355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джон Грант » Отвергнутая наука. Самые невероятные теории, гипотезы, предположения. » Текст книги (страница 17)
Отвергнутая наука. Самые невероятные теории, гипотезы, предположения.
  • Текст добавлен: 9 октября 2016, 05:40

Текст книги "Отвергнутая наука. Самые невероятные теории, гипотезы, предположения."


Автор книги: Джон Грант



сообщить о нарушении

Текущая страница: 17 (всего у книги 21 страниц)

Несмотря на доказательство Юнга, споры не утихли, о чем свидетельствуют такие книги, как прекрасная работа Р.А. Уолдрона «The Wave and Ballistic Theories of Light» (Волновая и баллистическая теории света) (1974). Причина непрекращающихся дискуссий во многом заключалась в том, что свет ведет себя скорее как струна из частиц, а не как движущаяся волна. Сегодня мы понимаем, что на самом деле свет является и тем и другим. Эти точки зрения не противоречат друг другу. Фундаментальной частицей света (и другого электромагнитного излучения) является фотон; но в данном случае мы используем понятие «частица» в смысле, отличающемся от всего, что мог себе представить Ньютон.

Странные лучи

В 1903 году выдающийся французский физик Рене Проспер Блондло (1849–1930) открыл N-лучи, естественным образом излучаемые различными материалами, в том числе многими металлами, а также нервной системой человека – в основном во время разговора и той частью головного мозга человека, которая контролирует речь, – так называемым центром Брока. (Блондло назвал их N-лучами в честь организации, в которой работал, – Университета Нанси.) Его открытия были подтверждены другими французскими учеными, хотя за пределами Франции ученые столкнулись со сложностями при попытке воспроизвести результаты эксперимента.

С помощью специального спектроскопического оборудования, в котором линзы и призмы были сделаны из алюминия, Блондло смог проецировать спектр N-лучей; это нужно было делать в темноте. Наблюдал за демонстрацией американский физик Роберт У. Вуд (1868–1955). Когда Блондло описывал проецируемый им спектр N-лучей, Вуд незаметно удалил призму из «спектроскопа» N-лучей. Блондло невозмутимо продолжал демонстрацию. В 1904 году Французская академия наук присудила ему премию Леконта. В том же году, однако, Вуд опубликовал статью, разоблачающую этот эксперимент, и большинство ученых прекратили поиск неуловимых N-лучей. Во Франции тем не менее физики не только продолжили поиски, но и во многих случаях обнаружили лучи. Среди этих физиков были выдающиеся личности, такие как Андре Брока (1863–1925) и Жан Беккерель (1878–1953).

Ясно, что Блондло не был мошенником: он искренне верил в то, что видит спектр N-лучей и что он сделал важное открытие. Но непонятно другое: каким образом все остальные французские ученые сумели воспроизвести его результаты? Была ли тому причиной всего лишь французская гордость или уважение к Блондло привело их к самообману? А может быть, из-за сложившейся во французской физике атмосферы ученые сочли, что N-лучи – доказанный факт, а в экспериментах увидели лишь то, что ожидали увидеть?

Похожую природу имели и лучи Ширера. Рентгеновские лучи позволяют видеть кости сквозь тонкую завесу человеческой плоти. Но представьте себе использование излучения, которое позволяет делать то же самое с внутренними органами! Такое излучение было открыто во время Первой мировой войны санитаром по фамилии Ширер, о котором больше ничего не известно. Он также придумал оборудование, с помощью которого можно использовать излучение на практике. Ширер быстро был переведен в ранг капитана, его исследования поддержали.

Но, как сообщает Джон Слейдек (1937–2000) в «The New Apocrypha» (Новых апокрифах) (1974), «ширерграф» был не просто медицинским прибором. Когда Ширеру предложили создать изображение далекой радиостанции, «ширерграфируя» излучаемые ею радиоволны, он сразу согласился это сделать. К сожалению, оказалось, что наглядная и ясно обрисованная им картина в точности совпадает с изображением на обложке журнала «Wireless», вышедшего в том месяце, и прибор вышел из употребления.

Вечное движение

Существуют объективные причины, по которым вечные двигатели невозможны. Ни одна машина не может действовать со стопроцентной эффективностью, так как требуется дополнительная энергия просто для поддержания ее работы. По большому счету закон сохранения энергии представляется основополагающим законом Вселенной: это означает, что невозможно получить энергию из ниоткуда. В любую машину нужно вложить больше, чем получится на выходе.

Окно в реальность, открытое квантовой механикой, вместе с тем является лазейкой, через которую могут пролезть сторонники идеи вечных двигателей. Ее притягательность – в откровении, что даже абсолютный вакуум не является на самом деле пустым: он скорее наполнен виртуальной энергией (при желании ее можно представить как море вероятностей). Энергия, наполняющая даже самый пустой вакуум, присутствует в равных количествах того, что можно назвать положительной и отрицательной энергией; они абсолютно уравновешивают друг друга, так что чистое значение энергии равно нулю. Однако противоположно «заряженные» пары энергетических частиц могут появляться одновременно – так и происходит. Обычно они уничтожают друг друга так быстро, что это почти непостижимо для человеческого разума; однако в случае рождения пары существует теоретическая вероятность того, что она сохранится. Эта энергия часто называется «нулевой энергией», потому что существует даже при абсолютном нуле температур, когда, согласно всем классическим законам физики, движение полностью замерзает и, таким образом, существование энергии в любой форме становится невозможным. Возможности, которые откроются при исследовании вакуума, впечатляют, хотя бы с точки зрения научной фантастики.

Наиболее выдающимся предсказателем потенциала нулевой энергии, который можно использовать, является американский физик Гарольд Путов (р. 1936), более известный своей работой с коллегой Расселом Таргом (р. 1934), отстаивавшим коммерческое использование паранормальных способностей. Он считает, что «вакуумная технология» станет большой надеждой энергетики XXI века, как только мы выйдем в космос, где столько бесплатного вакуума. В 1979 году лауреат Нобелевской премии за достижения в области физики Стивен Вайнберг (р. 1933), к сожалению, остудил пыл сторонников этой гипотезы, указав, что в объеме вакуума, равном всему земному шару, полезной энергии меньше, чем в галлоне нефти.

Как понятно из вышесказанного, с идеей вечного двигателя связана идея антигравитационного устройства: машины (в особенности воздушный транспорт), которым не нужно преодолевать огромную силу притяжения, были бы чрезвычайно полез-ны. Кроме того, можно было бы радикально изменить будущее космических путешествий, если бы космическим кораблям не нужно было тратить большую часть своего полезного груза на топливо, подавляющий объем которого расходуется на преодоление гравитации в начале и конце путешествия.

Значительная часть работы по созданию антигравитационной машины была проделана благодаря одержимости американского бизнесмена Роджера Бэбсона (1875–1967). В течение всей своей успешной карьеры в бизнесе и после (он был издателем «Babson's Washington Service») он занимался филантропией. В нашем контексте наиболее значительным его достижением было основание в 1948 году Фонда гравитационных исследований – организации, предназначением которой было открыть способ уменьшить или полностью блокировать влияние гравитации. Фонд был основан в Нью-Бостоне, штат Нью-Гемпшир; этот городок Бэбсон выбрал потому, что он был достаточно удален от любого большого города, чтобы с высокой степенью вероятности уцелеть в случае ядерной войны.

Фонд Бэбсона проводил семинары, привлекавшие даже весьма выдающихся ученых, таких как Игорь Сикорский (1889–1972), конструктор первой удавшейся модели вертолета (1939), но куда большую важность имел ежегодный конкурс очерков по вопросам гравитации, который он спонсировал и на который присылались статьи со всего мира. Поскольку в своих исследованиях фонд медленно перемещал центр внимания с антигравитации на гравитацию в целом, эти очерки стали представлять серьезную научную ценность. Стивен Хокинг (р. 1942) был одним из неоднократных победителей конкурса.

После смерти Бэбсона в 1967 году деятельность фонда потихоньку затухала и теперь практически сошла на нет, хотя конкурс очерков все еще проводится – правда, нерегулярно. Ко времени написания этой книги веб-сайт фонда работал в упрощенной версии и искал спонсора.

Прекрасную изобретательскую мысль выдал Джордж Райдаут из фонда Бэбсона. Если бы только существовал материал, действующий как гравитационный щит (то есть встав на который вы бы выходили из-под власти земного притяжения), такое устрой-ство можно было бы построить. Представьте себе вращающееся по горизонтальной оси колесо велосипеда. Поместите пластину из блокирующего гравитацию материала под одну сторону колеса (скажем, с левой стороны, если колесо смотрит на вас). Теперь представьте две частицы, А и В, входящие в состав колеса: А находится над пластиной, а В – диаметрально противоположно А с другой стороны колеса. Запустите колесо по часовой стрелке, и оно будет вращаться вечно, потому что гравитация притягивает частицы В вниз, а для поднятия всех частиц А энергии не нужно вовсе. Конечно, эта машина использует в качестве «топлива» земную гравитацию – подобно тому, как мельничное колесо использует проточную воду.

Все это было бы прекрасно, если бы материал, блокирующий воздействие гравитации, был изобретен, но это маловероятно. Да если бы он существовал, можно было бы создать куда более простой вечный двигатель: привязать пластину из этого материала к ботинкам и подпрыгивать.

Как и следовало ожидать, в рамках Программы NASA «Прорыв в области физики движения» было получено большое количество сообщений от изобретателей-любителей, убежденных, что они открыли космический источник энергии, который решит все будущие проблемы в области физики движения и подарит человечеству светлое будущее среди звезд… До сих пор ни одно из этих изобретений не сработало, но кто знает, может быть, однажды действительно произойдет непредвиденный прорыв. Чтобы сократить огромное количество времени, необходимого для изучения каждого предложения, NASA составило списки известных неработающих принципов. Большинство поступающих предложений задействуют один или несколько этих принципов, так что, пробежав по ним взглядом, их можно сразу отбросить.

Среди ошибочных принципов, которые часто задействуются в подаваемых предложениях, наиболее популярны гироскопическая антигравитация, электростатическая антигравитация и колебательные толчки.

Гироскопическая антигравитация.Наиболее известное гироскопическое антигравитационное устройство было придумано английским изобретателем Эриком Лейтуэйтом (1921–1997), создателем первого в мире высокоскоростного поезда и маглева [24]24
  Маглев – магнитно-левитационная технология. – Прим. пер.


[Закрыть]
, профессором электромашиностроения Лондонского имперского колледжа, и было продемонстрировано им Королевской ассоциации в 1973 году. Его устройство, очень похожее на огромный гироскоп, весило около 25 килограммов (50 фунтов), и первое, что он сделал, – это показал, что с трудом поднимает его. Затем он начал вращать гироскоп с помощью электродрели и показал, что теперь может поднять хитроумное изобретение над головой одной рукой. Затем отметил, в шутку или всерьез, что демонстрировал нарушение ньютоновского закона движения… но Королевская ассоциация не оценила юмора; первый и последний раз за всю историю она отказалась публиковать отчет о проведенной лекции.

Лейтуэйт был озадачен физикой вращающегося гироскопа, который, казалось, на самом деле нарушает законы Ньютона, и потратил многие годы, исследуя этот феномен. Наконец он смог доказать математически, что законы Ньютона не нарушаются; в то же время он все еще верил в то, что такое поведение гироскопа можно задействовать в создании инерционного двигателя. Ближе к концу своей жизни он подал заявку на патент США именно на этот эффект и получил его. То, что его реакционный двигатель так и не сдвинулся со стадии опытного образца, конечно, возбудило подозрения; возможно, двигатель работает, несмотря на все основания верить в обратное. Лейтуэйт первым объявил, что его двигатель потребляет топливо в больших количествах, так что, по-видимому, у него нет преимуществ по сравнению с другими двигателями.

В общей теории относительности есть свидетельство того, что гироскоп, вращающийся с релятивистской скоростью, действительно может повлиять на локальную гравитацию, но, к сожалению, скорость движения гироскопа также означает, что масса устройства возрастает до бесконечности.

Электростатическая антигравитация.В устройствах, использующих так называемую электростатическую антигравитацию, как правило, по конденсатору необычной формы проводится ток высокого напряжения; конденсатор поднимается над водой, как при левитации. Различные исследования этого эффекта позволили сделать вывод, что подъем вызван так называемым «ионным ветром»: ионы переходят от одного электрода конденсатора к другому, создавая поток воздуха, и если электроды правильно расположены, то воздушный поток приподнимает конденсатор. Существуют подтверждения, что даже в космосе может иметься достаточный поток ионов, чтобы приподнять конденсатор. К сожалению, возникают сложности с притоком энергии, которая весит значительно больше конденсатора и должна подаваться по проводу. До сих пор никому не удалось представить себе ионный ветер, достаточной мощный для того, чтобы переместить не только конденсатор, но и источник энергии.

Колебательно-толчковые двигатели.Типичным примером колебательно-толчкового двигателя является печально известный двигатель Дина, который в I960 году захватил внимание Джона У. Кэмпбелла-младшего (1910–1971), редактора научно-фантастического журнала «Analog»; в течение долгого времени он писал «научные» статьи, пытаясь убедить читателей, что двигатель совершил прорыв, провозглашающий эпоху межзвездных путешествий. Этот маленький прибор, созданный Норманом Л. Дином, ипотечным оценщиком, мог облететь вокруг рабочего стола Кэмпбелла и, будучи поставлен на обычные напольные весы, при запуске немедленно начинал терять в весе. Он работал по тому же принципу, что и другие колебательно-толчковые двигатели: по существу, если подобрать последовательность грузов, которые запускались бы в одном направлении, а потом возвращались с другой стороны в исходное положение, то действительно создавался бы импульс… если бы прибор располагался на поверхности вроде рабочего стола Джона У. Кэмпбелла. Что же происходило в действительности? Толчков, созданных высокоскоростными грузами, которые движутся в одном направлении, достаточно, чтобы преодолеть трение между прибором и поверхностью стола, но более медленные, менее заметные движения в других направлениях не способны этого сделать; таким образом, в целом прибор начинает двигаться в «положительном» направлении. К сожалению, в космосе нет сколько-нибудь значимого трения, так что все, что сможет там сделать прибор вроде машины Дина, – это вращаться вокруг исходного положения.

Холодный ядерный синтез

23 марта 1989 года двое ученых, работавших в Университете Юты, Стэнли Понс и Мартин Флейшман, объявили, что открыли технику, которая станет практически неисчерпаемым источником энергии для человечества на необозримое будущее, и к тому же удивительно дешевым. Они говорили о холодном ядерном синтезе.

Ядерная энергия, которую мы используем для получения электроэнергии, на сегодняшний день является продуктом расщепления ядра, дезинтеграции (распада) больших атомов на группы маленьких, в процессе чего высвобождается энергия. Этому процессу постоянно сопутствует опасность, поскольку радиоактивно не только топливо, но и некоторые побочные продукты этого процесса. Однако практически в то же время, когда физики признали энергетические преимущества ядерного синтеза, они увидели, что едва ли не большие преимущества можно получить, не разбивая большие атомы на меньшие, а сжимая маленькие атомы друг с другом так, чтобы получились большие. Этот процесс известен как ядерный синтез – именно он поддерживает нашу жизнь. Это тот самый процесс, благодаря которому сияют звезды, включая наше Солнце.

На самом простом уровне, если взять два атома водорода, легчайшего и простейшего (а также самого распространенного) элемента из всех, и столкнуть их друг с другом, перед вами окажется один атом гелия – второй по легкости и простоте элемент… плюс некоторый объем дейтерия, который присутствовал в двух атомах водорода, но не потребовался при создании одного атома гелия. Дейтерий обычно предстает в виде энергии – как в случае распада, так и в случае синтеза: эту энергию можно использовать и в бомбах, и в качестве созидающей силы. Большой разницей между распадом и синтезом, в контексте их использования, является то, что синтез «чист» – его побочные продукты, такие как газ гелий и вода, безвредны, – и его топливо дешево и изобильно. Установите контроль над процессом синтеза, и вы почти решите проблему мировых поставок энергии.

Увы, до сих пор никому не удалось провести контролируемую, более или менее полезную в практическом смысле реакцию синтеза. Те, которые удалось провести, длились всего лишь доли секунды, а объем полученной энергии был во много раз меньше, чем требовалось для вспышки искорки света. Так появилась мечта о «холодном» синтезе, то есть таком ядерном синтезе, который был бы устойчив в условиях нагревания и давления, не слишком отличающихся от привычных нам. Чтобы доказать жизнеспособность холодного синтеза как технологии, не нужно доказывать, что он хорошо работает, достаточно доказать, что он просто работает – что действительно в результате этого высвобождается объем энергии, превосходящий тот, который мы затратили. В этом случае перед целеустремленной человеческой изобретательностью, может быть, встанет куда более простая задача: как сделать этот процесс наиболее эффективным.

Если разбирать эксперимент Понса-Флейшмана по крупицам, то можно увидеть, что он основан на известном факте: металл палладий обладает свойством «поглощать» ядро дейтерия – «тяжелого водорода» (если у обычного водорода ядро содержит только один протон, то ядро тяжелого водорода состоит из протона и нейтрона). Для запуска процесса синтеза в газообразной среде требуются чрезвычайно высокие температуры и давление; с палладием, твердым веществом, в качестве субстрата условия, в которые помещается ядро дейтерия, таковы, как если бы он был в газообразной среде под высоким давлением. Следовательно, есть смысл по крайней мере проверить и убедиться, нельзя ли, используя сверхпоглощающий палладий с дейтерием, создать условия, которые могут ускорить реакции синтеза между ядрами дейтерия [25]25
  Существуют теоретические причины, почему дейтерий является лучшим материалом для ускорения синтеза, чем обычный водород. – Прим. автора.


[Закрыть]
. Именно это и сделали Понс и Флейшман. Затем они с максимальной точностью измерили температуру палладия и окружающей его среды, чтобы понять, могло ли образоваться тепло в ходе реакции. Их результаты, казалось, доказывали, что тепло образовалось.

Физики и химики всего мира бросились воспроизводить эксперимент. Однако, хотя аппарат был недорогим и его легко можно было достать, измерить такие малые энергии оказалось весьма непростым делом. Некоторым, кто не был знаком с научными методами (ни один эксперимент не считается действительным, пока он не воспроизведен и результаты его не проверены), не хватило терпения дождаться, пока закончится процесс подтверждения, и в число таких торопыг входили многие финансовые дельцы и большое количество политических деятелей. Законодательный орган штата Юта потратил на эксперименты Понса и Флейшмана 4,5 миллиона долларов. Управление военно-морских исследований США внесло первый взнос в размере 400 000 долларов. Ожидалось, что правительство США вот-вот выделит на это десятки миллионов долларов. Когда поступили первые отчеты от других исследователей, казалось, что они подтверждают результаты Понса и Флейшмана и что дальнейшее промышленное финансирование проекта обеспечено.

Но проблема для обоих химиков и их наиболее верного сторонника – Университета Юты – уже назревала. Хотя все выглядело так, будто первые попытки других людей воспроизвести результаты указывали на подтверждение эксперимента, но были и те, у кого ничего не получилось, и вскоре превалировать стали сообщения об отрицательных результатах. То, что Понс и Флейшман в отчаянии и с явным запозданием подгоняли цифры, не помогло им отстоять свою пошатнувшуюся позицию. Университет Юты (который тут же снял с себя ответственность, когда этот вопрос был предан огласке) также бесцеремонно пытался заставить замолчать критиков, пригрозив им судом, – это больше, чем что-либо другое, подорвало доверие к Понсу и Флейшману. (Основное очевидное правило заключается в том, что только научное невежество пытается решить научный спор в суде.)

С нападками на отрицательные результаты экспериментов пришло и неверие в теоретическую подоплеку исследований Понса и Флейшмана. Вот всего лишь один пример: было доказано, что ядра дейтерия в насыщенном палладии на самом деле отдалены друг от друга больше, чем в тяжелой воде; если в результате происходящей в ней реакции синтеза тяжелая вода не нагревается сама по себе, почему это должно происходить с палладием?

Тем не менее не стоит сбрасывать со счетов, что по крайней мере несколько исследователей были убеждены, что им удалось воспроизвести результаты Понса и Флейшмана, и что годы спустя после того, как улегся первоначальный ажиотаж, их ряды пополнили и другие ученые. Двое профессоров из Юты, по-видимому, открыли не холодный синтез, как они полагали, а нечто, и это нечто, чем бы оно ни было, еще не до конца изучено.

Аналогичные сомнения связаны с заявлениями о проведении холодного ядерного синтеза, сделанными в 2002 году Рузи Талейарханом, который тогда работал в Национальной лаборатории Оук-Ридж Министерства энергетики США, штат Теннесси, и позднее в Университете Пердью, штат Индиана. Его команда пропускала через лабораторный стакан, полный химически измененного ацетона, поток нейтронов, а затем звуковые волны так, что появлялись пузырьки; как сообщила команда журналу «Science», когда пузырьки лопнули, была выявлена энергия синтеза. У других групп (включая самого Талейархана), однако, были сложности с воспроизведением результатов. Работая в Пердью, он наконец заявил в 2004 году, что проводил эксперимент с использованием соли урана – нитрата уранила. В связи с этим возникло много вопросов. Брайан Нараньо из Калифорнийского университета в Лос-Анджелесе в 2005 году сообщил, что его команда провела холодный синтез, нагрев кристалл лития, пропитанный газом дейтерия; он проанализировал результаты Талейархана и пришел к выводу, что ученый из Пердью обнаружил не энергию холодного синтеза, а утечку энергии от некоего другого радиоактивного источника в лаборатории. Если это так, то Талейархан допустил элементарную ошибку. Гораздо серьезнее было то, что некоторые коллеги Талейархана из Пердью начали подавать жалобы, так или иначе связанные с экспериментом, говоря, что Талейархан заявил о получении положительных результатов в ходе эксперимента, по которому отказался предоставить исходную информацию; что он противостоял опубликованию ими их собственных – отрицательных – результатов и т. д. Ко времени написания этой книги его работа пересматривалась Университетом Пердью.

Китайская схема акупунктурных точек, на которой изображены меридианы и нервные центры, расположенные на передней стороне туловища человека


    Ваша оценка произведения:

Популярные книги за неделю