355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джеймс Эдвард Гордон » Конструкции, или почему не ломаются вещи » Текст книги (страница 6)
Конструкции, или почему не ломаются вещи
  • Текст добавлен: 26 сентября 2016, 20:14

Текст книги "Конструкции, или почему не ломаются вещи"


Автор книги: Джеймс Эдвард Гордон



сообщить о нарушении

Текущая страница: 6 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]

Катапульты

Величайший период классической Эллады завершился с падением Афин в 404 г. до н.э., демократический строй в Греции постепенно в течение столетия пришел в упадок и был вытеснен тиранией и военной монархией. Менялись методы ведения войны как на суше, так и на море, и возникла потребность в более современном механизированном оружии. Более того, властители постепенно богатеющих государств располагали средствами для оплаты военных расходов.

Начало было положено в греческой Сицилии. Стратег-автократ Дионисий I был, по-видимому, выдающимся человеком, сумевшим от простого военачальника возвыситься до тирана Сиракуз. За годы его правления, продолжавшегося с 405 до 367 г. до н.э., Сицилийская держава стала крупной экономической и политической силой не только в Западном Средиземноморье, но и во всем эллинском мире. При созданном Дионисием военном ведомстве была основана, вероятно, первая в истории государственная лаборатория, проводившая исследования в области вооружения. Он пригласил для этого учреждения лучших математиков и мастеров со всего греческого мира.

Естественной отправной точкой для специалистов, отобранных Дионисием, явился традиционный комбинированный ручной лук. Установив такой лук на какую-либо опору и оттягивая тетиву посредством механического привода или рычагов, можно сделать его значительно жестче, что позволит в несколько раз увеличить запасаемую и сообщаемую снаряду энергию. Так, очевидно, подошли к самострелу, снаряды которого способны были пробивать любые доспехи[24]24
  Однако скорость стрельбы из самострела не сравнима со скоростью стрельбы из ручного лука. Так, с помощью английских больших луков можно пускать до 14 стрел в минуту и при массовом использовании этого оружия получать целое облако стрел. Подсчитано, что при Азенкуре из луков было пущено около 6 млн. стрел.


[Закрыть]
. Претерпев лишь небольшие конструктивные изменения, самострелы не вышли из употребления и до настоящего времени. Говорят, что они применяются сейчас в Ольстере. Любопытно, однако, что как оружие самострелы никогда не играли сколько-нибудь решающей военной роли.

Но самострел, в сущности, явился пехотным оружием, направленным против человека, так как с его помощью нельзя было наносить серьезные повреждения корпусам кораблей или фортификационным сооружениям. И хотя сиракузцы, увеличив размеры самострела и установив его на основание орудийного типа, создали катапульту, эта линия развития оружия не получила продолжения. По-видимому, определенные технические ограничения не позволяют сделать катапульту типа лука достаточно мощной, чтобы пробивать бреши в крепостной кладке[25]25
  Недавние находки на Кипре позволяют предположить существование военных катапульт в V в. до н.э. Но и в этом случае подход Дионисия был, по-видимому, первым «научным» подходом к проблеме.


[Закрыть]
.

Следующим шагом были поэтому отказ от конструкции типа лука и использование для накопления упругой энергии скрученных связок сухожилий[26]26
  Они, вероятно, ведут свое происхождение от «испанского ворота», использовавшегося на кораблях древних (см. гл. 10).


[Закрыть]
, очень похожих на резинокордные связки, используемые для привода авиационных моделей.

Когда связка таких резиновых лент или сухожилий закручивается, материал связки подвергается растяжению, запасая упругую энергию.

Известны самые разные способы использования связок сухожилий в военной технике, однако самой лучшей конструкцией следует признать древнегреческий палинтонон, который у римлян получил название баллисты. Это исключительное по смертоносности орудие имело по две вертикальные связки сухожилий, каждая из которых закручивалась с помощью жесткой рукоятки или рычага, напоминающего рукоять ворота (рис. 18).

Рис. 18. Возможно, так выглядела древнегреческая катапульта.

Концы этих рычагов были соединены между собой толстой тетивой, а все устройство работало подобно луку. Свое название оно получило оттого, что в положении с ненатянутой тетивой оба ее рычага направлены вперед, как у комбинированного лука без тетивы. Тетива в катапульте натягивается посредством мощной лебедки подобно натягиванию тетивы лука. Снаряд (чаще всего каменное ядро) после выстрела двигался вперед по направляющим, которые одновременно служили и станиной лебедки. Лебедка могла развивать усилие, достигавшее ста тонн.

Римляне скопировали греческую катапульту, и Витрувий, служивший в войсках Юлия Цезаря, оставил нам руководство по баллистам, которое представляет немалый интерес. Размеры этих машин позволяли метать снаряды весом от 2 до 150 кг. Радиус их действия был примерно 400 м (для всех размеров). Средняя крепостная баллиста римлян, по-видимому, стреляла ядрами весом в 40 кг.

При последней, драматической осаде Карфагена в 146 г. до н. э. римляне, сделав насыпь в неглубокой лагуне, к которой выходила городская стена, установили на ней катапульты и стали из них крушить укрепления. Археологи откопали на этом месте около 6 тыс. каменных ядер весом по 40 кг каждое.

Хотя Юлий Цезарь и Клавдий использовали корабли с катапультами для нападения на британские берега, эти метательные машины, по-видимому, никогда не были грозным оружием в сражениях на море. Скорострельность такой баллисты, которая могла бы потопить корабль попаданием одного снаряда, была слишком мала и почти не позволяла поразить движущееся судно.

Иногда с помощью катапульты метали горящие снаряды, но на полных народа незатейливых кораблях того времени пожар обычно нетрудно было потушить. В 184 г. до н. э. один изобретательный флотоводец выиграл морское сражение, обрушив на головы противника глиняные горшки с ядовитыми змеями, однако его примеру, кажется, никто не последовал. В целом катапульты на море не имели успеха.

Однако палинтонон, или баллиста, был весьма эффективным средством ведения сухопутной войны. Его изготовление и эксплуатация были связаны с известными трудностями, так что обслуживающий катапульты персонал должен был быть весьма сведущим в своем деле. После того как Римская империя с ее техникой отошла в прошлое, это оружие стало непрактичным и было забыто[27]27
  В Англии в период паники 1940 г., вызванной возможным вторжением немцев, было изготовлено два варианта римской баллисты для использования войсками ополчения. Это оружие предназначалось для метания зажигательных бомб в немецкие танки. Но поскольку радиус действия и одной и другой катапульты составлял лишь четверть радиуса действия их классического прототипа, можно предположить, что их создатели не удосужились внимательно прочесть даже Витрувия.


[Закрыть]
. В Средние века применение осадных машин свелось к использованию весовой катапульты, или требюше (рис. 19).

Рис. 19. Требюше, или средневековая катапульта, – самое неэффективное из метательных устройств.

В этом устройстве, похожем на маятник, использовалась потенциальная энергия поднятого груза. Даже с помощью большого требюше вряд ли можно было поднять груз более тонны (10000 Н) на высоту 3 м. Поэтому наибольшая запасаемая потенциальная энергия, вероятно, не намного превосходила 30000 Дж. Такое же количество энергии можно запасти в виде упругой энергии в 10-12 кг сухожилий. Поэтому даже большое требюше, вероятно, обладало только одной десятой энергии катапульты. К тому же, по-видимому, значительно более низкой была эффективность передачи энергии. С помощью требюше можно было в лучшем случае причинить неприятности путем забрасывания через крепостные стены больших камней; любая же попытка повредить мощную каменную кладку не имела бы успеха[28]28
  Подробнее о требюше см. http://xlegio.enjoy.ru/treboche.htm Д. Уваров, «Требюше, или гравитационные метательные машины» – V.V.


[Закрыть]
.

Принцип действия лука и палинтонона как устройств для передачи энергии одинаков, и пока еще в полной мере не нашла оценки эффективность такого механизма обмена энергией. В примитивных устройствах типа требюше значительная часть запасенной энергии шла на ускорение тяжелого противовеса и рычага и в конечном итоге терялась в системе останова или тормозов, которые были неотъемлемой частью устройства. У лука или палинтонона непосредственно после спуска тетивы часть запасенной упругой энергии передается в виде кинетической энергии прямо снаряду. Однако большая часть имеющейся энергии идет на ускорение самого лука или рычагов катапульты, где она временно переходит в кинетическую энергию. Это близко к тому, что происходит в требюше, однако здесь дальнейшие события связаны с замедлением движения самого лука, а не с жестким остановом. По мере того как лук распрямляется, увеличивается натяжение тетивы, что позволяет ей действовать на снаряд с большей силой и таким образом ускорять его движение. Поэтому значительная часть кинетической энергии, запасаемой в луке или в рычагах катапульты, передается снаряду (рис. 20).

Рис. 20. Схемы, иллюстрирующие механику палинтоноса, или баллисты. a – машина подготовлена к стрельбе, вся энергия запасена в связках сухожилий; б – начальная стадия: тяжелые рычаги получают ускорение, отбирая при этом значительную часть энергии сухожилий; в – заключительная стадия: тяжелые рычаги замедляют ход благодаря натяжению тетивы, таким образом их кинетическая энергия передается снаряду; г – летящий снаряд получил энергию, первоначально запасенную в системе.

Математическое описание поведения луков и катапульт оказывается сложным, и, даже записав соответствующие уравнения движения, их нельзя решить аналитически. К счастью, однако, один из моих коллег, д-р А. Претлав, заинтересовавшись этой проблемой, применил для ее решения ЭВМ. К удивлению, оказалось, что процесс передачи энергии теоретически может иметь 100%-ную эффективность. Другими словами, практически вся упругая энергия, запасенная в устройстве, может быть превращена в кинетическую энергию снаряда. Таким образом, теряется (идет на отдачу и на соударения в системе) только малая часть энергии. В этом отношении луки и катапульты обладают преимуществами перед огнестрельным оружием.

Одно следствие из этих фактов, я думаю, хорошо известно большинству стрелков-лучников. Оно состоит в том, что при стрельбе из лука или катапульты ни в коем случае не следует пользоваться несоответствующей стрелой или снарядом. Такая попытка неминуемо закончится не только поломкой лука, но и травмой, так как в этом случае не существует безопасных каналов освобождения запасенной упругой энергии.

Эластичность, резильянс и ухабы на дорогах
 
Корабль взрезает равнину вод,
А ветер мчит вперед,
Наполнив белые паруса,
Красавицы-мачты гнет.
 
Алан Канинхэм

Когда Галилей в 1633 г. в Арцетри приступил к изучению проблем упругости, прежде всего он задался вопросами, какие факторы влияют на прочность веревки или бруска при растяжении и зависит ли прочность от длины этой веревки или бруска. Элементарные эксперименты показали, что сила или вес, требуемые для разрыва однородной веревки при ее статическом растяжении, не зависят от длины этой веревки. Такой же результат, казалось бы, подсказывает и здравый смысл, однако и по сей день можно встретить множество людей, глубоко убежденных в том, что длинный кусок веревки «крепче» короткого.

Конечно, дело здесь не в человеческой глупости, а в том, что понимать под словом "крепче". Статическая сила, или натяжение, требуемое для разрыва длинной веревки, будет, конечно, той же, что и для разрыва короткой веревки, но общее удлинение большой веревки перед ее разрывом будет значительнее и, чтобы разорвать ее, потребуется большая энергия, хотя разрушающая сила и прочность материала остаются теми же. Рассуждая немного иначе, можно сказать, что длинная веревка будет смягчать внезапные рывки, упруго растягиваясь под действием нагрузки, так что возникающие при этом перегрузки будут уменьшаться. Другими словами, она действует в значительной степени так же, как подвеска автомобиля.

Таким образом, в тех случаях, когда нагрузка действует рывками, длинная веревка может действительно оказаться "крепче" короткой. Именно поэтому экипажи XVIII в. часто подвешивались к ходовой части на длинных кожаных ремнях, которые лучше коротких могли противостоять толчкам и ударам на рытвинах тогдашних дорог. Припомните к тому же, что якорные цепи и буксирные канаты стараются делать по возможности длиннее, так как они обычно рвутся не от статической нагрузки, а от резких толчков. Тем, кто может ночью или в тумане повстречаться в море с буксируемыми большим сухими доками или буровыми вышками, полезно иметь в виду, что эти сооружения буксируются на стальном тросе длиной почти в милю. Такого рода "морские процессии", занимая огромные участки моря, вселяют ужас в случайных мореплавателей[29]29
  В действительности эластичность якорных цепей и буксирных канатов в значительной мере вызвана их провисанием под действием собственного веса. В этом одна из причин того, почему тяжелые тросы или цепи предпочитают значительно более легким канатам из органических материалов.


[Закрыть]
.

Способность запасать упругую энергию и при действии нагрузки отклоняться упругим образом без разрушения называется резильянсом и является очень ценным качеством конструкции. Резильянс можно определить как количество упругой энергии, которое можно запасти в конструкции, не причиняя ей повреждений.

Чтобы добиться высокого резильянса, конечно, не обязательно использовать очень длинную веревку или проволочный трос. Зачастую удобнее применять более короткие конструкционные элементы, такие, как спиральные пружины (в буферах железнодорожных составов) или прокладки из мягких материалов (в качестве отбойных амортизаторов судов), а также материалы с малым модулем Юнга типа пенорезины или пенопласта (для упаковки точной аппаратуры). Все они могут испытывать большие относительные удлинения и сжатия, а поэтому способны запасать большую упругую энергию на единицу объема. Природная "подвеска" лыжников и животных своим совершенством в значительной мере обязана сравнительно низким модулям упругости и большой деформативности сухожилий и других тканей.

С другой стороны, хотя низкая жесткость и высокая растяжимость способствуют поглощению энергии и поэтому уменьшают возможность разрушения конструкции при ударе, может оказаться, что обладающая этими качествами конструкция будет слишком "мягкой" для выполнения своих функций. Такого рода соображения обычно ограничивают величину резильянса, которым можно снабдить конструкцию. Самолеты, здания, инструменты, оружие должны быть достаточно жесткими, чтобы выполнять свое назначение, поэтому в конструкциях стараются достигнуть компромисса между жесткостью, прочностью и резильянсом. Здесь-то и должен приложить свое искусство конструктор.

Оптимальные условия могут изменяться не только в зависимости от типа и класса конструкции, но и при переходе в ней от одного элемента к другому. Природа и здесь имеет преимущество, поскольку в ее распоряжении находится огромный диапазон упругих свойств различных биологических тканей. Простым, но интересным примером служит обычная паутина. Она подвержена ударным нагрузкам, создаваемым попадающими в нее мухами, и энергия возникающих ударов должна быть поглощена эластичными нитями. Оказывается, что длинные радиальные нити, на которые падает основная нагрузка, втрое жестче коротких круговых нитей, назначение которых ограничивается лишь ловлей мух.

Наряду с использованием конструкционных элементов, работающих на растяжение, таких, как веревки или нити паутины, и на сжатие, таких, как буферы железнодорожных составов и отбойные амортизаторы судов, имеется еще и много других способов запасать упругую энергию и достигать высокого резильянса. Для этих целей может годиться конструкция любой формы, способная испытывать упругие отклонения. Наиболее распространенными являются устройства, запасающие энергию посредством изгиба, подобно лукам и величавым корабельным мачтам. Именно так обстоит дело в растениях, деревьях, этот принцип лежит в основе действия большинства типов автомобильных рессор. Первоклассный меч не сломается, если его изогнуть дугой, коснувшись концом рукоятки, и снова обретет свою первоначальную форму.

Упругая энергия как причина разрушения

…обращались назад, как неверный лук.

Псалом 77

Достаточно высокий резильянс – качество, существенное для любой конструкции, без него она не могла бы поглощать энергию ударов. С этой точки зрения, чем большим резильянсом обладает конструкция, тем лучше. Столь хитроумные устройства, как корабли викингов и американский конный кабриолет, обладали очень большой гибкостью и высоким резильянсом. Если такого рода конструкции чрезвычайно не перегружать, после снятия нагрузки они тут же приходят в первоначальное состояние. Но, естественно, больших перегрузок и они не выдержат.

Далее, чтобы разорвать материал, в нем должна возникнуть трещина. Однако, как мы вскоре увидим, чтобы такая трещина продвинулась на своем пути, необходимо затратить энергию, которую надо где-то взять. Как мы говорили выше, можно без труда сломать лук, "стреляя" из него без стрелы. При этом запасенная в луке упругая энергия не может благополучно высвободиться и перейти в кинетическую энергию стрелы, а потому часть ее идет на образование трещин в материале самого лука. Другими словами, упругая энергия лука его же и ломает. Однако сломанный лук – это только частный случай разрушения вообще.

Все упругие вещества, находящиеся под действием нагрузки, содержат большее или меньшее количество упругой энергии, и эта энергия потенциально всегда может пойти на процесс разрушения их самих. Другими словами, запасенная упругая энергия может пойти на то, чтобы покрыть энергетические затраты на распространение трещины в конструкции и, следовательно, на поломку последней. В конструкции с высоким резильянсом может содержаться большая упругая энергия; того же рода энергия, к которой прибегали древние римляне, чтобы пробить массивные стены Карфагена, в равной мере годна на то, чтобы сам себя сломал пополам громадный супертанкер.

Согласно современной точке зрения, в том случае, когда материал подвергается растягивающей нагрузке, мы не должны рассматривать его разрушение как результат непосредственного растяжения химических связей между атомами. Иначе говоря, это отнюдь не простое следствие, вызванное действием растягивающего напряжения, как можно подумать, начитавшись классических учебников[30]30
  Теоретическое максимальное растягивающее напряжение, требуемое для того, чтобы действительно «оттянуть» атомы друг от друга, на самом деле весьма велико и много больше реальных значений прочности, определяемых посредством обычных испытаний материалов на растяжение.


[Закрыть]
. Прямым результатом увеличения нагрузки, действующей на конструкцию, будет лишь увеличение запаса упругой энергии в материале. Ответ на вопрос, поломается ли на самом деле конструкция в любом заданном месте (цена ответа может составить, например, 64 тыс. долларов), зависит от того, может ли упругая энергия перейти в энергию разрушения так, чтобы образовать трещину.

Современную механику разрушения занимает прежде всего не вопрос о нагрузках и напряжениях, а вопрос о том, как, почему, где и когда упругая энергия может перейти в энергию разрушения. Конечно, в простых случаях, когда имеют дело с веревками и стержнями, действует классическая концепция критического разрушающего напряжения, однако для больших или сложных конструкций, таких, как мосты, пароходы или сосуды высокого давления, она, как мы уже видели, страдает опасным переупрощением. Оказывается, что независимо от того, подвергается ли конструкция удару или действию статической нагрузки, разрушение путем разрыва зависит главным образом от следующего:

1) от цены в единицах энергии, которую нужно заплатить, чтобы протолкнуть трещину;

2) от количества упругой энергии, которым располагает конструкция, готовая заплатить указанную цену;

3) от размеров и формы наиболее опасных отверстий, трещин или дефектов конструкции.

Тот факт, что величины энергии, необходимые для того, чтобы разрушить материал в любом данном поперечном сечении, для различных твердых тел весьма различны, легко подтвердить, ударив молотком сначала по стеклянной, а потом по консервной банке. Количество энергии, требуемое для разрушения материала, отнесенное к поперечному сечению, определяет его вязкость разрушения, или "трещиностойкость", которую в настоящее время чаще называют энергией или работой разрушения. Упомянутое свойство совершенно отлично и независимо от прочности материала на разрыв, которая определяется как напряжение (а не как энергия), требуемое для разрушения твердого тела. От трещиностойкости, или работы разрушения материала, в значительной мере зависит реальная прочность конструкции, особенно если она велика по размерам. А поэтому нам следует немного поговорить о работе разрушения различных типов твердых тел.

Энергия, или работа, разрушения

Когда твердое тело разрушается при растяжении, должна возникнуть хотя бы одна трещина, распространение которой разделяет кусок материала на части. Это означает, что должны образоваться по крайней мере две новые поверхности, не существовавшие ранее, до разрушения тела. Чтобы таким путем произвести в материале разрыв и образовать эти новые поверхности, необходимо разорвать все химические связи, до того сцеплявшие между собой поверхности.

Количество энергии, требуемое для разрыва почти всех типов химических связей, хорошо известно (по крайней мере химикам), и оказывается, что для большинства твердых тел, с которыми мы имеем дело в технике, общие количества энергии, требуемые для разрыва всех связей по любой единичной плоскости в любом поперечном сечении[31]31
  Во многих случаях это количество энергии есть то же самое, что и поверхностная энергия, тесно связанная с поверхностным натяжением как жидкостей, так и твердых тел, и часто обсуждаемая в материаловедении.


[Закрыть]
, весьма близки между собой и не сильно отличаются от величины 1 Дж/м2.

Если мы имеем дело с материалами, которые носят название хрупких – к ним относятся камень, кирпич, стекло и фаянс, – упомянутое количество энергии и есть почти вся та энергия, которую мы должны сообщить телу, чтобы произвести разрушения. В действительности 1 Дж/м2 – это совсем малое количество энергии. Так, согласно самой простой оценке упругая энергия, которую можно запасти в 1 кг сухожилий, достаточна для того, чтобы «заплатить» за 2500 м2 свежей поверхности битого стекла. (Такое действие эквивалентно визиту слона в посудную лавку.) Вот почему каменщик раскалывает кирпич точно пополам всего лишь легким ударом мастерка, а чтобы разбить тарелку или бокал, достаточно малейшей неловкости.

Хрупкие материалы по возможности не используются там, где они могут подвергнуться действию растяжений. Эти материалы являются хрупкими в первую очередь не потому, что имеют низкую прочность на разрыв,– это означало бы, что для их разрушения требуется небольшая сила, – а потому, что для их разрушения требуется только небольшая энергия.

Технические и биологические материалы, которые используются в условиях растяжения и в этом смысле являются относительно безопасными, для образования новой поверхности при разрушении требуют значительно большей энергии. Другими словами, работа разрушения для них значительно (несравненно!) больше, чем в случае хрупких твердых тел. Для практически вязкого трещиностойкого материала величина работы разрушения обычно лежит в пределах 103-106 Дж/м2. Поэтому энергия, требуемая для разрушения сварочного железа или мягкой стали, может быть в миллион раз больше энергии, требуемой для разрушения в таком же поперечном сечении стекла или керамики, хотя величины статической прочности на разрыв этих материалов не сильно различаются. Поэтому таблица значений прочности на разрыв, подобная табл. 2, в случае если ее используют для выбора какого-то конкретного материала, может дезинформировать конструктора. По этой же причине классическая теория упругости, основанная главным образом на силах и напряжениях, которая старательно разрабатывалась в течение столетий – и еще более старательно преподавалась студентам, – сама по себе не может правильно предсказывать разрушение реальных материалов и конструкций.

Таблица 4. Приближенные величины работы разрушения и прочности при растяжении некоторых распространенных материалов

Вещество / Приближенное значение работы разрушения Дж/м2 / Приближенное (номинальное) значение прочности на разрыв МН/м2

Стекло, керамика / 1-10 / 170

Цемент, кирпич, камень / 3-40 / 4

Полиэфирные и эпоксидные смолы / 100 / 50

Нейлон, полиэтилен / 103 / 150-160

Кость, зубная ткань / 103 / 200

Дерево / 104 / 100

Мягкая сталь / 105 – 106 / 400

Высокопрочная сталь / 104 / 1000

Хотя в деталях механизм поглощения столь огромных количеств энергии в виде работы разрушения в вязких трещиностойких материалах часто является тонким и сложным, общий принцип его действия весьма прост. В хрупком твердом теле работа, производимая в процессе разрушения, на самом деле сводится к той работе, которая необходима, чтобы разорвать химические связи на возникающей в процессе разрушения новой поверхности или в ее непосредственной окрестности. Как мы уже видели, соответствующая энергия мала и составляет около 1 Дж/м2 В трещиностойком материале, несмотря на то что прочность и энергия каждой индивидуальной связи остаются теми же, изменения структуры материала в процессе разрушения распространяются на гораздо большую глубину. Практически эти изменения вполне могут распространяться на глубину свыше сантиметра, то есть на глубину, измеряемую 50 млн. атомов под видимой поверхностью разрушения. Поэтому если в процессе нагружения разорвется только одна межатомная связь, то энергия, требуемая для образования новой поверхности, увеличится в миллионы раз, что, как мы видели, и имеет место в действительности. Молекулы, находящиеся вдали от поверхности разрушения, способны, таким образом, поглощать энергию и вносить свой вклад в сопротивление разрушению.

Высокие значения работы разрушения мягких металлов обязаны в первую очередь пластичности этих материалов. Это означает, что при их растяжении кривая деформирования отклоняется от закона Гука при совсем небольших напряжениях, после чего материал начинает деформироваться пластически, подобно пластилину (рис. 21). Если стержень или лист из такого металла разрушается в результате растяжения, то, перед тем как произойдет разрыв, материал вытягивается словно патока или жевательная резинка. На концах в месте разрыва образец принимает коническую форму и выглядит примерно так, как показано на рис. 22. Такую форму разрушения часто называют шейкообразованием.

Рис. 21. Кривая деформирования для пластичного металла (мягкая сталь). Заштрихованная область представляет работу разрушения металла.

Рис. 22. Работа разрушения пропорциональна объему пластичсски деформированного металла (заштрихованная область) и поэтому, грубо говоря, пропорциональна t2. Работа разрушения тонкого листа может быть очень малой. а – металлическая плита большой тощины, б – тонкий металлическии лист.

Шейкообразование и другие подобные формы пластического разрушения возможны потому, что многие из бесчисленных слоев атомов в кристаллах металла способны скользить относительно друг друга. Дислокационный механизм этого скольжения не только обеспечивает взаимное проскальзывание слоев подобно картам в колоде, но и поглощает энергию, и весьма большую. Результатом всех этих сдвигов, скольжений и смещений в кристаллах является то, что металл обретает способность значительного формоизменения и поглощения упругой энергии.

Дислокационный механизм скольжения[32]32
  См. «Почему мы не проваливаемся сквозь пол», гл. 3 и 9, где дается элементарное представление о дислокациях; более полно вопрос освещен в книге: Cottrell A. The Mechanical Properties of Matter (Wiley, 1964 etc.).


[Закрыть]
, постулированный первоначально Дж. Тейлором в 1934 г., был предметом интенсивных научных исследований в течение последних 30 лет. Он оказался исключительно тонким и сложным. Процессы, происходящие в столь, казалось бы, простой вещи, как кусок металла, оказались не менее хитроумными, чем большинство процессов в живых биологических тканях. Забавно, что этот хитроумный механизм, вероятно, не конструировался с какой-то определенной целью. Природа сама не может, так сказать, извлекать из него пользу, поскольку в своих конструкциях она никогда не использует металлы, которые и в самородках-то встречаются весьма редко. Однако дислокации в металлах оказались чрезвычайно полезными для инженеров, можно сказать, что они были изобретены для их пользы, поскольку именно благодаря дислокациям металлы не только обладают трещиностойкостью, но и допускают ковку, обработку давлением и одновременно упрочение.

А вот у искусственно созданных пластиков и волокнистых композитов способы поглощения упругой энергии при разрушении иные. Механизм их совершенно отличен от механизма поглощения металлов, но достаточно эффективен. У биологических материалов также, по-видимому, имеются весьма совершенные механизмы получения больших величин энергии разрушения, которые работают весьма изощренным образом. Способ, реализующийся, например, в древесине, исключительно эффективен, и работа разрушения дерева, взятая на единицу веса, больше, чем для большинства сортов стали[33]33
  Снова см. «Почему мы не проваливаемся сквозь пол», гл. 8. 89


[Закрыть]
.

Продолжим теперь обсуждение вопроса о том, как упругая энергия в эластичной конструкции умудряется перейти в работу разрушения. Если угодно, в чем же действительная причина разрушения?


    Ваша оценка произведения:

Популярные книги за неделю