изучении световых явлений (интерференция), акустических и механических (спаренные маятники).

Когда два периодических колебания накладывают одно на другое, результирующее колебание содержит частотную составляющую, равную разности частот обоих колебаний. Так, накладывая один на другой два тока с частотами f1 и f2, мы получаем результирующий ток, амплитуда колебаний которого изменяется с частотой f1 f2 (см. рис. 91), называемой частотой биений и выявляемой после детектирования.

Произведенное таким образом преобразование частоты никак не влияет на форму низкочастотной модуляции, которая может присутствовать в одном из составляющих токов. Если на модулированный высокочастотный ток антенны мы наложим ток друг ой частоты от местного генератора, то после детектирования можно будет получить частоту, равную разности частот тока антенны и тока местного генератора; при этом результирующий ток несет в себе ту же низкочастотную модуляцию, что и наведенной в антенне ток.

Местный генератор, называемый гетеродином, включен в схему самого приемника. Его колебания могут накладываться на колебания, поступающие из антенны, с помощью небольшой связи между колебательным контуром антенны и колебательным контуром гетеродина. Так по крайней мере делали в первых приемниках с преобразованием частоты (см. рис. 93). Но такой способ имеет серьезный недостаток: в результате наличия связи гетеродин может захватываться колебаниями антенного контура, т. е. начать генерировать не на своей собственной, а на принимаемой частоте. При этом обе составляющие частоты будут равны и результирующая частота (равная их разности) окажется, следовательно, равной нулю, что совершенно не соответствует требуемому. В этом случае говорят, что произошло затягивание колебаний.

Во избежание этого нужно устранить связь между входным колебательным контуром и контуром гетеродина с помощью экранов и цепей развязки Колебания же накладывают одно на другое в лампе с двумя управляющими сетками, на каждую из которых подается одно из двух колебаний. Анодный ток такой лампы, называемой смесительной, управляется одновременно высокочастотным напряжением из антенны и напряжением местного гетеродина. Следовательно, происходит наложение колебаний и, так как лампа детектирует, в ее анодном токе образуется нужная результирующая составляющая промежуточной частоты (см. рис. 94).


Комбинированные лампы гетеродин-смеситель

Одна и та же лампа может выполнять функции гетеродина и смесителя. Для этого достаточно установить в лампе, кроме сетки, на которую подавались колебания гетеродина, небольшой вспомогательный анод, ток которого через катушку обратной связи используется для возбуждения колебаний. Полученная таким образом лампа могла бы быть заменена двойным триодом, первый триод которого служил бы в качестве гетеродина, а второй – смесителя.

Однако междуэлектродных емкостей такой лампы было бы достаточно для создания паразитной связи между контурами, способной вызвать затягивание. Поэтому вторую сетку (сетку смесительной части) окружают двумя экранирующими сетками, на которые подается довольно высокое напряжение, в результате чет получается семиэлектродная лампа, или гептод. Чтобы предотвратить вторичную эмиссию с основного анода, между ним и второй экранирующей сеткой помещают защитную сетку, в результате чего количество электродов увеличивается до восьми. Такая лампа называется октодом.

Для выполнения обеих функций – гетеродина и смесителя, необходимых для преобразования частоты, можно использовать также другие методы и другие типы ламп. Так, лампа может содержать две самостоятельные системы электродов с общим катодом, первая из которых используется для создания местных колебаний, а вторая служит преобразователем. Такой лампой является, например, триод-гексод (рис. 150), где триод служит гетеродином, а гексод (лампа с шестью электродами) – смесителем.

Следует отметить, что местные колебания подаются на третью сетку гексода по очень короткому проводнику, находящемуся внутри самой лампы.


Рис. 150. Преобразование частоты с помощью триод-гексода.


Усиление промежуточной частоты

Гетеродин всегда настраивается так, чтобы разность между его частотой и частотой принимаемых колебаний была равна заданной промежуточной частоте. В настоящее время эта величина стандартизована и принята равной 465 кгц. Хотя эта частота несколько выше частоты длинноволновых передатчиков, она ниже частот средних и особенно коротких волн, а, как мы помним, именно эти два диапазона особенно нуждаются в понижении частоты.

Усилитель промежуточной частоты, как правило, состоит из одного или – реже – двух каскадов, в которых используются пентоды В качестве междукаскадной связи чаще всего служат трансформаторы, первичная и вторичная обмотки которых настроены на промежуточную частоту. При одном каскаде усиления промежуточной частоты имеются четыре настроенных контура: два, составляющие трансформатор связи с преобразователем частоты, и два, представляющие собой трансформатор связи усилителя с детектором (так как после усиления промежуточной частоты ток детектируется и усиливается по низкой частоте).

Легко понять, как наличие этих четырех настроенных контуров содействует повышению избирательности и как было бы трудно настраивать их в случае установки в усилителе высокой частоты. В то же время в рассматриваемом случае они настраиваются только один раз на промежуточную частоту и при достаточной стабильности не требуют впоследствии никакой дополнительной регулировки.

Современные трансформаторы промежуточной частоты состоят обычно из двух обмоток с сердечником из магнитодиэлектрика; настройка может осуществляться с помощью маленьких подстроечных конденсаторов. В одной из удобных конструкций конденсатор представляет собой слюдяную пластинку, посеребренную с обеих сторон (слюда играет роль диэлектрика, а серебро – роль обкладок). Соскабливая слой серебра, можно уменьшить емкость до нужной величины. Другие подстроечные конденсаторы представляют собой упругие металлические пластинки, которые больше или меньше изгибаются винтом. Существуют также конструкции, воспроизводящие в миниатюре конденсаторы переменной емкости. В последнее время очень распространены керамические подстроечные конденсаторы.

Однако настройка трансформаторов промежуточной частоты чаще осуществляется изменением не емкости, а индуктивности катушек при постоянных контурных конденсаторах. Магнитные сердечники таких трансформаторов могут перемещаться внутри катушек, изменяя тем самым индуктивность.

Какова бы ни была конструкция трансформаторов промежуточной частоты, они вместе с конденсаторами контура экранируются во избежание паразитных индуктивных связей.

Наличие четырех настроенных контуров промежуточной частоты (не считая тех, которые могут находиться в высокочастотной части, т.е. до преобразователя частоты) содействует, как мы уже говорили, повышению избирательности. Однако повышению избирательности способствует и сам факт снижения частоты. Разъяснение этого, простого самого по себе явления, выходит за рамки наших комментариев. Достаточно упомянуть о самом факте, объясняющем очень высокую избирательность, которой отличаются супергетеродины.


Сопряженная настройка

Одна из наиболее острых проблем, которые ставит перед нами супергетеродин, заключается в устройстве сопряженной настройки его высокочастотных контуров с помощью одной ручки управления. В приемнике прямого усиления сопряженная настройка осуществляется относительно просто: достаточно, чтобы все контуры, состоящие из идентичных катушек индуктивности, настраивались таким же количеством идентичных конденсаторов переменной емкости, имеющих общую ось вращения и управляемых одной ручкой. Небольшие отклонения (вызываемые, например, паразитными емкостями между проводниками) устраняются с помощью подстроечных конденсаторов малой емкости, включаемых параллельно колебательным контурам.

Но в случае супергетеродина проблема сопряженной настройки становится более сложной. Здесь необходимо настраивать высокочастотный контур и контур гетеродина на две разные частоты, сохраняя между ними на всем диапазоне постоянную разность, равную величине промежуточной частоты. Так, например, в приемнике, промежуточная частота которого 465 кгц, частота гетеродина должна быть на 465 кгц выше (или ниже) частоты настраиваемого контура высокой частоты и это должно иметь место на всех диапазонах и при всех положениях конденсатора переменной емкости. Так как конденсаторы переменной емкости, включаемые в оба контура, имеют одинаковую емкость, для создания разности по частоте, естественно, приходится прибегать к применению катушек с различной индуктивностью в контурах высокой частоты гетеродина.

К несчастью, эта разность не сохраняется постоянной при всех положениях конденсатора переменной емкости. Чтобы тем не менее сохранить ее постоянной, прибегают к уловке, позволяющей изменить характер изменения настройки колебательного контура в зависимости от положения конденсатора переменной емкости. Для этого параллельно конденсатору переменной емкости С включают конденсатор малой емкости Сп, называемый подстроечным, а последовательно с конденсатором настройки – другой конденсатор с большей емкостью Сс, называемый сопрягающим. Включение этих конденсаторов может осуществляться одним из трех способов, показанных на рис. 151.


Рис. 151. Три способа включения подстроечных и сопрягающих конденсаторов в колебательный контур гетеродина для сопряженной настройки.

Вспомнив правила параллельного и последовательного соединений конденсаторов, мы поймем, что конденсатор Сп увеличивает емкость конденсатора С, тогда как включенный последовательно сопрягающий конденсатор Сс уменьшает его емкость. Но каждый из этих конденсаторов действует на настройку больше или меньше в зависимости от положения подвижных пластин конденсатора переменной емкости С. Действительно, когда конденсатор С имеет минимальную емкость, емкость подстроечного конденсатора, несмотря на малую величину, оказывается по сравнению с нею значительной. При этом роль сопрягающего конденсатора практически сведена на нет, так как, будучи последовательно соединенным с малой емкостью конденсатора С, он может лишь еще уменьшить ее. Поэтому в начальном положении ротора конденсатора переменной емкости (т. е. для наиболее высоких частот или наиболее коротких волн данного диапазона) основную роль в коррекции частоты настройки играет подстроечный конденсатор Совершенно иное происходит в конечном положении ротора конденсатора переменной емкости, когда его емкость достигает максимума. В этом случае небольшой емкостью подстроечного конденсатора можно просто пренебречь. А сопрягающий конденсатор оказывает заметное воздействие, снижая емкость конденсатора С.

Таким образом, подбирая емкость подстроечного конденсатора в начале и сопрягающего в конце хода ротора, удается придать нужный характер изменению емкости при вращении подвижных пластин конденсатора настройки. Благодаря этому конденсатор переменной емкости гетеродина может управляться той же ручкой, что и конденсатор настройки входного контура.

Само собой разумеется, что для каждого диапазона требуются отдельные подстроечный и сопрягающий конденсаторы. Все эти конденсаторы подстраиваются один раз навсегда в процессе регулировки приемника. Регулировка должна также обеспечить совпадение принимаемых передач с отметками, нанесенными на шкале приемника.


    Ваша оценка произведения:

Популярные книги за неделю