Текст книги "Радио?.. Это очень просто!"
Автор книги: Евгений Айсберг
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 13 (всего у книги 19 страниц)
Комментарии к шестой беседе
Формула Томсона
Период собственных колебаний контура увеличивается при увеличении индуктивности или емкости. Это вполне логично, так как все, что мы узнали об этих элементах, показывает, что их увеличение может лишь замедлить колебания.
Небольшое количество формул, приведенных выше в процессе изложения, позволит нам очень просто вывести формулу резонанса.
Резонанс, как мы видели, имеет место, когда при определенной частоте индуктивное сопротивление становится равным емкостному сопротивлению. Запишем это условие, выразив индуктивное и емкостное сопротивления уже известными нам формулами:
Тогда наше равенство принимает следующий вида
По этому уравнению можно без труда установить, чему равна искомая частота f. Для этого умножим обе части уравнения на f и разделим их на 6.28L.
В результате такого преобразования имеем:
Затем извлечем квадратный корень из обеих частей уравнения и получим:
Так как период Т представляет собой величину, обратную частоте f, мы можем также записать:
Вот мы и получили формулу Томсона, выведенную со всей математической строгостью… или почти со всей, так как мы пренебрегли активным сопротивлением, влияние которого тем не менее сказывается, особенно когда оно имеет относительно большую величину. Но в контурах, используемых в радиотехнике, стараются сократить до минимума активное сопротивление. Поэтому только что выведенная нами формула полностью применима.
Помимо прочего, эта формула показывает нам, что если мы увеличим емкость (или индуктивность) в 4, 9, 16 или 25 раз, то период увеличится соответственно только в 2, 3, 4 или 5 раз (а частота уменьшится во столько же раз).
Избирательность
Явление резонанса дает радиотехнике ценную возможность выбрать из большого количества передач на разных частотах требуемую станцию. Благодаря избирательности радиоприемники не воспроизводят одновременно всех передач, волны которых заполняют пространство и наводят в приемной антенне токи высокой частоты.
Колебательные контуры, в необходимом количестве (в наиболее распространенных приемниках используется обычно пять контуров) расположенные в соответствующих местах электрической схемы приемника, позволяют пропустить только частоту избранного передатчика, исключив все остальные.
Так, колебательный контур, установленный в антенной цепи, свободно пропустит на землю токи всех частот, за исключением соответствующей его резонансной частоте. Колебательный контур представляет для тока этой частоты высокое сопротивление, вследствие этого на его зажимах возникает переменное напряжение, которое затем передается в рабочие контуры приемника.
Точно так же, если колебательный контур, как показано на рис. 23, соединен с антенной индуктивно, то только токи резонансной частоты возбудят в чем значительный ток и создадут на зажимах А и Б переменное напряжение.
Настройка контуров
Для перехода с одной станции на другую необходимо иметь возможность изменять резонансную частоту колебательных контуров, или, как говорят, настраивать их на различные частоты (для обозначения колебательного контура, настроенного на частоту передатчика, используют также термин настроенный контур).
Настройка контура производится изменением величины одного из его элементов (индуктивности или емкости). Для перекрытия целого диапазона без провалов, т. е. для плавного изменения настройки в определенной полосе частот, удобнее изменять емкость, что осуществляется с помощью конденсаторов переменной емкости, состоящих из подвижной и неподвижной обкладок.
Каждая из этих обкладок состоит из нескольких пластин; подвижные пластины, сходящие в зазоры между неподвижными, укреплены на одной оси. Вращением оси подвижные пластины можно ввести в зазор и вывести из зазора между неподвижными, изменяя таким образом площадь рабочей поверхности, а следовательно, и емкость конденсатора.
Для осуществления точной настройки вращение ручки настройки передается на конденсатор через соответствующий механический редуктор – верньер (например, систему шестеренок), благодаря чему для поворота подвижных пластин в пределах рабочего угла нужно повернуть ручку настройки несколько раз вокруг оси.
Одновременно с осью конденсатора переменной емкости приводится в движение стрелка, перемещающаяся по шкале, отградуированной по частоте (или по длине волны), на которой имеются отметки, указывающие положения для застройки на основные радиовещательные станции.
Наиболее широко применяемые конденсаторы переменной емкости имеют емкость порядка 500 пф и меньше.
В крайнем положении, когда подвижные пластины полностью выходят из неподвижных, между обкладками все же остается некоторая емкость, называемая начальной. В зависимости от конструкции конденсатора начальная емкость может быть 10–25 пф.
Дальше мы увидим, что для настройки используют также изменение индуктивности Чаще всего изменение индуктивности производится не плавно, как емкости, а скачками путем переключения числа витков катушек. Изменение индуктивности в этом случае служит для перехода с одного диапазона волн на другой.
Комментарии к седьмой беседе
Электронные лампы
До сих пор чаши молодые друзья не без удовольствия «прогуливались» в области общей электротехники. Необходимо отметить, что Любознайкин подверг большое число различных законов, управляющих этой отраслью техники, умелому отбору во избежание перегрузки памяти Незнайкина материалом, не требующимся ему немедленно в процессе изучения радиотехники.
Приступив к изучению электронных ламп, наши друзья непосредственно вошли в область собственно радио, так как вся техника связи без проводов в настоящее время основана на использовании этих ламп. Однако их применение не ограничивается областью радио: мы встречаем сегодня электронные лампы во всех отраслях науки и техники и область их использования расширяется изо дня в день. Всю область их применения называют термином электроника.
Из чего же состоит электронная лампа?
Прежде всего из колбы с цоколем, снабженным несколькими контактами и виде штырьков. Сама колба изготавливается из стекла или стали (металлические лампы). Основным требованием является полная герметичность, так как внутри колбы создают как можно более высокий вакуум, необходимый для свободного пролета электронов внутри колбы. При наличии воздуха электроны непрерывно сталкивались бы с его молекулами и их движение было бы затруднено. Кроме того, что еще важнее, молекулы воздуха в результате таких столкновений приобрели бы электрический заряд (оказались бы ионизированными) и тем самым нарушили бы нормальную работу лампы.
Внутри лампы находится более или менее сложная система электродов. Какова бы она ни была, для получения потока электронов необходимы по крайней мере два электрода: катод и анод.
Катод и его подогрев
Функция катода состоит в том, чтобы создать поток электронов. Электронная эмиссия получается за счет нагревания катода до высокой температуры. Все тела не в одинаковой мере обладают эмиссионной способностью; некоторые из них обладают ею в большей степени (например, окислы бария и стронция). Нагревание катода осуществляется постоянным или переменным электрическим током, протекающим через проволоку с высоким сопротивлением, называемую нитью накала и в известной мере подобную нити осветительной лампы. Катод содержит смесь окисей, нанесенную на цилиндр из никеля, внутри которого помещается нить накала. Изоляция между катодом и нитью накала представляет собой слой изоляционно!о огнеупорного материала (в старых лампах – фарфоровая трубка).
Таково по крайней мере относительно сложное устройство катодов с косвенным накалом (подогревных). Функции подогревателя (нити накала) и эмиттера электронов (собственно катода) могут выполняться одной нитью, должным образом обработанной с целью введения веществ, легко эмитирующих электроны. Такие лампы называются лампами прямого накала.
Все лампы, выпускавшиеся до 1930 г., принадлежали к этой категории.
Необходимо подчеркнуть совершенно второстепенную роль тока накала, единственная функция которого заключается в сообщении катоду тепла, необходимого для излучения электронов. Можно было бы использовать другие источники тепла (газовые, бензиновые и другие нагревательные приборы), но можно также использовать катоды вообще без подогрева. Так, например, в фотоэлементах, широко используемых в телевидении, катод состоит из слоя щелочного металла и излучает электроны, когда на него падает луч света. Может быть, исследование радиоактивных веществ даст нам катод с мощной эмиссией, не требующий нагрева…
Диод
Эффект электронной эмиссии, открытый Эдисоном, не имел бы, может быть, большой ценности, если бы в 1904 г. англичанину Флемингу не пришла в голову мысль расположить рядом с катодом второй электрод – анод, или металлическую пластину, имеющую по отношению к катоду положительный потенциал.
В этом случае электроны, испускаемые катодом в пространство, притягиваются катодом. Если источник постоянного напряжения все время поддерживает напряжение на аноде положительным по отношению к катоду, то устанавливается ток, получивший название анодного тока. Излученные катодом электроны проходят через вакуум лампы и достигают анода; затем по внешней цепи, в которой имеется источник напряжения, электроны возвращаются к катоду (рис. 26).
Такая лампа называется диодом. Она впервые позволила «увидеть» электрический ток в «чистом» виде, и мы констатируем, что электроны действительно идут от отрицательного полюса к положительному в отличие от условного направления, принятого для электрического тока.
Следует обратить внимание на то, что в диоде электронный поток может идти лишь в одном направлении: от катода к аноду. Если мы сделаем анод отрицательным по отношению к катоду, то весь процесс прекратится, так как электроны будут отталкиваться анодом, а последний, будучи холодным, не в состоянии излучать электроны, которые притягивались бы катодом. Таким образом, наш диод является настоящим вентилем. Легко понять, что в случае приложения к этим двум электродам переменного напряжения мы получим однонаправленный ток, проходящий в полупериод, когда анод становится положительным, и прекращающийся в течение отрицательного полупериода. Эта способность диода «выпрямлять» переменный ток, как мы увидим дальше, используется для детектирования и для питания радиоприемников от сети переменного тока.
Как и во всяком сопротивлении, анодный ток диода зависит от напряжения, приложенного между катодом и анодом, – анодного напряжения, примерно подчиняясь закону Ома. Ток повышается пропорционально напряжению, но только до некоторой определенной величины; последующее повышение напряжения не влечет за собой увеличения тока, так как все излученные катодом электроны уже участвуют в анодном токе. Как говорят в таких случаях, ток достигает насыщения. Практически явление насыщения, как оно только что было описано, характерно лишь для катодов прямого накала.
Триод
Через 2 года после изобретения диода американцу Ли де Форесту пришла в голову идея поместить между катодом и анодом третий электрод – сетку. Сетка представляет собой решетку или цилиндрическую спираль, окружающую катод. В трехэлектродной лампе или триоде сетка расположена на пути электронов, что позволяет ей регулировать поток электронов. В этом случае электрический ток зависит не только от анодного напряжения, но также и от потенциала сетки по отношению к катоду
Чем больше отрицательный потенциал сетки, тем больше тормозит она поток электронов, тем больше электронов отталкивает она обратно к катоду и тем меньшему количеству электронов, притягиваемых анодом, удается пробить себе дорогу. Если потенциал сетки достаточно отрицателен, то, несмотря на притяжение анода, она не пропустит ни одного электрона и ток будет равен нулю.
Уменьшая отрицательный потенциал сетки, мы заметим появление тока, увеличивающегося с повышением потенциала сетки (так как уменьшение отрицательного значения является повышением потенциала).
В триоде замечательно то, что влияние, оказываемое на анодный ток сеткой, значительно больше влияния, оказываемого анодом. Малого изменения потенциала сетки достаточно для создания большого изменения анодного тока.
Если мы будем поддерживать потенциал сетки постоянным и захотим добиться такого же изменения анодного тока путем изменения анодного напряжения, то нам придется изменять его в значительно больших пределах. Впрочем, это легко объясняется тем, что сетка находится ближе к катоду, чем анод. Именно на этом основана усилительная способность лампы.
Крутизна
Изменение анодного тока, вызываемое определенным изменением потенциала сетки, характеризует крутизну лампы. Крутизна выражается в миллиамперах на вольт (мa/в). Количественно крутизна показывает, на сколько миллиампер увеличивается (или уменьшается) анодный ток при увеличении (или уменьшении) потенциала сетки на 1 в. Применяемые в настоящее время лампы имеют крутизну от 1 до 15 ма/в.
Если через dIa мы обозначим изменение анодного тока, а через dUc – изменение потенциала сетки, то крутизна, обозначаемая буквой S, будет иметь следующее выражение:
S = dIa/dUc
Коэффициент усиления
Мы только что сказали, что для получения одинакового изменения анодного тока анодное напряжение нужно изменить больше, чем напряжение сетки.
Отношение этих двух напряжений носит название коэффициента усиления, обозначаемого буквой μ. Если, например, для повышения тока на 1 ма нужно повысить анодное напряжение на 28 в или повысить напряжение сетки на 2 в, то коэффициент усиления будет равен 28: 2 = 14.
Коэффициент усиления триодов редко превышает 100, но у многоэлектродных ламп он часто достигает нескольких тысяч.
Обозначив изменение анодного напряжения через dUa, получим следующую формулу для коэффициента усиления:
μ = dUa/dUc
Внутреннее сопротивление
Существует еще третий параметр, обойденный Любознайкиным молчанием, но который полезно знать; называется он внутренним сопротивлением лампы. Вспомнив закон Ома, согласно которому сопротивление выражается отношением напряжения к току, мы не удивимся, узнав, что сопротивление лампы определяется как отношение изменения анодного напряжения к вызываемому им изменению анодного тока. Обозначив внутреннее сопротивление буквой Ri, мы получим:
Ri = dUa/dIa
Соотношение между S, μ и Ri
Следует отметить, что крутизна и внутреннее сопротивление данной лампы могут изменяться в некоторых пределах в зависимости от потенциала сетки; коэффициент усиления же практически не зависит от напряжения на электродах, так как он определяется размерами электродов и их расположением.
Не ради удовольствия нагромождать формулы мы только что привели математические выражения для S, μ и Ri. Эти выражения позволяют вывести очень простое соотношение, объединяющее все три величины. Умножим S на Ri
Как мы видим, коэффициент усиления равен произведению крутизны на внутреннее сопротивление. Если крутизна выражена в миллиамперах на вольт, то внутреннее сопротивление нужно выразить в тысячах вольт, в противном случае получатся нелепые результаты.
Благодаря выведенному соотношению достаточно знать две величины, чтобы рассчитать третью. Так, например, если крутизна лампы 3 ма/в, а ее внутреннее сопротивление 80 000 ом, то без труда можно рассчитать коэффициент усиления:
μ = 3·80 = 240.
Комментарии к восьмой беседе
Сеточная характеристика лампы
В триоде, как вы видели, величина анодного тока зависит от сеточного и анодного напряжений, правда не в одинаковой мере. Первое имеет большее влияние, чем второе.
Можно графически представить зависимость анодного тока Iа от сеточного напряжения Ucили анодного напряжения Uа. При изображении зависимости Iа от Uc следует поддерживать анодное напряжение Uа постоянным и, последовательно придавая сеточному напряжению Uc различные значения (в порядке нарастания или снижения), отмечать соответствующие значения анодного тока Iа.
Нанесем на клетчатой бумаге две взаимно перпендикулярные оси и отметим на горизонтальной оси значения сеточного напряжения, а на вертикальной – анодного тока. Точку пересечения двух осей будем считать нулем; отрицательные величины сеточного напряжения будем откладывать слева от этой точки, а положительные – справа (см. рис. 31).
Каждой паре значений Uc и Iа будет соответствовать одна точка на пересечении двух перпендикуляров к осям. Например, если сеточному напряжении —1 в соответствует анодный ток 4 ма, то точку для этих значений мы получим следующим образом: перпендикуляр к горизонтальной оси проведем через точку – 1 в, а перпендикуляр к вертикальной оси – через точку 4 ма (первый перпендикуляр, следовательно, будет вертикальной, а второй – горизонтальной линией). Точка пересечения этих перпендикуляров определит соответствующую точку характеристики.
Нанесем таким образом несколько точек и соединим их. Такая кривая показывающая зависимость анодного тока от сеточного напряжения, будет называться сеточной характеристикой лампы. По мере уменьшения отрицательного напряжения на сетке ток возрастает, сначала медленно, а затем– посте нижнего изгиба – быстрее; в этой области характеристики имеется прямолинейный участок, в пределах которого анодный ток пропорционален сеточному напряжению. Дальше характеристика вновь изгибается, особенно у ламп прямого накала, имеющих ярко выраженное явление насыщения.
Другие характеристики лампы
Установив более высокое анодное напряжение, можно таким же образом снять вторую кривую. В этом случае ток будет иметь большую величину и кривая окажется смещенной влево от первой. Чтобы полнее охарактеризовать работу ламп, необходимо снять несколько кривых, или, как говорят, семейство характеристик (см. рис. 32), каждая из которых соответствует определенному анодному напряжению.
Отметим, что можно снять другую систему характеристик, если установить сеточное напряжение Uc постоянным и изменять анодное напряжение Uа, замечая соответствующие изменения анодного тока Iа. Отложив по горизонтальной оси значения Uа, а по вертикальной оси – значения Iа, мы получим анодную характеристику лампы.
И в этом случае можно вычертить семейство характеристик, каждая из которых соответствует определенному сеточному напряжению (рис. 137).
Рис. 137. Кривые зависимости анодного тока Iа триода от анодного напряжения. Каждая кривая снята при указанном значении сеточного напряжения Uc.
С помощью простой операции, которую мы, однако, не будем здесь описывать, можно перейти от одной системы кривых к другой. На рис. 138 изображено семейство анодных характеристик для пентода.
Рис. 138. Такие же кривые, как на рис. 137, снятые для пентода.
Характеристики дают возможность судить о свойствах лампы; они показывают, как лучше использовать лампу и как она будет работать в той или иной схеме.
Покажем в качестве примера, как по характеристикам определить крутизну, коэффициент усиления и внутреннее сопротивление лампы.
Графическое определение S, μ и Ri
Крутизна, как мы знаем, показывает, насколько изменяется анодный ток при изменении сеточного напряжения на 1 в. Возьмем из семейства характеристик, приведенного на рис. 139, кривую, соответствующую, например, Uа = 160 в. Мы видим, что сеточному напряжению —3 в соответствует анодный ток 3 ма (точка А), а напряжению —2 в – ток 6 ма (точка Б). Следовательно, повышение сеточного напряжения на 1 в вызывает изменение анодного тока на 3 ма. Таким образом, крутизна характеристики составляет 3 ма/в. Рассматривая треугольник АБВ, можно установить, что крутизна равна отношению БВ к АВ. Крутизна тем больше, чем круче кривая. Таким образом, легко понять, почему принят термин «крутизна».
Рис. 139. Кривые зависимости анодного тока от сеточного напряжения позволяют определить крутизну и внутреннее сопротивление лампы.
Следует отметить, что крутизна характеристик остается одинаковой на всем протяжении прямолинейного участка кривой, а на сгибе она резко уменьшается (точка Г).
Перейдем теперь к определению коэффициента усиления, представляющего собой отношение изменений анодного и сеточного напряжения, дающих одинаковое изменение анодного тока. Соединим горизонтальной линией точки Д и Е на двух соседних кривых. Эти две точки соответствуют одинаковому анодному току. Что происходит, когда мы переходим от точки Е к точке Д? Во-первых, мы повышаем сеточное напряжение на 1,5 в (потому, что оно изменяется от —3 до —1,5 в); эи должно было бы вызвать увеличение анодного тока. Однако он остается неизмененным, так как эффект от изменения сеточного напряжения компенсируется снижением анодного напряжения, которое уменьшилось на 40 а (так как с кривой, соответствующей Uа = 200 в, мы перешли на кривую, соответствующую Uа = 160 в).
Таким образом, изменение анодного напряжения на 40 в влияет на анодный ток так же, как и изменение сеточного напряжения на 1,5 в. Коэффициент усиления, представляющий собой отношение этих двух напряжений, поэтому равен 40: 1,5 = 26,7.
В заключение попытаемся определить по характеристикам величину внутреннего сопротивления, которое, как мы говорили, является отношением изменения анодного напряжения к вызываемому им изменению анодного тока при постоянном сеточном напряжении.
На графике все величины, соответствующие одному и тому же сеточному напряжению, находятся на вертикали. Поэтому если мы примем, что напряжение на сетке равно —3 в, то это будет вертикаль, проходящая через точку —3 в на горизонтальной оси. Если анодное напряжение увеличить со 160 в (точка А) до 200 в (точка Е), то изменение составит 40 в.
Это повлечет за собой повышение тока с 3 ма (в точке А) до 7,5 ма (в точке Е), т.е. изменение на 4,5 ма, или 0,0045 а. Следовательно, внутреннее сопротивление равно 40: 0,0045 ~= 8 900 ом.
Мы можем проверить справедливость равенства μ = S·Ri, приняв Ri = 8,9 ком. В этом случае S·Ri = 3·8,9 = 26,7.
Раньше мы уже непосредственно установили, что μ = 26,7; это доказывает, что в области радиотехники царствует порядок.
Вход и выход лампы
Чтобы использовать способность лампы усиливать переменное напряжение, последнее нужно подать между сеткой и катодами. Изменяя таким образом потенциал сетки по отношению к катоду, мы вызываем значительные изменения анодного тока (в μ раз большие, чем при подаче напряжения между анодом и катодом). Эти изменения анодного тока, как мы увидим дальше, в свою очередь могут усиливаться второй лампой.
Таким образом, подлежащее усилению напряжение подается в цепь сетка – катод, которую мы условимся называть входом, а анодную цепь будем называть выходом лампы.
Переменные напряжения на входе относительно малы; на входе первой лампы, предназначенной для усиления незначительных колебаний, создаваемых волнами в антенном контуре, напряжение может иметь величину порядка нескольких микровольт или десятков микровольт (конечно, близко расположенный мощный передатчик может создать напряжения в несколько милливольт). На последние же лампы в усилителе приемника на вход поступают усиленные напряжения, которые могут достигать нескольких вольт и даже десятков вольт.
Смещение на сетке
Кроме переменного напряжения, подаваемого между сеткой и катодом, на сетке необходимо также предусмотреть некоторое среднее значение напряжения, т, е. постоянное напряжение, устанавливаемое между сеткой и катодом в отсутствие переменного напряжения (например, в паузах во время передачи).
Это напряжение, называемое сеточным смещением, может быть получено, например, с помощью батареи Бс, включенной между сеткой и катодом (см. рис. 33) и определяющей рабочую точку на характеристике лампы. Поэтому если на рис. 139 анодное напряжение равно 160 в, а сеточное смещение – 3 в, то рабочая точка находится в точке А. Средний анодный ток, или ток покоя, равен 3 ма.
Когда на сетку подается переменное напряжение, напряжение изменяется вокруг среднего значения, отклоняясь от него в сторону как больших, так и меньших значений.
Если принять напряжение смещения равным -3 в, а амплитуду переменного напряжения 2 в, то мгновенные значения напряжения на сетке будут изменяться от —5 до —1 в. Одновременно будет изменяться и анодный ток относительно средней величины до крайних значений, соответствующих сеточным напряжениям —5 и —1 в.
Во избежание искажений следует соблюдать два условия. Прежде всего необходимо, чтобы изменения анодного тока были пропорциональны изменениям сеточного напряжения. Это условие выполняется, когда мгновенные значения сеточного напряжения не выходят за пределы прямолинейной части характеристики. Укажем попутно, что именно поэтому искажения, обусловленные искривлением характеристики, носят название нелинейных искажений. Произносимый с некоторой таинственностью, этот термин всегда оказывает свое действие… на тех, кому неизвестен его смысл.
Вторая опасность подстерегает нас в точке, где мгновенное значение сеточного напряжения становится равным нулю. Если мы перейдем через это значение в сторону положительных напряжений, то появится сеточный ток. Происходит это потому, что сетка начинает притягивать некоторое количество электронов, которые образуют ток сеточной цепи. Сеточный ток начинает появляться даже при некотором отрицательном потенциале (от —1,5 до —1 в в зависимости от типа лампы), что объясняется наличием начальной энергии электронов, эмитируемых катодом. Сеточный ток вызывает серьезные искажения. На поддержание этого тока в сеточной цепи затрачивается некоторое количество энергии, поэтому такой режим работы недопустим.
Отсюда следует, что мгновенные значения сеточного напряжения не должны выходить за пределы линейной части характеристики и не должны заходить в область положительных напряжений. Поэтому необходимо так выбирать смещение, чтобы рабочая точка находилась в середине прямолинейной части характеристики слева от вертикальной оси.
В этом случае, если амплитуда переменного напряжения не превысит напряжения смещения, мгновенные значения напряжения на сетке не выйдут за пределы прямолинейной части характеристики и не попадут в область положительных напряжений.