Текст книги "Масса атомов. Дальтон. Атомная теория"
Автор книги: Enrique Alvarez
сообщить о нарушении
Текущая страница: 4 (всего у книги 8 страниц)
ГЛАВА 3
Атомная теория. От Древней Греции до Манчестера
Джон Дальтон смог опытным путем показать, что идеи античных философов объясняют привычные для нас явления. Нечасто бывает, что философская идея находит подтверждение в реальной жизни и разрастается до такого масштаба, что становится одной из основ современной науки.
Для историков науки формирование атомной теории Джона Дальтона представляет довольно сложную загадку. Мы не знаем точно, когда и почему Дальтон пришел к выводу об атомной структуре вещества. Для него конечные частицы были просто инструментом объяснения поведения смесей газов и жидкостей, растворимости и давления. Понятно, что у него были предшественники – даже во времена Древней Греции,– которые настаивали на идее существования атомов. И то, что лишь век спустя Эрнест Резерфорд экспериментально доказал существование атомов, ни в коей мере не отменяет заслуг Дальтона, который пошел гораздо дальше простого объяснения. Атомная теория в том виде, в котором сформулировал ее Дальтон, была способна объяснить практически все, что до ее появления оставалось непонятным. Поэтому велика вероятность, что она была сформулирована тогда же, когда и почти все ее постулаты.
Это был трудный путь, но Дальтон прошел его довольно быстро. Свои работы о газовых смесях он начал в сентябре 1801 года, понятие относительного веса появилось в сентябре 1803 года, а важнейший труд в двух томах, в котором английский ученый сформулировал свои идеи, – A new system of chemical philosophy ( "Новая система химической философии" ) – был опубликован в июне 1808 года. Книга содержит подробное описание опытов и результатов, представленных на нескольких рисунках на последних страницах. Как и дорогой Дальтону Исаак Ньютон в своей книге Principia mathematica (1687), ученый в одной работе подвел итог всех своих исканий и сделал завещание последователям.
Мое новое видение конечных частиц, или частиц тел, и их соединений перевернет химическую систему, и все сведется к очень простой науке.
Джон Дальтон (1807)
Ученые полагают, что в период между 1801 и 1808 годами Дальтон был больше озабочен распространением своих идей, а не систематизацией их в виде книги. Он постоянно выступал перед коллегами, вновь и вновь проводил эксперименты, уточнял значения и неустанно считал атомную массу вновь открытых элементов. Его атомная теория не рухнула: напротив, она приняла конкретные очертания, а некоторые ее недостатки вскоре были исправлены.
ГРЕЧЕСКИЕ ФИЛОСОФЫ
Но вернемся в прошлое. На протяжении веков человек задавался вопросом об устройстве материи, структура которой может объяснить окружающий мир. Первым задал себе этот вопрос греческий философ Демокрит Абдерский. Мы обычно представляем его себе как мудреца, сидящего на морском берегу и пропускающего песок сквозь пальцы. На самом деле Демокрит – один из крупнейших мыслителей досократовского времени (хотя он был современником великого Сократа). Небольшое количество весьма показательных работ Демокрита дошло до нас силами его учеников, самым знаменитым из которых был Эпикур из Самоса (341-270 до н.э.). Именно благодаря Демокриту, а также его учителю Левкиппу, о котором нам практически ничего неизвестно, мы располагаем первой атомной теорией мира. Им же мы обязаны созданием знаменитой атомистической школы. Как и любая философская теория, атомизм опирался на логические заключения, но не был никак подкреплен практически. И все же благодаря новой концепции природы и человека многие авторы считают Демокрита отцом современной науки. Это определение хоть и преувеличено, однако нельзя отрицать, что идеи Демокрита очень сильно повлияли на философов эпохи Просвещения (этот период в истории интеллектуальной и культурной мысли Европы назван так за провозглашенный «естественный свет разума» и выход из сумерек человечества). Кроме того, Демокрит отрицал существование Бога и считал материю вечной, именно поэтому его называют первым атеистом и материалистом (атомистом). По мнению Демокрита, изменения, происходящие с материей, имеют физическое, а не божественное или сверхъестественное объяснение. Он также утверждал, что восприятие основано на разуме, что это чисто физический и механический процесс, а мысль также является материей сложной структуры. По Демокриту, в материи нет места для божественного. Атомистическая теория представлена следующими постулатами:
– атомы неизменны и вечны;
– атомы неделимы (atome – "неделимый");
– атомы не подлежат уменьшению;
– атомы невидимы;
– атомы различаются только формой и размерами;
– атомы подобны друг другу, обладают одними и теми же свойствами;
– свойства вещества зависят от соединения атомов (порядок и положение).
Сходство взглядов Демокрита и Эпикура с теми, что предложил позднее Дальтон, поражает. По всей видимости, Эпикур включил в свое учение постулат о том, что атомы различаются не только по форме и размеру, но и по весу. Также атомы отделены друг от друга пустотой, что позволяет различать эти частицы и составлять тела, которые соединяются или разъединяются от столкновений между атомами. Хотя Демокрит толковал причинно-следственные связи с позиций детерминизма, его ученик Эпикур ввел в атомистическое учение понятие случая и таким образом смог определить понятие свободы. По Демокриту, вся природа объясняется через атомы как основополагающие частицы:
«Разум человека состоит из шарообразных, легких и гладких атомов, тела – из тяжелых атомов. Зрение и слух есть не что иное, как взаимодействие атомов вещи, которую мы воспринимаем, и наших собственных атомов».
Однако мы не можем считать атомистическое учение предтечей атомной теории, поскольку Демокрит опирался на логику и отвергал чувственный и эмпирический опыт, лежащий в основе научного рационализма. Для Демокрита существуют только два состояния: «бытие», воплощенное неделимыми атомами, и «небытие», то есть пустота, которая позволяет атомам иметь вес, форму и взаимодействовать. Это сочетание образовывает physis, саму природу.
Через много десятилетий после Демокрита греческая философская мысль ушла в сторону аристотелизма. Почти на протяжении двух тысяч лет учение Аристотеля доминировало в физике и изучении природы. Для него реальность есть то, что мы можем видеть, чувствовать, осязать, пробовать на вкус или слышать, то есть включает все явления, воспринимаемые органами чувств. Природа состоит из взаимодействия четырех стихий: воздуха, земли, воды и огня. Одно приводится в движение другим, а в основе всего этого лежит неподвижный вечный перводвигатель всего в мире, или Бог. Неудивительно, что великие христианские философы – главным образом святой Фома Аквинский – применили аристотелеву мысль с экклезиастической точки зрения, чтобы объяснить природные явления, и что науки вращались вокруг этого философского течения до эпохи Возрождения. Появление великих астрономов Николая Коперника, Галилея и Иоганна Кеплера определило переход от геоцентрической модели к гелиоцентрической, основываясь на анализе и наблюдении за небом, и это стало началом конца аристотелизма как философского течения, сдерживавшего развитие науки.
Четыре стихии Аристотеля являются основой всех соединений, или материи, и различные их сочетания определяют или изменяют свойства этих соединений (см. рисунок). В Средние века многие пытались найти идеальное сочетание, чтобы превратить одно вещество в другое. Это время поиска философского камня – вещества, способного трансформировать простые металлы, например железо или свинец, в золото. История алхимии банальна и длинна, и она не является предметом этой книги, разве что в качестве анекдота. Многие века короли, аристократы и простые люди не прекращали поиски этого несуществующего вещества.
Согласно концепции Аристотели, природа состоит из четырех элементов – воздуха, огни, земли и воды. Врачи, например Парацальс, утверждали, что болезни происходит от нарушении равновесии четырех главных состояний, снизанных с четыре ми качественными материи, – холодом, теплом, сухостью и влажностью.
РОБЕРТ БОЙЛЬ И СОВРЕМЕННЫЕ ХИМИКИ
Как мы уже говорили, в XVII веке ситуация изменилась. Великие астрономы опровергли представление о Земле как центре Вселенной и, соответственно, начали отрицать существование Бога и то, что человек создан по Его подобию, а химики перестали верить в четыре основополагающие стихии. Произошло это, в частности, благодаря работам ирландского химика Роберта Бойля. Он предположил, что все вещества состоят из крошечных частиц – элементов, – и выделил соединения, которые являются сочетанием двух или более элементов. При этом Бойль не переставал быть убежденным алхимиком. Главные критические замечания по поводу коллег-алхимиков сформулированы Бойлем в его знаменитой книге The Sceptical Chymist («Химик– скептик», 1661), в которой он возражает всем, кто категорично утверждал, что Соль, Сульфур (сера) и Меркурий (ртуть) – три основные субстанции, присутствующие во всех вещах.
Исследования Бойля – важное звено в истории научной мысли, именно этого ученого справедливо называют первым химиком. Его понимание материи не ограничилось веществом, он предположил, что элементы, в свою очередь, состоят из крошечных одинаковых частиц.
У нас еще будет возможность поговорить о значении работ Роберта Бойля для Джона Дальтона в следующей главе, но прежде чем перейти к атомной теории Дальтона, скажем о двух других ученых. В первую очередь – о французе Лавуазье, который выделил из воды кислород и водород, а также другие вещества и дал точное определение понятию вещества: «то, что никаким образом нельзя разложить на более простые составляющие». Его закон сохранения вещества тоже имеет огромную важность: «При химических реакциях масса остается неизменной, то есть масса веществ, вступающих в реакцию, равна массе веществ, образующихся в результате реакции» (1774).
Это означает, что во время химической реакции ничто не пропадает и не возникает из ничего. Если мы бросим полено в камин и сожжем его дотла, в процессе горения образуются газ и дым, а когда дерево исчезнет, элементы, из которых оно состоит, по-прежнему останутся, только их соединение будет иным. Ничто не пропадает, ничто не возникает из ничего, все трансформируется. После работ Лавуазье практически ничего не осталось от четырех стихий Аристотеля: вода разлагается на кислород и водород, воздух есть смесь газов, земля содержит бесконечное количество элементов, а огонь, наконец, не что иное, как продукт горения.
ЗАКОН СОХРАНЕНИЯ ВЕЩЕСТВА
Закон сохранения вещества – основополагающий закон, распространяющийся далеко за пределы чистой химии (за исключением ядерных реакций и закона, открытого Альбертом Эйнштейном о взаимосвязи массы и энергии, Е=тс2). Его самая известная формулировка звучит следующим образом: «ничто не пропадает, ничто не возникает из ниоткуда, все трансформируется».
СН4 + 2O2 СO2 + 2Н2O + тепло.
С правой и с левой стороны мы видим одни и те же атомы – один атом углерода, четыре кислорода и четыре водорода, только в разном порядке и в разных соединениях. Таким образом, общая масса с обеих сторон будет одинаковой. В процессе экзотермической реакции с выделением теплоты или энергии произошел разрыв одних молекулярных связей и образование других. Закон сохранения вещества (или закон вечности вещества) был открыт независимо друг от друга Михаилом Ломоносовым (1711-1765) в 1745 году и Антуаном де Лавуазье в 1785 году. Ни тот, ни другой не использовали понятия атома – оно будет введено только Джоном Дальтоном, который превратит этот закон в один из основополагающих постулатов своей атомной теории.
Второй интересный ученый – француз Жозеф Пруст (1754-1826). Он открыл хорошо известный закон постоянства состава: «Соединение содержит всегда одни и те же элементы в одних и тех же пропорциях» (1779). Эти два закона – сохранения вещества и постоянства состава – наряду с законом кратных отношений Дальтона передают сущность понятия химического соединения и являются основой атомной теории Дальтона.
Некоторые утверждают, что ученый подошел к формулировке атомной теории в 1802 году. Закон кратных отношений, только что подтвержденный Дальтоном результатами опытов – очень неточных, – на самом деле вытекал из его еще не опубликованной атомной теории. Экспериментально закон был доказан несколькими годами позже.
АТОМНАЯ ТЕОРИЯ
Понятие элемента появилось благодаря Лавуазье, который выделил более 30 химических элементов. Дальтон смог объяснить, что они отличаются друг от друга, так как различаются составляющие их атомы. Существует столько же разных атомов, сколько и разных элементов, и каждый имеет свою атомную массу. Сочетания атомов, образующие разные соединения, – понятие молекулы появится только через несколько лет – определены количественными весовыми законами, сформулированными Лавуазье, Прустом и Дальтоном.
Следующий этап заключался в разработке таблицы атомных масс. Дальтон взял за точку отсчета самый легкий элемент – водород – и присвоил ему значение единицы. Потом он присвоил вес другим элементам и соединениям через их соотношение с водородом. Так, вода состоит из водорода и кислорода. При разложении воды кислород весит в восемь раз больше, чем водород. Дальтон присвоил ему в своих первых таблицах номер 7. Однако веса элементов не являются целыми числами, кратными атомной массе водорода, и Дальтон допустил некоторые мелкие ошибки. Мы также помним, что истинная масса кислорода равна 16, поскольку его молекула двухатомная. Для исправления этой ошибки предстояло дождаться работ Гей– Люссака (1778-1850). При определении масс других соединений Дальтон использовал схожий принцип.
Как мы уже говорили в предыдущей главе, первые выводы ученый зафиксировал в своей тетради 6 сентября 1803 года. В той же записи можно увидеть произвольно выбранные Дальтоном обозначения атомов и атомных масс около 20 элементов и соединений.
Результаты были представлены в Lit & Phil через несколько недель, в октябре 1803 года. В своем выступлении Дальтон представил слушателям атомную массу 21 элемента и соединения. За этим последовал целый ряд выступлений, новых расчетов и опытов, которые привели к публикации в 1808 году A New System of Chemical Philosophy ("Новой системы химической философии"). Первая часть первого тома была напечатана в 1808 году, вторая – в 1810-м. Второй том вышел в свет в 1827 году, а обещанный третий так и не был написан.
Пришло время сформулировать основные постулаты атомной теории Дальтона.
1. Вещество состоит из атомов, которые соединяются благодаря силе тяготения. Дальтон продолжает думать, что теория Ньютона адекватно объясняет взаимодействие атомов.
2. Атомы неделимы. Дальтону принадлежит заслуга введения понятия атома, которое будет использоваться вплоть до появления ядерной физики и открытия электронов, протонов и нейтронов. Однако для химии его постулат до сих пор справедлив.
3. Атомы вечны и неизменны. Здесь Дальтон включает в свои постулаты закон сохранения вещества Лавуазье. После химической реакции мы обнаруживаем те же самые атомы, что и до реакции, но в других соединениях.
4. Все атомы одного элемента одинаковы по форме, размеру и массе. Дальтон определяет элемент так же, как и Лавуазье: это вещество, которое нельзя разделить на более простые части.
5. Атомы разных элементов имеют разную атомную массу. Атомная масса отличает один атом от другого, один элемент от другого.
6. Атомы различных элементов могут соединяться, образуя молекулы, но всегда в определенных соотношениях.
Как и химики его эпохи, Джон Дальтон порой путает понятия атома и молекулы, ведь природа соединения атомов еще не была ясна. Сегодня мы знаем, например, что двухатомные газы образуют молекулу из двух атомов. Дальтон также использует понятие сложной частицы, или двойного (тройного) атома. Молекулы – это простейшие составляющие определенного химического соединения. В этом постулате Дальтон предвосхищает закон постоянства состава Пруста.
7. Масса молекулы является суммой массы составляющих ее атомов. Этот принцип является отправной точкой всей атомной теории.
8. В различных соединениях массы одного вещества, приходящиеся на одну и ту же массу другого вещества, относятся как простые целые числа. В этом случае Дальтон применяет свой знаменитый закон кратных отношений.
9. Масса элемента во всех химических соединениях не меняется. Как только была установлена атомная масса, этот постулат не заставил себя долго ждать и позволил сделать некоторые косвенные выводы. Если два элемента, А к В, соединяются с третьим элементом С, можно вычислить количество составляющих. Это утверждение основывается на другом количественном законе того времени, известном как закон эквивалентных отношений Рихтера (1792).
10. Атомы соединяются по правилу наибольшей простоты, то есть образуют скорее двойные, нежели тройные, соединения, тройные, нежели четверные, и так далее. Правило наибольшей простоты Дальтона не всегда подтверждается, и это одна из немногих неточностей его теории.
11. Равные объемы газа при равных давлении и температуре не могут содержать одно и то же количество атомов или молекул. Этот постулат был ложным. Гей-Люссак и Амедео Авогадро сформулировали эмпирические законы, подтвержденные данными, полученными при измерении объемов. Дальтон не принял открытий Гей– Люссака, особенно его закон объемных отношений, опубликованный в 1808 году. Но мы к этому еще вернемся в следующей главе.
Как мы уже говорили, между выводами Дальтона на основании его опытов и публикацией его главного труда в 1808 году прошло некоторое время. В этом промежутке Дальтон не прекращал выступать и давать уроки. Он завоевал поддержку ученых и обзавелся серьезными оппонентами, преподавал в Шотландии: в университете Эдинбурга (о чем мечтал еще в юности), двери которого открылись для него благодаря посредничеству друга Уильяма Генри, а затем в Глазго. В преподавании Дальтон обращался к любимым темам: "Упругие флюиды, объясненные через неделимые частицы или атомы, наблюдаемые в атмосфере тепла"· или "Причины, по которым в химическом соединении элементов мы обычно – если не всегда – обнаруживаем атом каждого элемента". В соответствии с этим постулатом Дальтон дает нам несколько примеров:
– вода: 1 атом кислорода и 1 атом водорода;
– аммиак: 1 атом азота и 1 атом водорода;
– окись азота: 1 атом азота и 1 атом кислорода;
– азотная кислота: 1 атом азота и 2 атома кислорода;
– окись углерода: 1 атом углерода и 1 атом кислорода;
– угольная кислота: 1 атом углерода и 2 атома кислорода;
– маслообразующий газ этилен: 1 атом углерода и 1 атом водорода;
– углеродный водород (метан): 1 атом углерода и 2 атома водорода.
ПРИНЯТИЕ АТОМНОЙ ТЕОРИИ
В марте 1807 года Джон Дальтон счел достаточной научную поддержку, которую получили его идеи. Значительную роль в этом сыграли хвалебные статьи, написанные двумя самыми крупными химиками того времени – Томсоном и Волластоном. Томас Томсон (1773-1852) был эрудитом, систематизировавшим в 1802 году все знания своих современников в знаменитом труде System of Chemistry ("Химическая система*), а очень богатый Уильям Волластон (1766-1828) был обязан своим состоянием изобретению способа выделения платины, которую испанец Антонио де Ульоа открыл в Эквадоре в 1735 году.
СЭР ГЕМФРИ ДЭВИ
Сэр Гемфри Дэви (1778-1829) происходил из благородной, но разорившейся британской семьи. С детства он демонстрировал одаренность и выдающуюся память – с этим связано множество историй, например о том, какой эффект производили на ровесников способности Дэви к счету. Он всю жизнь оставался прекрасным рассказчиком, который просто завораживал слушателей. В юности Дэви писал талантливую прозу и стихи, но в итоге оставил литературу и посвятил себя науке. Он очень быстро проявил интерес к электрохимии (электрохимическая коррозия) и пневматике. С 1798 года Дэви работал в Пневматическом институте, который изучал влияние газов и воздуха на здоровье человека. Членом этого института также был Джеймс Уатт, изобретатель паровой машины. Из успехов Дэви упомянем использование в терапевтических целях закиси азота, известной сегодня как веселящий газ.
Королевский институт
В 1799 году граф Румфорд основал Королевский институт, в котором сначала Томас Гарнетт, а затем Дэви давали уроки химии. При помощи вольтова столба Дэви удалось выделить и открыть новые элементы: натрий, калий, кальций, магний, бор и барий, а также различные соединения. Дэви получил известность, выступая по всей Европе (Италия, Германия, Франция и Греция), а еще более знаменитым его сделало изобретение безопасной рудничной лампы для шахтеров. Ученый был удостоен титула баронета – ранг между бароном и рыцарем (рыцарский титул был пожалован лишь Фрэнсису Бэкону и Исааку Ньютону). К концу жизни Дэви стал крайне раздражительным и непредсказуемым и огульно обвинил своего гениального лаборанта Майкла Фарадея в присвоении его открытий в области электромагнетизма. Джону Дальтону, несмотря на их взаимную дружбу с ученым, тоже не удалось избежать критики. Дэви умер в Швейцарии в возрасте 50 лет, прожив бурную и богатую событиями жизнь.
Также опыты позволили Волластону открыть палладий (1803) и родий (1804). Ученый обратился к электрохимии и улучшил лампу итальянца Алессандро Вольты (1745-1827). Известно, что у него были серьезные разногласия с Майклом Фарадеем (1791-1867), лаборантом знаменитого сэра Гемфри Дэви, только что открывшим электромагнитную индукцию.
По мнению некоторых авторов, роль Дэви в распространении атомной теории Дальтона достаточно противоречива. Нет никаких сомнений, что, учитывая огромный авторитет Дэви среди современников, его отрицательный отзыв о новой теории мог стать катастрофой. Внимательный читатель помнит, какое влияние оказали на Джона Дальтона уроки химии Томаса Гарнетта в Манчестере. В то время Гарнетт был профессором натурфилософии в Королевском институте, недавно открытом в Лондоне под покровительством Бенджамина Томпсона. На посту директора его затем сменил Дэви. Восприняв дух этого филантропического учреждения, Дэви сделал научные лекции доступными сначала для состоятельных граждан, а затем и для более простых слоев. С самого знакомства Дальтон слышал от Дэви лишь похвалы: "Этот молодой человек очень умен и приятен".
Видимо, сэр Гемфри Дэви помог подготовить то выступление 1803 года в Lit & Phil, на котором Дальтон изложил свою атомную теорию. Отношения между двумя учеными сохранились на всю жизнь, и не случайно Дальтон вторую часть своего труда посвятил не только своему другу Уильяму Генри, но и эксцентричному Дэви.
Главным противником Дальтона был Клод Луи Бертолле (1748-1822), для которого новые выкладки и теории о газовых смесях были не больше чем "игрой воображения". Как мы увидим в следующей главе, французский ученый в соответствии с идеями Ньютона разработал теорию химического сродства. Также он был наставником и учителем Луи-Жозефа Гей-Люссака. Несомненно, заслугой Бертолле является определение главного слабого места атомной теории, так что несправедливо говорить о нем как о противнике Дальтона. Более того, когда Дальтон приехал во Францию, чтобы познакомиться с главными учеными страны – Бертолле и Гей-Люссаком, его приняли со всеми почестями.
Труд "Новая система химической философии" был опубликован в двух томах, первый состоял из двух частей. Первая часть первого тома появилась в 1808 году. Джон Дальтон посвятил работу профессорам и сотрудникам шотландских университетов Эдинбурга и Глазго, которые всегда оказывали ему теплый прием и вдохновляли его в научных изысканиях. В посвящении также упоминались члены Lit & Phil, поддерживавшие исследования Дальтона.
Первая часть, в свою очередь, делится на три главы. Первая посвящена теплу, вторая – строению тел, третья – химическому синтезу. Текст сопровождают четыре таблицы в конце книги. Самой известной является четвертая таблица, в которой Джон Дальтон привел произвольные обозначения выделенных им элементов. На первом месте 20 простых элементов, и здесь допущена лишь одна ошибка: окись кальция (известь, или негашеная известь, по-английски lime), формула которой – СаО. Она занимает восьмое место, и ее атомная масса равна 24.
Четвертая таблица, опубликованная впервой части первого тома «Новой системы химической философии» Дальтона, в которой он указывает атомную массу и произвольные обозначения выделенных им элементов.
Седьмая таблица второй части первого тома, на которой изображен вид в профиль соединений упругих флюидов.
Бронзовая статуя Дальтона на улице Честер в Манчестере.
номер | элемент | масса | номер | элемент | масса |
1 | водород | 1 | 11 | стронций | 46 |
2 | азот | 5 | 12 | барий | 68 |
3 | углерод | 5, 4 | 13 | железо | 38 |
4 | кислород | 7 | 14 | цинк | 56 |
5 | фосфор | 9 | 15 | медь | 56 |
6 | сера | 13 | 16 | свинец | 95 |
7 | магний | 20 | 17 | серебро | 100 |
8 | известь | 24 | 18 | платина | 100 |
9 | натрий | 28 | 19 | золото | 140 |
10 | калий | 42 | 20 | ртуть | 167 |
В той же таблице Дальтон выделил пять двойных соединений (номера 21-25): вода, аммиак, азотная кислота, этилен, окись углерода; четыре тройных соединения (номера 26-29): закись азота, азотная кислота и углеродный водород (метан); четыре четверных соединения (номера 30-33): кислородноазотная кислота, серная кислота, сероводород и спирт; одно пятерное соединение (азотистая кислота), одно шестерное (уксусная кислота) и два семерных (нитрат аммония и сахар).
Вторая часть первого тома увидела свет в ноябре 1810 года, она была посвящена сэру Гемфри Дэви (профессору химии Королевского института) и Уильяму Генри (в то время вице-президенту Lit & Phil). Дальтон добавил две новые главы: четвертая описывала простые вещества, а пятая – соединения двух элементов по правилу наибольшей простоты. В этой второй части тоже мало таблиц, в основном в ней даны подробные описания собственных опытов автора. В пятой таблице приведены те же обозначения, что и в предыдущей, четвертой, но она исправлена и дополнена. Опыты позволили Дальтону выделить 36 элементов и 24 соединения. Никель, олово, висмут, сурьма, мышьяк, кобальт, марганец, уран, вольфрам, титан, церий, alumina (алюминий?), silex (кремний?), иттрий, бериллий и цирконий собраны в первой группе. В шестой таблице, представляющей собой что-то вроде продолжения пятой, появляются обозначения 27 соединений. Седьмая таблица изображает вид частиц, составляющих упругие флюиды (газы), а также частицы азота и водорода с их тепловой атмосферой. Наконец, в восьмой таблице Дальтон представил атомы 16 упругих флюидов (газов).
В 1827 году ученый опубликовал второй том с описанием своих опытов по расчету атомной массы веществ. Удивительно, насколько точны полученные им результаты, несмотря на очевидную сложность исследований.