355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Е. Седов » Репортаж с ничейной земли. Рассказы об информации » Текст книги (страница 4)
Репортаж с ничейной земли. Рассказы об информации
  • Текст добавлен: 9 октября 2016, 16:22

Текст книги "Репортаж с ничейной земли. Рассказы об информации"


Автор книги: Е. Седов


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 4 (всего у книги 15 страниц) [доступный отрывок для чтения: 6 страниц]

Корреляция – основа порядка. Если бы по какой-либо невероятной причине все процессы вдруг лишились этого свойства, то телеграфные тексты мгновенно превратились бы в бессмысленную буквенную россыпь, музыка зазвучала бы, как шум водопада. а изображение на экране телевизора стало похожим на снежный буран. Язык, в котором все сочетания букв имели бы равное право на существование, выглядел бы довольно странно, потому что рядом с привычными в этом языке существовали бы и такие «слова», как пакртчмынъиюа, и другие, лишенные смысла и часто вовсе не произносимые сочетания букв.

На самом деле все тексты обладают свойством корреляции, и потому только около 0,0002 процента возможных буквенных сочетаний составляют осмысленные слова. И это не удивительно, ведь существует целый ряд сочетаний, запрещенных законами русской грамматики. Значит, их вероятность равна нулю. Так, например, вслед за буквой ч никогда не последуют буквы ы, я или ю, а в начале слова или после любой из гласных мы никогда, ни в одном тексте не увидим мягкий знак.

Бесконечное множество различных процессов обладает свойствами корреляции. Помимо букв, звуков, изображений, по тем же законам могут меняться значения токов, давлений, скоростей и температур. Но математика смогла обобщить все явления, в которых случайные значения скорости, яркости или буквы зависят от тех значений, которые имели место мгновение назад. Она назвала их «марковскими процессами» – по имени русского математика Маркова, который первым исследовал подобные процессы.

Все эти сведения о вероятностных законах словесных текстов вы можете почерпнуть из специальных статей и книг. Но если вам посчастливится побывать в лабораториях Нового Города, вы сможете увидеть собственными глазами, как случаем управляет закон. Здесь вам предложат вновь обратиться к урне с шарами, но на этот раз шары будут отличаться не цветом, а надписью: на каждом шаре будет написана какая-то буква. Вынимая шары наугад и вновь бросая их в урну, вы получите что-нибудь вроде: сухерробьдш яыхвщиюайжтлфвнзстфоенвштцрпхгбкуч тжюряпчъкйхрыс.

– Для чего вы заставляете меня записывать эту бессмыслицу? – спросил я у сотрудника лаборатории, демонстрировавшего этот опыт.

– Бессмыслицу? – улыбнулся он. – Да, пожалуй. Это пример самого хаотичного текста. В этой урне 320 шаров, каждая буква повторяется 10 раз. Вероятность всех букв одинакова:

PА = PБ = PВ = ... = PЯ = 1/32.

Если вы подставите эти значения в формулу Шеннона, то получится, что каждая буква дает информацию в количестве 5 бит.

(Читатель уже знаком с примером такого расчета. В данном случае:

I =

(

1

32

·log

1

32

)

·32 = log

1

32

 = – log 25 = 5 бит.)

Обратите внимание, – продолжал он, указывая на непонятную запись, – каким несуразным получилось второе слово. Встречали ли вы когда-нибудь такие «слова»? Конечно, нет, ведь в нем целых 59 букв! Продолжая этот опыт, вы будете все время получать такие же длинные и несуразные «слова». Почему? Потому что буквы чередуются здесь беспорядочно. 10 шаров не имеют букв. Вынимая такой шар, вы отмечаете пробел, соответствующий концу «слов». Вероятность появления пробела так же равна 1/32. Это значит, что в среднем на каждые 32 вынутые буквы будет один раз попадаться пробел. Значит, в нашем «тексте» 31 буква – это средняя длина слов. А ведь в нормальном тексте средняя длина слова составляет не более 7 букв.

Как же сделать, чтобы наш «текст» стал похож на обычные тексты? А очень просто. Возьмем другую урну. В этой урне среди каждой сотни шаров буква а попадется семь раз. Приблизительно с такой частотой повторяется она в русском тексте. Количество других букв также соответствует их вероятности. Повторите опыт.

На этот раз сообщение выглядело так:

еыт цияьа оерв однт ьуемлойк збя енв тша.

– Не правда ли, это мало похоже на обычную фразу? – обратился ко мне ученый. – И все же здесь уже есть какой-то порядок, по крайней мере нет слов слишком длинных, и каждое из них можно даже произнести вслух. А впрочем, нет. Как произнесешь мягкий знак, – стоящий в начале слова или поеле гласного звука я? Мы можем оценить в цифрах, много ли порядка появилось теперь в нашем тексте. Для этого надо знать, чему равна вероятность каждой буквы, подставить их в формулу Шеннона и подсчитать значение I. Мы уже делали такие расчеты, Получалось, что на каждую букву приходится теперь около 4 бит.

Итак, в первом случае было 5 бит на букву, а теперь только 4. Почему? Потому что уменьшилась неопределенность. Разные буквы имеют теперь не одинаковую вероятность, а разную. У формулы Шеннона есть одно очень важное свойство: она всегда покажет, что наибольшее значение I соответствует равной вероятности всех возможных событий. Если есть черные и белые шары, энтропия будет самой большой, когда и тех и других по 5, по 10 или по 100 штук. Если черных больше, чем белых, неопределенность становится меньше. Значит, в формуле Шеннона уменьшилось I.

То же самое с текстом. Раньше каждые 100 букв несли 500 бит информации, теперь 100 букв дают только 400 бит. Неопределенность фразы, состоящей из 100 букв, стала меньше ровно на 100 бит.

А можно рассуждать по-другому: перед тем как класть в урну шары с обозначениями букв, мы учли их вероятность. От этого в нашем тексте стало больше порядка: в каждой стобуквенной фразе порядок возрос на 100 бит.

– А сколько порядка в обычном печатном тексте? – спросил я ученого.

– На этот вопрос не так-то просто ответить. Чтобы оценить в битах этот порядок, надо учесть корреляцию всех букв и слов. Но мы с вами поступим несколько проще. Вот перед вами стоит вычислительная машина. В ее памяти хранятся все буквы алфавита. Мы сейчас зададим ей такую программу: она будет помнить три последние буквы написанного ей текста и сама выберет четвертую. При этом она учтет вероятности сочетаний: например, она «знает», что вероятность сочетания ста составляет 5 процентов, а вероятность стю – только 1 процент. Значит, в тексте, написанном этой машиной, сочетание стю встретится в пять раз реже, чем сочетание ста. Внимание, я включаю машину!

Прошло несколько мгновений, и на печатном бланке появились такие «слова»:

весел враться не сухом и непо и корко6.

– Нет, вы только полюбуйтесь на эту фразу! – восторженно произносит ученый. – – Это же не машина, а умница! Она «говорит» почти человеческим языком! Во всяком случае, в ее фразах можно найти подлежащее, сказуемое и другие части речи. Потому что порядка в ней стало гораздо больше: машина действует по программе и может учитывать вероятность и корреляцию букв. В каждой букве содержится теперь только 3 бита. По сравнению с первым опытом порядок, существующий в каждых ста буквах текста, увеличился на 200 бит. А ведь мы учли только корреляцию между четырьмя буквами текста. Если же учесть взаимосвязь между всеми буквами и словами, то информация каждой буквы будет равна приблизительно 1 биту. Машина станет настолько «умной», что сможет дать на любой ваш вопрос весьма толковый ответ!

Я очень внимательно слушаю все, что говорит ученый, и, кажется, все-таки перестаю его понимать. Неужели он и в самом деле собирается убеждать меня в том, что можно создать такую машину? Неужели вся разница между текстом, написанным ученым или поэтом, и тем, что пишет эта машина, измеряется только количеством бит? Уж не попали ли мы по ошибке в Лапуту? Ведь это там, по свидетельству Гулливера, ученые мужи постигали высшую мудрость, нанизывая на стержень гирлянды бессмысленных букв! Уж не по их ли стопам идут ученые Нового Города?

И все же факт остается фактом: ведь машина-то действительно пишет почти осмысленный текст. Может быть, ученый все-таки прав: стоит лишь усложнить программу, и машина напишет литературное произведение или научный трактат? Как во всем этом разобраться? Ведь смогли же создать машину, которая делает по программе правильный перевод. Почему же нельзя научить ее составлять разумные фразы? Где границы ее возможностей?

«Да нет же, – пытаюсь я себя успокоить. – Машина никогда не сможет писать осмысленных текстов, потому что в мире есть только одна «машина», способная учесть корреляцию всех букв и слов. Это человеческий мозг. Ну, а как работает мозг? Может быть, он отличается от машины лишь более сложной программой? Очевидно, и в этом придется как следует разобраться. Не надо только торопиться и забегать вперед».

Я замечаю с досадой, что нарушаю правило, установленное мной же самим. Разве можно увлекаться новой задачей, пока не решена прежняя? Проблем возникает так много, что нужно проявить железную выдержку, чтобы не сбиться с пути. Сейчас на повестке дня вопрос об избыточности, и потому я усилием воли заставляю себя вновь сосредоточить внимание на бессмысленных текстах.

– Так как же все-таки оценить их избыточность? – спрашиваю я ученого.

– О, эю уяснить вовсе не трудно. Посмотрите на эти фразы. Пока мы считаем, что все буквы имеют равную вероятность, по формуле Шеннона получается, что каждая буква алфавита несет информацию ровно 5 бит. А если учесть вероятность и корреляцию осмысленных текстов, то окажется, что неопределенность появления каждой следующей буквы составляет всего 1 бит. Получается разница в 4 бита. Это и есть избыточность текста. Значит, избыточность – это не учтенный нами порядок.

– А почему его считают избытком?

– Это тоже нетрудно понять. В каналах связи все буквы заменяются числами. А числа переводятся на двоичный код. Поэтому буква я будет выглядеть, как 100 ООО.

– А почему именно так?

– Разве вы не знакомы с двоичным кодом?

– Я знаком, но мне бы хотелось, чтобы наша беседа была понятна читателям.

– Хорошо, постараюсь выражаться яснее.

Буква я последняя в нашем алфавите. Ее порядковый номер – 32. 32 – это 2б, что в двоичной системе счисления обозначается как 100 000. Но это не сто тысяч! Это именно число 32, но записано оно только двумя цифрами – 0 и 1, и чтобы передать букву я, приходится потратить 6 импульсов: единицу и пять нулей7.

Когда импульсы следуют друг за другом, каждый из них несет одно из двух сообщений: 0 или 1, «да» или «нет». Значит, каждый импульс дает информацию 1 бит. И каждая буква текста при -учете законов чередования дает около 1 бита. Отсюда возникает вопрос: нельзя ли создать такой код, в котором импульсов будет не больше, чем букв?

Сортировка словесного груза

С этим новым вопросом пришлось повозиться еще несколько дней. Им занимались все члены отряда. Мы обнаружили, что существует множество различных способов, позволяющих избавить сообщения от излишеств. Мы начали с самых простых. В одном из текстов нам встретилась фраза:

Чтобы добиться спортивных успехов, необходимо непрерывно совершенствоваться, учиться у ведущих мастеров спорта, трудиться над повышением собственного мастерства, систематически тренироваться и закаляться.

Раньше мы не нашли бы в подобной фразе ничего необычного. Но теперь мы во всем находим излишки и потому прежде всего обращаем внимание на то обстоятельство, что сочетание ться повторяется в этой фразе целых шесть раз.

Если заменить все ться одним условным значком, подобно тому как это делают в стенографии, то 6 таких значков заменят целых 24 буквы, а сообщение станет короче на 18 букв. Метод этот изучается теорией информации и называется «укрупнением сигнала».

А вот пример, который встречался нам раньше. Сообщение о том, что Ботвинник играет черными, содержит в себе всего 1 бит. Но фраза Ботвинник играет черными содержит 22 буквы – целых 110 бит. Следовательно, 109 бит – это чистый избыток!

Как избавиться от «лишнего груза»?

А очень просто. Надо пользоваться специальным кодом: 0 – Ботвинник играет черными; 1 – черными играет партнер. И избытка как не бывало: вся информация уместилась теперь в одном импульсе, потому что импульс дает как раз 1 бит.

Но понять смысл таких сообщений сможет не каждый. Надо заранее знать о том, что возможны лишь два различных исхода, и каждый имеет свою вероятность: P1 – вероятность того, что Ботвинник играет черными; P2 – вероятность того, что черными играет партнер. Зная заранее, что P2 = P1 = 50 процентам, мы посылаем сигналы 0 или 1, и они дают нам как раз то количество информации, которое мы ожидаем, – 1 бит.

Для того чтобы пользоваться этим условным кодом, мы должны предварительно получить информацию о том, что он будет обозначать. Нам должно быть известно заранее, что речь пойдет о шахматном матче, а не о принятии резолюции на Ассамблее ООН. Мы должны знать, что в матче участвуют, скажем, Таль и Ботвинник, а не кто-то другой. Но все эти сведения мы должны получить однажды, а дальнейшие сообщения, вроде: Ботвинник играет черными; черными играет Таль, уточняют лишь, кто из них будет играть черными в очередной встрече, то есть дают всего 1 бит. Поэтому с точки зрения теории информации нет никакого смысла на протяжении всего матча 24 раза подряд повторять подобные фразы – ведь можно значительно уменьшить избыточность, применив специальный код.

Кстати, именно так и поступают работники телеграфа при передаче поздравительных праздничных телеграмм. Почему эти телеграммы стоят дешевле обычных? Потому что в них то и дело повторяются фразы: Поздравляю с Новым годом; Желаю успехов, здоровья, счастья... А работники связи делают просто: вместо слов поздравлений и пожеланий посылают один условный значок. Но все же указанный способ имеет лишь частное применение: он пригоден в тех случаях, когда сообщения повторяются несколько раз. А нельзя ли найти более общие методы, избавляющие от излишеств любой передаваемый текст? Оказывается, такой способ уже нашли. Специальные устройства сортируют «словесные грузы». Грузы эти сортируются не по весу, не по качеству, не по объему, а по вероятности появления букв.

Чтобы передать текст по каналу связи, надо применить какой-нибудь код. Если бы нам предложили выбрать способ кодирования, мы, очевидно, поступили бы просто: поскольку все буквы для нас равноценны, мы выписали бы подряд весь алфавит и присвоили буквам порядковые номера. Затем условились бы, что каждому номеру соответствует какая-то высота импульса: чем больше порядковый номер буквы, тем больше соответствующий импульс.

Казалось бы, именно так и следует поступить. Но если оценить этот код с точки зрения избыточности сообщений, он окажется очень невыгодным. Почему? Потому что он был составлен без учета вероятности букв. Возьмем, например, букву т. В алфавите она занимает 20-е место. Значит, если а передается каким-то маленьким импульсом, то т будет передано импульсом, в 20 раз большим. Чем больше импульс, тем больше энергии расходуется при передаче. Буква т встречается в тексте почти так же часто, как а8.

Если бы мы обозначили букву т маленьким импульсом, то сэкономили бы много энергии. Чтобы уменьшить избыточность, надо применить такой код, чтобы буквам с самой большой вероятностью соответствовал самый маленький импульс.

Если известны заранее вероятности всех букв русского текста, электронная трубка может избавить нас от дальнейших хлопот. Можно поручить ей «сортировку» любого текста.

Так же как в любой телевизионной трубке электроны, излучаемые катодом, фокусируются в узкий пучок. Проходя через щель, образованную двумя пластинами, он падает на экран. Если на верхнюю пластину подать положительный импульс, луч отклонится вверх. Мы включили это устройство в канал передачи словесного текста, каждой букве которого соответствует импульс определенной величины.

Начинается передача. На верхнюю пластину трубки приходят импульсы. Луч прыгает по экрану, отклоняясь то больше, то меньше в зависимости от приходящих сигналов. Экран здесь необычный: на него нанесена тонкая пленка с неравномерной прозрачностью. Это и есть то самое «сито», которое должно произвести «сортировку» букв. Нанося эту пленку, мы учли существующий в тексте порядок. Если появилась буква, имеющая малую вероятность, луч попадает в прозрачную часть экрана. А буквам, которые в тексте встречаются часто, мы постарались создать самый плотный барьер. Чем меньше яркость луча, прошедшего сквозь «сито», тем меньше ток фотоэлемента, с помощью которого будет передан дальше этот сигнал. Значит, на выходе фотоэлемента мы получим тот код, который нам нужен: букве с самой большой вероятностью будет соответствовать самый маленький импульс.

Ценой незначительных усложнений мы можем заставить это устройство учитывать корреляцию бука. Для этого нам придется использовать еще одну пару пластин, отклоняющих луч слева направо. Первый сигнал (например, буква с) отклоняет луч вверх. А следующий сигнал, соответствующий, допустим, букве т, попадет на боковые пластины и заставит луч переместиться слева направо (Чтобы оба сигнала отклоняли луч одновременно, сигнал, соответствующий с, подается на пластину с задержкой по времени). Луч попадет в определенную точку экрана. Сочетание ст встречается в тексте довольно часто – в этой точке прозрачность должна быть невелика.

Такое устройство сможет не только учесть вероятность двухбуквенных сочетаний, но и произвести укрупнение сигнала, посылая определенный импульс взамен каждых двух букв. Чем чаще встречается в тексте данное сочетание, тем меньше будет посылаемый импульс.

Сообщения и предсназания

Вы заметили, что жители Нового Города называют информацию двумя различными именами? В одних случаях ее величают «мерой неопределенности»: чем больше неопределенность событий, тем больше информации дают сообщения об этих событиях. В других случаях говорят, что это «мера неведения»: события могут следовать друг за другом в определенном порядке, но, пока порядок нам неизвестен, информация о событиях будет для нас опять-таки велика. Пока мы не изучили порядка, существующего в буквенных текстах, каждая буква будет давать нам целых 5 бит. И только когда сообщения имеют строгий порядок, который заранее нам известен, информация равна нулю.

За июлем следует август – вот пример сообщения о событиях, которые всегда соблюдают один и тот же неизменный порядок. Был, конечно, такой момент, когда мы впервые узнали о 12 месяцах года. Но это случилось однажды, и с тех пор это сообщение не несет нам никаких новостей. Предварительная информация исчерпала всю неопределенность событий, и потому, приняв первые слова сообщения, мы безошибочно предскажем, что дальше последует слово август. А все, что можно предсказать до получения сообщений, не несет никакой дополнительной информации – это всего лишь ненужный, избыточный груз. Как избавиться от него? Способы могут быть разные. Мы рассмотрим самый простой.

Автомат включил плавильную печь и передает на пульт управления сообщения об изменении температуры. Каждую секунду он посылает импульсы. По величине этих импульсов можно судить о температуре печи.

До последнего времени такие системы применялись повсюду, и никто не искал в них «излишеств». Казалось, все сделано очень разумно: во сколько раз увеличится температура, во столько раз возрастет и сигнал. Но жители Нового Города обнаружили в этом сигнале колоссальный «избыточный груз».

На много ли изменяется температура в течение каждой секунды? Давайте отметим все приращения на нашем рисунке. Получается «лесенка», ступеньки которой показывают, как возрастает температура. «Лесенка» выглядит довольно обычно. А жителям Нового Города она показалась громоздкой и неуклюжей. Если бы подобную лестницу решили построить в подъезде многоэтажного дома, она заняла бы почти все здание: ведь каждая ее ступенька идет от пола нижнего этажа. А сколько ушло бы лишнего материала! Нет, никто из строителей не пошел бы на такие расходы.

Почему же инженеры-связисты должны мириться с таким положением? Разве энергия, которая расходуется при передаче ступенек, растущих от самого нижнего уровня, не требует лишних средств? Ведь можно построить «лестницу», которая станет ажурней, дешевле и легче. Можно предвидеть заранее, что температура будет расти плавно и каждая новая ступенька будет отличаться от предыдущей на небольшую величину. И передавать надо не весь уровень, а только его приращение; тогда ступеньки окажутся меньше в несколько раз. А приемное устройство будет «пристраивать» ступеньку к ступеньке и восстановит весь ход кривой.

А если на обоих концах линии связи установить автоматы, которые смогут хотя бы весьма приблизительно предсказать величины этих ступенек, то «лесенка» станет еще ажурней.

Пусть известно, что в какой-то момент времени температура составляет 500 градусов Цельсия. Автомат, установленный в конце линии (назовем его «К»), уже «изучил» характер процесса и может «предвидеть», что в течение каждой секунды температура возрастет в среднем на 10 градусов. Не дожидаясь новых сигналов, он добавляет эту ступеньку к полученным ранее сообщениям и «запоминает» новое значение – 510 градусов.

Автомат, установленный в начале линии связи (автомат «Н»), делает то же самое: прибавив 10 градусов к прежнему значению, он «запоминает» температуру 510 градусов. А затем начинает сравнивать с истинной температурой. Если «предсказание» подтвердилось, посылать сигнал незачем:'автомат «К» уже отметил эту величину. Но предсказывать можно лишь приблизительно. Точное значение температуры может составить и 508 и 511 градусов. Тогда автомат «Н» зафиксирует разницу между истиной и ее предсказанием и пошлет по линии связи малюсенькую ступеньку – поправку на 1 – 2 градуса. Эти крошечные ступеньки позволят в течение всего периода наблюдений точно фиксировать истинную температуру, не расходуя лишней энергии на «избыточный груз».

А нельзя ли с помощью предсказаний облегчить и «словесный груз»? Ведь просто же, прочитав слова что посеешь..., предсказать, что дальше последует ...то и пожнешь. Может быть, это смогут делать и автоматы?

Иногда можно точно предсказать значение целого слова по сочетанию нескольких букв. Лев Кассиль в своей повести «Кондуит и Швамбрания» вспоминает такой эпизод. Учитель словесности имел забавное прозвише – Длинношеее. Один из учеников задал ему вопрос: можно ли в русском языке найти слово, в котором три раза подряд повторялась бы буква «е»? И, к великому удовольствию класса, не подозревающий подвоха учитель произнес свое прозвище: «Длинношеее». Озорной гимназист рассчитал весьма точно: сочетание это встречается редко, поэтому можно почти безошибочно предсказать, каков будет ответ.

Но подобное слово – лишь редкое исключение. В большинстве случаев значение слов и букв словесного текста предсказать невозможно. Если бы во всех случаях жизни мы могли предвидеть, какие слова последуют дальше, мы не могл# бы из книги, газеты или доклада извлечь для себя никаких новостей.

Упаковка должка быть надежной

Как же все-таки избавить тексты от «лишнего груза»? Предсказания сбываются редко. Электронная трубка устраняет избыточность только частично, потому что при «сортировке» она учитывает лишь вероятность двух букв. Чтобы устранить избыточность полностью, пришлось бы «сортировать» и слова и даже целые фразы: ведь надо учитывать, что после слова черный слово снег появляется очень редко, а вслед за словом производительность почти всегда произносят слово труда. Но стоит ли заниматься такой кропотливой работой? Много ли выиграют сообщения, если мы полностью избавим их от избытка? Нет, от этого они могут лишь проиграть.

Большинство передаваемых сообщений переводятся путем кодирования на язык импульсов. Любая внешняя причипа (например, излучение близ расположенных радиостанций) может изменить величину какого-то электромагнитного импульса. В случае передачи словесных текстов это приведет к изменению или исчезновению какой-то буквы.

Пусть, например, мы приняли по радиотелеграфу следующую последовательность букв:

т, о, м, к, о, е.

По всей видимости, в это сообщение вкралась ошибка. Можно предположить, что вместо м передавалось н или п. Посмотрим, что последует дальше. Если передадут слово стекло, значит ранее было передано слово тонкое; если – болото, то вместо м следует читать букву п.

Чтобы восстановить значение одной искаженной буквы, нам пришлось использовать не только связь ее с другими буквами, но и связь между словами.

Предположим, что для передачи сообщений разработан какой-то новый, лишенный избыточности язык, то есть язык, в котором любая комбинация букв соответствует новому значению слова. Ис-кажение любой буквы в таком «языке» приводило бы к появлению нового слова, и было бы чрезвычайно затруднительно при чтении принятого текста восстановить его первоначальный вид. Оказывается, в целом ряде случаев приходится специально увеличивать избыточность, чтобы избавиться от помех. Например, при разговоре по телефону мы часто повторяем несколько раз неразборчивые слова. Информация от этого не увеличивается: ведь оттого, что вам три раза подряд произнесут слово быстро, вы не получите никаких добавочных сведений о скорости процесса, о котором шла речь. От этого возрастет лишь «объем сигнала», потому что увеличится «тара», в которой упакован «словесный груз». Зато в такой «таре» груз прибудет в полной сохранности: ведь и обычная транспортная упаковка станет прочней и надежней, если увеличить ее толщину.

Голос, собранный по частям

Чтобы не загружать каналы связи ненужными «грузами», жители Нового Города решили подвергнуть проверке все сообщения и все способы их передачи. И оказалось, что каждое сообщение содержит в себе «избыточный груз».

Студия телевидения транслирует новый спектакль. Казалось бы, что может быть лишнего в такой передаче? На экран попадает лишь то, что происходит на сцене. Но люди Нового Города и здесь находят «избыточный груз». Они рассуждают так. На сцене действуют только актеры. А декорации в течение всего акта остаются на месте. И это можно предвидеть заранее, потому что лишь в редких случаях сквозь стены проникают на сцену мифические персонажи или декорации передвигаются раньше, чем начнется антракт. Так есть ли смысл без конца сообщать о том, что пол, потолок, стены и мебель остаются на прежних местах? Может быть, достаточно в первый момент передачи отделить неподвижную часть кадра и, запомнив все декорации, сообщать только то, что действительно является новым?

Оказывается, достаточно. И сигнал от этого станет намного «компактней», потому что он будет нести в себе только то, что заранее нам неизвестно. В канале, который раньше предназначался для передачи одной программы, уместится несколько лишенных избыточности телевизионных программ.

И с каналами телефонной связи можно поступить точно так же: передавать сразу 6 разговоров там, где раньше умещался один. Потому что вместо полного диапазона частот, содержащихся в человеческом голосе, можно передавать только определенную часть. Правда, голос при этом исказится настолько, что трудно будет узнать даже близких знакомых. Но разборчивость речи не пострадает. Значит, по такому каналу можно с успехом передать сводку выполнения плана, газетный текст или служебный отчет. А потеря оттенков голоса будет в данном случае лишь избавлением от излишеств.

Но жители Нового Города решили, что и в этом лишенном оттенков голосе остается много «лишнего груза». Избыточность можно сделать значительно меньше, если научиться «разбирать голос на части», то есть выделять из него сигналы различных частот. Вместо этих сигналов гораздо выгоднее передавать по каналу связи только сигналы-команды. Эти команды будут приводить в действие специальные генераторы, установленные на приемном конце линии связи, и управлять их сигналами. От изменения голоса абонента будут меняться команды, а вместе с ними частоты и уровни вырабатываемых генераторами сигналов. Сложив эти сигналы, вы получите искусственный голос – голос, «собранный по частям». Несмотря на сложность этой системы, она вполне оправдает себя тем огромным количеством сведений, которые можно по ней передать.

И все же возможность ее весьма ограничена. Такая система хороша до тех пор, пока важен лишь смысл переданных слов. Ну, а если передается художественное слово? Что останется от произведения, если вместо живых, выразительных интонаций актера вы услышите монотонный механический голос – голос, собранный по частям?

Опять всплывает понятие «ценности». Никак от него не избавиться – гонишь его в дверь, оно лезет в окно.

При передаче живой речи актера все звуковые оттенки несут ценную информацию. Значит, необходимо сохранить все изменения силы (уровня) звука и весь диапазон частот. А при передаче цифровых показателей или сводки погоды интонации ценности не представляют. Поэтому в специальных каналах их отметают как ненужный, избыточный груз.

Но даже такой, лишенный всяких оттенков искусственный голос создать вовсе не просто, потому что он состоит из огромного множества различных сигналов, или, как говорят инженеры связи, имеет «очень богатый спектр». Впрочем, к понятию спектра нам придется еще вернуться, потому что в теории информации око играет немаловажную роль.

ГЛАВА 4. НА ГРАНИ ФАНТАСТИКИ

Сигналы из космоса

Статьи по теории информации, публикуемые в специальных журналах, рассчитаны на подготовленного читателя, и их нельзя читать с такой же легкостью, как, скажем, повесть или рассказ. Но тот, кто имеет необходимую подготовку, будет читать их с захватывающим интересом. За длинными строчками уравнений он уловит черты современности, напряженный ритм нашей эпохи, четкие действия автоматов, способных производить сложные вычисления, управлять производством, переводить иностранные тексты и выводить на орбиту космические корабли.

Трудно сказать, что здесь кому помогает: теория практике или наоборот. Несомненно, что без теории информации нельзя было бы сконструировать систему связи для управления полетом ракеты. Но с такой уверенностью можно говорить и о том, что теория информации не развивалась бы столь стремительно, если бы не возникла нужда в создании подобных систем.

Чтобы опустить воздушного змея, надо тянуть за ниточку, которая связывает его с землей. Космический корабль может покинуть орбиту и вернуться на Землю, если передать по радио соответствующую команду. Значит, подобно воздушному змею, он связан с Землей невидимой нитью, носящей название «информация».

Казалось бы, осуществить подобную связь не так уж сложно. На Земле – передатчик, на борту – специальный приемник. Когда на вход приемника поступят сигналы, он их усилит, и они смогут включить автомат, осуществляющий спуск.

Однако если учесть, что, помимо команды спуска, на корабль подаются другие команды, управляющие приборами и автоматами, установленными на борту, задача станет намного сложнее. В этом отношении корабль похож н-е на змея, а на куклу-марионетку, которую с помощью нескольких нитей заставляют проделывать множество разнообразных движений.


    Ваша оценка произведения:

Популярные книги за неделю