355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Enrique Alvarez » Масса атомов. Дальтон. Атомная теория » Текст книги (страница 5)
Масса атомов. Дальтон. Атомная теория
  • Текст добавлен: 27 апреля 2017, 07:00

Текст книги "Масса атомов. Дальтон. Атомная теория"


Автор книги: Enrique Alvarez


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 5 (всего у книги 8 страниц)

ГЛАВА 4
Рождение современной химии

Позабыть об алхимии было нелегко. Причиной тому были извечное стремление человека к богатству и соблазнительная возможность превращения материи. Даже великий Исаак Ньютон попал под чары алхимии. Однако постепенно, начиная с Роберта Бойля и заканчивая Антуаном Лавуазье, шел процесс упорядочивания элементов природы, одного за другим, опыт за опытом, и по мере того как секреты окружающего мира раскрывались, наука погружалась все глубже и глубже – до самого крошечного элемента, атома.

Бил Брайсон не без иронии написал, что если требуется определить момент, когда химия стала серьезной, уважаемой наукой, то нужно вернуться ко дню публикации в 1661 году книги Роберта Бойля "Химик-скептик*. До этого химия была лишь лихорадочной суетой в погоне за химерами. Некоторые даже в XVII веке утверждали, что смесь определенных элементов в определенных пропорциях может сделать человека невидимым. Знаменитый немецкий медик, алхимик, эрудит и искатель приключений Иоганн Бехер (1635-1682) был из числа таких фантазеров. Более того, он мог бы считаться одним из создателей теории флогистона, о которой мы уже упоминали. Бехер говорил, что когда потребляется одно вещество, высвобождается другое – terra pinguis. Эту теорию, согласно которой некая огненная субстанция наполняет все горючие вещества и высвобождается из них при горении, разделял другой немецкий физик, Георг Шталь (1659-1735).

Мы уже объясняли, что теория флогистона, как и другие необоснованные представления, была опровергнута Лавуазье и Ломоносовым. Но алхимия оставалась слишком соблазнительной, чтобы о ней быстро позабыли. В основе научных экспериментов все еще лежали вечные стихии Аристотеля. Прежде чем окончательно исчезнуть в самом необратимом смысле в 1682 году, Бехер вызвался объяснить классическую теорию. Для него земля и вода были основными элементами, в то время как железо и огонь появлялись при реакциях. Он предложил проанализировать основные элементы и классифицировать их согласно свойствам, что было неплохой идеей. Так Бехер выделил три типа земли, из которых главной была "горючая земля" – как он называл серу. В свою очередь, его соотечественник Шталь утверждал, что металлы состоят из извести и флогистона, последний выделяется при горении в виде огня, а в виде остатка мы получаем соль. Эта соль подтверждается ржавчиной, появляющейся на прокаленных металлах, и пеплом – в других случаях. И наоборот, если добавить ржавчину к углю, крайне богатому флогистоном, можно получить металл.

Нет ничего опаснее для человеческого разума, чем полагать, что наши научные идеи окончательны, что в природе нет загадок и новых миров для завоевания.

Сэр Гемфри Дэви

Мы уже упоминали о природе горения, когда говорили об английских предшественниках Дальтона, главным образом о Джозефе Блэке и Джозефе Пристли, которые открыли кислород (это имя дал веществу Лавуазье) и были приверженцами теории флогистона. Дальтон принялся за изучение их трудов.


НОВОЕ ПОЯВЛЕНИЕ АТОМИЗМА

Возвращаясь к истокам химии и атомизма, вспомним немецкого медика Даниеля Зеннерта (1572-1637), который был, возможно, первым атомистом эпохи Возрождения. Зеннерт вернул алхимии некоторые идеи Демокрита и Эпикура, не впадая в аристотелевскую ортодоксальность. Главная его идея была в том, что четыре изначальные стихии состоят из разных атомов, и таким образом существует четыре рода атомов. Соединяясь и меняя порядок, они образуют разные вещества, сохраняя при этом свою сущность. Идеи Зеннерта ценны тем, что знаменуют собой переход от идей Гебера – анонимного алхимика XIII века (возможно, им был Поль де Таранто), который предположил, что все металлы являются смесью серы и частиц ртути, – к идеям Роберта Бойля, который наряду с великими философами Рене Декартом и Джоном Локком является основателем корпускулярной теории. Эта теория похожа на атомизм – с той лишь разницей, что в ее рамках атомы, или частицы, считаются делимыми. Так, ртуть – главный элемент для алхимии – можно ввести в металл, тем самым изменить его внутреннюю структуру и в определенный момент превратить в золото. Надо только не сдаваться и не оставлять попыток.

Понятие атома Демокрита и Эпикура использовал в XVII веке в наиболее близком его понимании к сегодняшнему француз Пьер Гассенди (1592-1655), убежденный в существовании пустоты. Кстати, это существование было наглядно доказано его современником Торричелли, который заполнил трубку ртутью, перевернул ее и опустил в чашку с той же ртутью. Воздух не мог войти в трубку над ртутью – там образовалась пустота. Гассенди не считал теорию Аристотеля, согласно которой "природа боится пустоты*, безупречной. Более того, он возражал Аристотелю и в области схоластики, так как считал, что знаменитые силлогизмы ни к чему не пригодны. Главную проблему для Гассенди представляла Инквизиция, которая уже расправилась с великим Галилеем за то, что его идеи противоречили учению Аристотеля. Гассенди улучшил телескоп, поскольку также был прекрасным астрономом и математиком, а не только... католическим священником. Если, как предположил Эпикур, наряду с атомами существует пустота, значит открылся путь для учения об атомах. Желая избежать конфликтов с Церковью и собственной совестью, Гассенди допустил, что Бог создал Вселенную (Демокрит этого не признавал) и, соответственно, Он является перводвигателем (идея Аристотеля), приводящим атомы в движение. Тепло образуют круглые атомы, а холод – атомы неправильной формы, и это свойство подтверждается ощущениями. Чтобы образовать тела, атомы соединяются по типу крючка. Эти соединения впервые получили название молекулы и использовались для объяснения химических реакций.

При применении в области химии теория Аристотеля начала разваливаться – как это уже произошло в области астрономии. Способствовало такому эффекту появление соответствующих оптических инструментов и микроскопов. Изобретенные в 1590-1610 годах, они позволяли наблюдать дискретность материи. Но прежде чем вернуться к уже упоминавшемуся Бойлю, скажем несколько слов об англичанине Уолтере Чарльтоне (1619-1707), который познакомил соотечественников с атомистическим учением Демокрита и Эпикура в изложении Пьера Гассенди. Чарльтон был ни много ни мало врачом Карла I Английского. Но врачебная практика не помешала его исследовательской деятельности, и в 1659 году он опубликовал труд Physiologia Epicurogassendo-ChaHetoniana or a Fabrick of Science Natural upon the Hypothesis of Atoms ( "Эпи – куро-гассендиано-чарлътонская физиология, или Фабрика естественной науки, основанной на атомной гипотезе"). Работа описывала мир согласно атомистической теории, которая не соответствовала представлениям Рене Декарта, утверждавшего, что материя делится до бесконечности. Конечно, Декарт был гением, но понять абсолютно все не дано никому.


НЕЗАВИСИМАЯ НАУКА

Начиная с Роберта Бойля химия стала независимой наукой, изучающей состав веществ, а не дополнительным инструментом физиков и алхимиков. Бойль в течение жизни проделал огромную работу. Особая его заслуга состоит в том, что он ввел строгие научные методы в экспериментальную деятельность. Ученый утверждал, что если можно извлекать пользу из опыта, то из него можно делать собственные выводы и заключения. Опыты не должны опираться на предрассудки или следовать одной из двух систем – атомной дискретности либо декартовой непрерывности, – поскольку материю следует изучать объективно.


РОБЕРТ БОЙЛЬ

Ирландец Роберт Бойль (1627-1691) был седьмым ребенком из 14 детей, которых его отец имел от двух жен.

В многодетных семьях было принято отдавать детей на воспитание, поэтому он рос в чужой семье и знал в равной степени английский и ирландский языки. Бойль много путешествовал по Европе со своими наставниками, особенно по Италии и Франции. Там он познакомился с учением Галилея.

По возвращении в Англию Бойль учился в Оксфорде, где начал исследовать газы и сконструировал вместе с Робертом Гуком (1635-1703) пневматическую машину. В1645 году в целях «развития естественной науки» он учредил Лондонское Королевское общество, хотя это название было принято лишь в 1662 году. А до этих пор Королевское общество было просто собранием ученых в Лондоне, которое Бойль называл Невидимым колледжем. Среди изобретений, с высокой долей вероятности приписываемых Бойлю,– эликсир жизни, искусство летать, вечный свет и лодка, управляемая всеми ветрами. Многие из этих идей по прошествии времени стали реальностью. Бойль не отрекся от своих алхимических представлений и не переставал верить в превращение металлов. Знаменит он также теологическими работами. К концу жизни ученого разбил паралич, и он превратился в настоящего затворника.


Закон Бойля

В 1662 году Бойль опубликовал знаменитый закон: при постоянной температуре произведение давления газа на его объем постоянно, то есть PV=C. Этот закон обычно называют законом Бойля – Мариотта, потому что примерно в то же время независимо от Бойля его открыл француз Эдм Мариотт (1620-1684). В 1898 году Людвиг Больцман сформулировал свою молекулярно-кинетическую теорию и обобщил уравнение PV=nRT, в котором n – количество молекул, r – отношение постоянных Больцмана и Авогадро, а T – температура системы.


Экспериментальные доказательства привели Бойля к двум главным выводам. Первый состоит в том, что четыре стихии Аристотеля не являются ни элементами, ни стихиями. Второй доказывает ошибочность представлений всех, кто следовал принципам алхимии – главным образом под влиянием Парацельса, крайне противоречивого швейцарского алхимика и медика, который отвергал классическую, или галеническую, медицину и заменял ее медициной, основанной на алхимии, металлах и астрономии. Сторонники этой точки зрения считали, что основными элементами любых соединений являются ртуть, сера и соль, и им было посвящено немало насмешливых замечаний в знаменитой книге Бойля «Химик-скептик» (1661).

Важно значение опытов, а не их количество, именно значение следует принимать во внимание.

Исаак Ньютон

Помимо знаменитого закона Бойля, его главный научный вклад состоит в определении составляющих элементов материи, но это определение далеко от позабытой теории Аристотеля. Бойль предположил, что элементов больше, чем четыре. Кстати, он точно определил некоторые соединения, используя новейшие экспериментальные техники, и это ознаменовало начало химического анализа. Наконец, Бойль предположил, что эти элементы состоят из маленьких твердых и неделимых частиц, которые при химических реакциях всегда ведут себя одинаково. Но он не имел в виду атомы: напротив, Бойль различал бесконечно маленькие «невидимые» частицы, которые, соединяясь, образуют «частицы второго порядка», более крупные и уже видимые, которые и есть истинные составляющие элементов. Эти вторые частицы заставляют думать о молекулах, предложенных несколькими годами ранее Гассенди. Двое ученых расходились во мнении по поводу первопричины движения частиц. По мнению Гассенди, это движение было обусловлено божественным происхождением материи, тогда как Бойль искал внешние причины.

Скажем также несколько слов о великом Исааке Ньютоне (1642-1727). Отец теории всемирного тяготения интересовался и атомизмом. В своей книге De natura acidorum (*0 природе кислот", 1710) он классифицировал частицы по их сложности и – это особенно важно для следующих поколений ученых – предположил, что эти конечные частицы взаимно притягиваются в соответствии с законом всемирного тяготения. Открытие силы тяготения положило конец идеям о порах, остриях и крючках, как это представлялось Пьеру Гассенди и другим.

Уже упоминавшийся в этой книге голландский врач Герман Бургаве, любимый автор Джона Дальтона, также был современником Исаака Ньютона. Бургаве полагал, что атомы имеют тенденцию соединяться, но этому соединению мешает тепло, которое и является причиной постоянного движения атомов. Михаил Ломоносов, имя которого всегда упоминается рядом с именем Лавуазье в качестве второго автора закона сохранения вещества, представлял материю как объединение неуловимых частиц, содержащихся в других, более сложных частицах. Главная заслуга Ньютона состоит в том, что он пересмотрел термины Бойля, назвав элементы атомами, частицы – молекулами, а химический элемент – простым телом. Эти определения использовала французская школа, особенно Жозеф-Луи Пруст (автор закона постоянства состава, о котором мы уже говорили), Клод Луи Бертолле, главный научный противник Пруста, и позже – Джон Дальтон. Бертолле был одним из консультантов Наполеона Бонапарта – он входил в группу ученых, сопровождавших Наполеона в Египетском походе в 1798 году. Бертолле считал, что между частицами существуют силы притяжения, именно этим и обусловлены их реакции. Он утверждал, что эти силы зависят не только от температуры, давления и концентрации, но также от их сродства, как он это называл. Бертолле открыл, что на результат реакций могут влиять атмосферные факторы, и значит, каждое соединение может иметь более одной химической формулы. Именно это утверждение он противопоставлял сначала взглядам Пруста, а позднее и Дальтона.

Как и все химики французской школы, Бертолле испытал влияние великого Антуана Лорана де Лавуазье. В свою очередь, он повлиял на своего блестящего ученика Луи Жозефа Гей-Люссака, который в итоге исправил некоторые ошибки учителя. Бертолле сыграл определенную роль и в становлении Дальтона, однако больше всего повлиял на работы героя нашей книги Антуан Лоран де Лавуазье. Этот человек по достоинству считается первым современным химиком (в отличие от Роберта Бойля, которого называют просто первым химиком), а перипетии его жизни и его научные открытия достойны стать темой отдельной книги. Отец Лавуазье купил дворянский титул; сам Лавуазье последовал примеру отца и вступил в генеральный откуп, общество финансистов Ferme generale, которое собирало налоги от имени государства со всех бедных и освобождало от уплаты богатых. Разумеется, работа откупщиком не принесла Лавуазье популярности, однако позволила ему разбогатеть. Для Лавуазье его благосостояние означало только одно – возможность посвятить свободные часы химии. Он женился на 14-летней Анн-Мари Пьеретте Польз – девушке из своего социального круга, которая была столь же умна, сколь и очаровательна. Если Лавуазье считается отцом современной химии, то его юная жена – ее матерью. Молодые супруги проводили в лаборатории как минимум пять часов в день, а также все воскресенья (их особый счастливый день). Они получили огромное количество важных результатов, касающихся изучения воздуха как смеси газов, определения состава воды, исследований процессов дыхания, горения и окисления, а также, разумеется, установления весовых соотношений веществ, вступающих в реакцию, – знаменитый закон сохранения массы. Лавуазье разработал новую химическую номенклатуру, или систему нумерации, которая легла в основу современной. Известно, что Клод Луи Бертолле принял ее почти сразу.

Я рассматриваю природу как огромную химическую лабораторию, в которой происходят всевозможные соединения и разложения.

Антуан де Лавуазье

Несмотря на то что работа супругов Лавуазье сыграла огромную роль в истории химии, остаются два необъяснимых вопроса. Лавуазье в своем знаменитом " Элементарном трактате по химии* 1789 года дал определение элемента как простого вещества, неделимого в результате химической реакции, и привел более 30 простых веществ, но сам он так и не открыл ни одного. С участием Карла Вильгельма Шееле (1742-1786) был выявлен кислород, также этот ученый открыл барий, хлор, магний, молибден, фтор и вольфрам. Позднее Гемфри Дэви, используя электролиз, существенно расширил этот список. В годы жизни Лавуазье еще не были открыты по крайней мере две трети элементов, а его лаборатория была лучшей в Европе. Но больше всего нас интересует, почему Лавуазье не придавал никакой важности составу материи. Его совершенно не интересовали атомы, и он держался на расстоянии от физических и философских гипотез, существовавших лишь как теория. Лавуазье интересовали только элементы, составляющие вещества, которые можно было выделить в его лаборатории. Можно утверждать, что деятельность Лавуазье лежала в области экспериментальной химии.

Прежде чем завершить рассказ о предшественниках Джона Дальтона, необходимо упомянуть о немце Иеремии Вениамине Рихтере (1762-1807). Мы уже говорили о его законе эквивалентных отношений, крайне важном для атомной теории Дальтона. Рихтер ввел понятие эквивалентной массы, которая, в отличие от атомной массы Дальтона, имеет и измерение, и единицы измерения – граммы. Кроме того, он сформулировал закон – "Вещества реагируют и образуются в эквивалентных количествах" – и тем самым ввел понятие стехиометрии, или соотношения между количеством реагирующих веществ. Стехиометрические законы известны также как количественные. Помимо химии, Рихтер питал страсть к математике.

В заключение представим довольно скандальную фигуру в истории атомистической теории – ирландца Уильяма Хиггинса (1763-1825), который унаследовал от своего дяди Брайана и отца Джона, профессора университета Эдинбурга, не только состояние, но и страсть к химии. В Лондоне Хиггинс опубликовал вместе с дядей сочинение Comparative View of Phlogistic and Antiphlogistic Theories ("Сравнительное изучение флогистических и антифлогистических теорий", 1789), которое позже многие сравнивали с атомной теорией Дальтона, опубликованной 19 годами позже. В этом сочинении также речь идет о конечных частицах. Хиггинс придумал диаграммы с символами (очень похожими на современные и абсолютно непохожими на символы Дальтона), чтобы показать, как взаимодействуют частицы и каким образом их соединяют "силы тяготения". В качестве символа атома он использовал начальные буквы элементов и связал эти буквы черточками, изображающими связи.


НЕКОТОРЫЕ СОВРЕМЕННЫЕ ЭЛЕМЕНТАРНЫЕ ХИМИЧЕСКИЕ ОПРЕДЕЛЕНИЯ

– Атом – простейшая частица вещества, или самая маленькая опознаваемая частица химического элемента. Состоит из центрального плотного ядра, окружен облаком отрицательно заряженных электронов.

– Химический элемент – чистое химическое вещество, образованное одним видом атомов с одинаковым атомным номером.

– Атомный номер – количество протонов в атомном ядре.

– Массовое число – количество протонов и нейтронов в атомном ядре. Всегда целое число. Например, магний-24 состоит из 12 протонов и 12 нейтронов.

– Изотопы – химические элементы, у которых одинаковое число протонов, но разное число нейтронов. Например, атом углерода может быть 12, 13, 14, у всех этих элементов 6 протонов, но, соответственно, 6, 7 и 8 нейтронов.

– Атомная единица массы (дальтон, а.е.м.) – стандартная единица для обозначения массы атома в молекулярной шкале. Атомная единица массы представляет собой 1/12 массы атома углерода и равна 1, 660538921 х10-27 кг.

– Относительная атомная масса, или атомный вес, – среднее значение атомных масс всех существующих в природе изотопов данного химического элемента в отношении к атомной единице массы. Не должна быть целым числом.

– Молекула – группа атомов, заряженных нейтрально, которые соединяются благодаря ковалентным связям.

– Ион – атом или молекула, общее число электронов которого отличается от числа протонов ядра (может быть положительным или отрицательным в зависимости оттого, потерян или присоединен электрон).

– Моль, или грамм-молекула, – химическая единица количества вещества, которое содержат элементарные единицы (атомы, молекулы или ионы). Соотносится с количеством атомов 12 граммов углерода-12: 1 моль = 6, 02214129 х 1023 элементарных единиц, соответственно 1 моль воды содержит 6, 02214129χ 1023 молекул воды.

– Постоянная Авогадро – количество элементарных частиц (атомов, молекул или ионов), содержащихся в одном моле; по существу, количество атомов углерода, содержащихся в 12 граммах углерода-12 (= 6, 02214129 χ 1023).

– Молярная масса (М) – отношение массы вещества к количеству молей данного вещества, измеряется в кг/моль или г/моль. Например: М(Н2О) = 18 г/моль.

– Объем одного моля идеального газа: при нормальных условиях (то есть при температуре О °С и атмосферном давлении, равном 1 атм.) один моль идеального газа занимает 22, 4 литра.

Полемика разразилась после огромного успеха книги Дальтона. Как и стоило ожидать, Хиггинс обвинил его в плагиате, утверждая, что Дальтон воспользовался его сочинением. Однако ирландский химик ни слова не говорил об атомной массе (а она лежит в основе атомной теории Дальтона), поэтому его упреки не имели под собой оснований. Кроме того, доказано, что Дальтон ничего не слышал об этом произведении и не знал самого Хиггинса. Дальтона никогда не беспокоили эти обвинения. Удивительно, но единственным человеком, поддержавшим Хиггинса, был Гемфри Дэви, однако и он после прочтения блестящего труда скромного квакера был вынужден сдаться.


ПОЯВЛЕНИЕ ДАЛЬТОНА И ЕГО АТОМНОЙ ТЕОРИИ

Публикация одного за другим двух томов «Новой системы химической философии» ознаменовала поворот в химии. Еще до появления первой части первого тома (напомним, что это произошло в 1808 году) многочисленные выступления английского ученого, посвященные этой теории, возбудили интерес его коллег. Эрудит Томас Томсон добавил к третьему изданию своей «Химической системы» статью, целиком посвященную новой атомной гипотезе, предложенной Дальтоном. В 1807 году он писал по этому поводу:

"Если гипотеза (Дальтона) верна, она может дать химии очень точный метод для расчета относительной плотности атомов, составляющих соединения".

Восхищение Томсона атомной теорией росло по мере публикации огромного труда, собравшего все знания в области химии. Томсон посвятил Дальтону множество статей, в которых изложил и собственные идеи: он заменил водород в качестве точки отсчета атомной массы на кислород, считая это вещество более важным, особенно для процесса горения. Также Томсон выступал главным защитником автора в первые годы после публикации * Новой системы химической философии". Удивительно, но близкий друг Дальтона Уильям Генри, а также сэр Гемфри Дэви, которым Дальтон посвятил вторую часть первого тома, не сразу приняли его идеи. Несмотря на большое уважение, которое Уильям Хайд Волластон испытывал к Дальтону, в собственных исследованиях он продолжал использовать эквивалентные веса элементов (в русле идей Рихтера и стехиометрии), а не относительную атомную массу Дальтона. Он говорил, что эквивалентные веса имеют аналитическую ценность – граммы, которые можно применить практически, тогда как масса атомов – по сути, плод гипотезы.

Джон Дальтон продолжал свою работу в лаборатории на втором этаже Lit & Phil до самой смерти, которая произошла спустя много лет. Ученый был членом редакционного комитета, секретарем, вице-президентом и, наконец, президентом Lit & Phil Манчестера с 1817 года и до конца своих дней, до 1844 года, то есть в течение 27 лет. Разумеется, Lit & Phil было не единственным научным обществом в то время. Наибольшим авторитетом пользовалось Лондонское Королевское общество. Несмотря на усердия Дэви, который предложил принять в это общество Дальтона еще в 1810 году, сам Дальтон совершенно не стремился стать частью лондонской научной элиты. Однако к 1822 году его авторитет достиг такого уровня, что он был принят в Лондонское Королевское общество, не подавая прошения, что противоречило правилам. Дальтон критически относился к слабым попыткам этого института популяризировать науку. Только в 1834 году – когда общественное признание ученого было более чем заметным – он согласился на формальный пост в Лондонском Королевском обществе.

Сдержанное отношение Дальтона к самому знаменитому британскому научному учреждению не помешало ему стать членом других институтов, более соответствующих его взглядам на науку. В 1816 году, спустя несколько лет после публикации первого тома его главной книги, Дальтон согласился стать членом Французской академии наук. В 1822 году он первый и последний раз побывал во Франции, и эта исключительная поездка позволила ему познакомиться с цветом французской науки: со знаменитым математиком и астрономом Пьером Симоном Лапласом (1749-1827), натуралистом Жоржем Кювье (1769-1832) и физиком Андре-Мари Ампером (1775-1836), который вместе с французом Араго открыл электромагнит и в 1827 году сформулировал теорию электромагнетизма. Также Дальтон повстречался со своими научными оппонентами – и одновременно почитателями и друзьями – Клодом Луи Бертолле и его учеником Жозефом-Луи Гей-Люссаком, который в качестве президента Академии наук оказал самый радушный прием британскому коллеге. Через несколько лет, в 1830 году, после смерти сэра Гемфри Дэви, Дальтон унаследовал его титул почетного иностранного члена Академии.


ЛИТЕРАТУРНО-ФИЛОСОФСКОЕ ОБЩЕСТВО МАНЧЕСТЕРА

The Manchester Literary and Philosophical Society – один из первых британских институтов, роль которых заключалась в популяризации науки и гуманитарных исследований, померкших в тени промышленной революции. Общество было основано в 1781 году, в его стенах работали самые крупные ученые, инженеры, физики и математики того времени. Оно даже составляло конкуренцию Лондонскому Королевскому обществу. Самым блестящим его членом был Джон Дальтон, однако в общество входили и другие видные ученые, такие как Джеймс Прескотт Джоуль (1818-1889), в честь которого названа единица измерения энергии и которому мы обязаны открытием эффекта Джоуля, то есть выделения тепла при прохождении электрического тока; химик Генри Роско (1833-1915) и новозеландец Эрнест Резерфорд, который во многом опирался на открытия Джона Дальтона. Здание общества было разрушено немецкими бомбежками во время Второй мировой войны: и в роковой день 24 декабря 1940 года все рукописи Джона Дальтона были утрачены. Впоследствии здание было восстановлено.

Логотип Литературно-философского общества Манчестера.


ПОСЛЕДНИЕ ГОДЫ ДАЛЬТОНА

Прежде чем углубиться в то, как повлияла теория Дальтона на его французских коллег – и не только французских,– скажем несколько слов о последних годах жизни ученого. Его авторитет рос, в 1832 году он стал почетным доктором Оксфорда, хотя раньше этот университет был для него закрыт. Начиная с этого времени Дальтон целиком и полностью посвятил себя развитию науки в Британской Ассоциации, основанной в Йорке именно с этой целью. Он много чем занимался и входил в состав различных комитетов в области химии, минералогии, магнетизма и электричества, которое изучал с огромным интересом, особенно с появлением электролиза.

В 1833 году британское правительство назначило ученому пожизненную пенсию. В следующем, 1834 году он удостоился звания почетного доктора – на этот раз в области права – Университета Эдинбурга, который тоже раньше был закрыт для него, хоть и по другим причинам, нежели Оксфорд и Кембридж.

В апреле 1837 года у Дальтона случился первый инфаркт, в результате его парализовало, и ученый превратился практически в инвалида. Около года он не мог говорить. К концу жизни Дальтон практически перестал участвовать в жизни Манчестера, ограничил свою деятельность в Lit & Phil и общался с небольшим кругом друзей, с которыми встречался только на собраниях квакеров – их убеждения Дальтон разделял до последней минуты. Второй инфаркт 27 июля 1844 года унес его жизнь. Прощание с Дальтоном в зале мэрии Манчестера длилось четыре дня, последние почести ему отдали более 40 тысяч человек, а в день похорон все торговые точки и конторы в знак траура были закрыты.

Дальтон оставил после себя значительное наследство. Несмотря на репутацию скромного и даже чрезвычайно бедного человека, его лаборатория в Lit & Phil была оснащена очень ценными инструментами и оборудованием. Согласно завещанию покойного, инструменты перешли к сыну Уильяма Генри, Уильяму Чарльзу Генри, который был его учеником, а после него – к Lit & Phil. Реставрационные работы в здании Литературно-философского общества позволили сохранить инструменты. В 1936 году значительная их часть была выставлена на обозрение публики. Однако злополучной ночью с 23 на 24 декабря 1940 года все, что принадлежало Дальтону, погибло под немецкими бомбами. Лабораторные записи ученого, собранные в 12 томах, превратились в пепел, и сегодня мы располагаем всего лишь несколькими письмами и рукописями Дальтона.


СЛЕДСТВИЯ АТОМНОЙ ТЕОРИИ

К счастью, глубину мысли Дальтона можно понять и без этих материалов, поскольку он опубликовал много статей и свой нетленный труд «Новая система химической философии». Эти работы получили большой резонанс в последние годы его жизни и после смерти ученого. Особый интерес к ним проявляли его французские коллеги.


ЭЛЕКТРОЛИЗ

Выделение элементов из химического вещества не всегда было легкодоступным. Электролиз, безусловно, является одним из самых эффективных способов. Он состоит в том, что через раствор пропускается электрический ток. Для этого в емкость погружают два электрода: положительно заряженный (анод) и отрицательно заряженный (катод). В одном из самых простых примеров (см. рисунок) в воде растворяется обычная соль (хлорид натрия, NaCI), раствор подогревают. Из-за разницы потенциалов между анодом и катодом ионы СI- будут притягиваться положительно заряженным электродом (в данном случае атома углерода), а ионы Na+ – отрицательно заряженным электродом (атома железа). Натрий оседает в твердой форме на поверхности, а хлор испаряется:

2Na+ + 2е- → 2Na

2CI- → СI2 + 2е-

Электролиз использовали химики – современники Дальтона и он сам для различных исследований и выделения новых элементов. Дэви, друг и меценат Дальтона, с помощью этого способа открыл барий, стронций, кальций, магний, калий и натрий. Ученик Дэви Майкл Фарадей обобщил и усовершенствовал электролиз и вывел два основных его принципа:

– количество вещества, образовавшегося на электроде при пропускании через электролит, прямо пропорционально количеству пропущенного электричества;

– для разных электролизных процессов при одинаковом количестве электричества, пропущенного через электролит, массы образовавшихся веществ пропорциональны их химическим эквивалентам.

В то время ничего не знали о носителе электрического заряда и об электроне как части атома.

Схема электролиза


Дальтон бегло говорил по-французски и переписывался со своим другом и соперником Бертолле, причем переписка не прерывалась даже в непростой период Наполеоновских войн. Ученые не только обменялись почетными званиями в своих научных учреждениях, но и не прекращали обмена идеями, статьями, произведениями. Бертолле получил экземпляр «Новой системы химической философии» в 1808 году, через два месяца после публикации, хотя он открыто критиковал книгу и предостерегал своих коллег от опасного влияния атомной теории. Бертолле после Лавуазье был самым большим авторитетом в области химии, по крайней мере во Франции.


    Ваша оценка произведения:

Популярные книги за неделю