355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дж. Д. Магдугалл » Краткая история планеты Земля. Горы, животные, огонь и лед » Текст книги (страница 6)
Краткая история планеты Земля. Горы, животные, огонь и лед
  • Текст добавлен: 17 сентября 2016, 19:06

Текст книги "Краткая история планеты Земля. Горы, животные, огонь и лед"


Автор книги: Дж. Д. Магдугалл


Жанр:

   

История


сообщить о нарушении

Текущая страница: 6 (всего у книги 19 страниц)

Никто не может точно сказать, как именно начинается субдукция, когда две плиты начинают сближаться, но ключом к их взаимодействию является, по-видимому, плотность пород. Плотная океаническая кора может подвергнуться субдукции, исчезнув в глубине Земли почти бесследно, в то время как сравнительно легкие континенты всегда остаются на поверхности. Вот почему дно океанов всегда молодо, а континенты стары: морское дно не только непрерывно образуется в разломах океанических хребтов, но и постоянно уничтожается в зонах субдукции. Как мы уже видели, отдельные части континентов имеют возраст почти четыре миллиарда лет, в то время как самые древние части морского дна не старше 200 миллионов лет. Один из первых пропагандистов идеи континентального дрейфа сравнил континенты с пеной, накапливающейся на поверхности кастрюли с кипящим супом, – живое, хотя не сказать, чтобы очень точное сравнение.

Реальность субдукции подтверждается землетрясениями, которые ее сопровождают. Хотя сейсмичность является характерной особенностью всех типов границ между плитами, только зоны субдукции отличаются глубокими землетрясениями, которые происходят на глубине 600 километров или более. Глубокие землетрясения были известны задолго до того, как тектоника плит приобрела популярность. В 1928 году японский сейсмолог К. Вадати сообщил о землетрясениях, происшедших под Японией на глубине нескольких сот километров. Приблизительно через двадцать лет другой геофизик, Хуго Бениоф, показал, что и в других частях света существуют «большие разломы», отмечающиеся частыми землетрясениями, которые погружаются глубоко в мантию из океанских рвов, как бы продолжая их на глубину. Он описал несколько таких разломов, расположенных как вдоль западного побережья Южной Америки, так и на юго-западе Тихого океана в желобе Тонга. Эти области в то время не были интерпретированы как зоны субдукции и лишь позднее стало ясно, что эти гигантские плоско-наклонные зоны повышенной сейсмичности точно следуют по пути плит, погружающихся внутрь мантии (рис. 5.4). Землетрясения возникают потому, что погружающиеся в горячую мантию части океанических плит остаются сравнительно холодными, в противоположность окружающим их породам мантии, остаются даже на больших глубинах настолько хрупкими, что в них могут возникать трещины, порождающие землетрясения. Некоторые из самых глубоких землетрясений могут также возникать по той причине, что минералы в погружающихся частях плит становятся неустойчивыми в обстановке больших давлений, которым они там подвергаются, и разрушаются внезапно, образуя более плотные минералы, резко изменяя при этом свой объем.

В противоположность сравнительно спокойным прорывам базальтовой лавы вдоль осей расхождения плит, вулканизм, свойственный зонам субдукции, часто проявляется очень бурно. Хотя эта вулканическая активность Земли и создает потрясающе прекрасные вулканы, как, например, гора Фудзи в Японии, она также вносит свой вклад во множество катастроф, сопровождающих историю Земли. Примерами таких катастроф являются погребение древнего римского города Помпеи под слоем горячего вулканического пепла, выброшенного соседним вулканом Везувий, грандиозное уничтожение всего живого вокруг в результате взрыва вулкана Кракатау в Индонезии в 1883 году и совсем недавно взрыв вулкана Пинатубо на Филиппинских островах в 1991 году. Почему существует вулканизм в зонах субдукции? В главе 2 мы намекнули на возможный ответ: океанические плиты содержат воду. В мощных толщах осадков, накапливающихся на океанском дне, по мере того как оно движется от места своего образования у хребтов к месту своего уничтожения в зонах субдукции, накапливается вода. Кроме того, во время этого долгого путешествия происходит реакция некоторых минералов базальтовой коры с морской водой и образуются другие, водосодержащие минералы. Хотя во время столкновения плит часть этих осадков соскребается с опускающейся плиты и выбрасывается на сушу, другая их часть уносится в мантию на значительные глубины. Во время опускания этих осадков вдоль зоны субдукции большая часть свободной воды, содержащейся в порах между зернами, выжимается увеличившимся давлением и пробивается обратно на поверхность. Но какая-то ее часть остается, как и вода, связанная в структуре минералов коры. В конце концов увеличивающиеся температура и давление изгоняют из пород и эту воду, и она просачивается в мантию в верхней части зоны субдукции. Именно этот процесс вызывает вулканизм. На тех глубинах, где вода изгоняется из пор и из самих минералов, окружающая мантия уже весьма горяча, а добавление воды понижает температуру плавления пород настолько, что это плавление начинается. Этот принцип должен быть знаком жителям северных городов, которые зимой рассыпают на улицах соль, чтобы понизить температуру плавления (таяния) льда.

Во всех субдукционных зонах Земли активный вулканизм неизбежно возникает приблизительно на одной и той же высоте над опускающейся плитой, а именно – около 150 километров. Такова приблизительно глубина, на которой разрушаются водосодержащие минералы,

освобождая воду, которая способствует плавлению. Характерным для этой обстановки типом пород является андезит, получивший свое название, как вы можете догадаться, по названию горной цепи в Южной Америке (Анды), где эта порода весьма распространена. Лабораторные эксперименты показывают, что андезит представляет собой именно ту породу, образование которой следовало бы ожидать, если породы мантии расплавить в присутствии воды, выделившейся из погрузившейся плиты; эта вода объясняет также взрывной, бурный характер вулканизма, свойственного зонам субдукции. По мере приближения магмы к земной поверхности растворенная в ней вода и другие летучие компоненты в ответ на понижение давления быстро расширяются; это расширение часто имеет характер взрыва.

Многие из самых крупных землетрясений происходят вдоль зон субдукции. Это и не удивительно, если подумать, что происходит в этих областях: два гигантских куска земной коры, каждый толщиной около 100 километров, сталкиваются друг с другом, причем одна плита вталкивается под другую. К несчастью, некоторые районы, расположенные вблизи зон субдукции, очень плотно заселены. Мы можем предсказать со стопроцентной уверенностью, что в таких областях мощные разрушительные землетрясения будут продолжаться; вряд ли это будет большим утешением перед перспективой таких катастрофических событий, как землетрясение в Кобэ в Японии, происшедшее в начале 1995 года.

И все же Земля – это динамичная планета; даже зоны субдукции существуют не вечно, по крайней мере с точки зрения геологического времени. В конце концов они перестают действовать, и где-нибудь образуются другие. Какие же события могут остановить процесс субдукции?

Чаще всего это столкновение между континентами после того, как океаническая кора, существовавшая между ними, оказывается израсходованной в процессе субдукции. Вспомним, что очень часто литосферные плиты состоят из континентальной и океанической коры. В то время как сама плита, может быть, и безразлична к природе своих пассажиров, этого нельзя сказать о зоне субдукции. Она просто не в состоянии заглотить континентальную кору с ее низкой плотностью. Поэтому, когда океанический бассейн в конце концов закрывается благодаря субдукции, два обломка континентальной коры просто сталкиваются и припаиваются друг к другу; субдукция прекращается. Упрощенный набросок такого процесса показан на рис. 5.5. Он не так уж прост, как можно подумать по приведенному описанию; в типичном случае столкновение между континентами сопровождается мощным вулканизмом, метаморфизмом и горообразованием и занимает очень много времени.

Пожалуй, самым выдающимся примером такого процесса, взятым из недавнего прошлого, является столкновение между Индией и Азией, более подробно описанное в главе 11, в результате которого возникли Гималаи. Когда-то давным-давно на том месте, где сейчас располагаются Гималаи, существовала зона субдукции, вдоль которой находящаяся южнее плита погружалась на север под Азию, а между Азией и континентом Индии, который располагался южнее, находился обширный океан. Породы Гималаев и Тибетского плато свидетельствуют, что эта ситуация продолжалась очень долгое время, в течение которого много мелких фрагментов плавучей континентальной коры, перемещенных вместе с этой океанической плитой, прибыло с юга к зоне субдукции и приклеилось к южному краю Азии. Но постепенно дно океана было поглощено зоной субдукции, в результате чего Индия притянулась к северу. Между 50 и 60 миллионами лет назад угол этого континента достиг зоны субдукции и стал прижиматься к Азии. Инерция его движения заставила северную часть Индии проскользнуть под южную часть азиатской плиты, образуя участок континентальной коры толщиной в два раза больше, чем где-либо еще в мире. Осадки, смытые с окраин двух сближенных континентов еще до их столкновения, вулканические острова, существовавшие вдоль их краев, и породы самих континентов попали в ловушку гигантского столкновения, были смяты в систему параллельных складок, разбиты на блоки системой разломов и метаморфизованы. В результате образовалась самая высокая горная цепь и самое большое плоскогорье на Земле.

Рис. 5.5. Схематический разрез, показывающий, как процесс субдукции может закрыть океанский бассейн и привести к столкновению континенты, образуя огромные горные системы типа Гималаев.

Обширная горная страна Гималаев все еще считается границей плиты, потому что до сих пор существует относительное движение между Азией и Индией. Эта страна пока поднимается; там довольно часты землетрясения. Действительно, землетрясения, снимающие напряжения, возникающие в земной коре, происходят в наши дни уже вдали от зоны столкновения, особенно в Китае, как результат того факта, что части Азии были сжаты и повернуты к востоку в момент, когда обе плиты устремились друг на друга. Однако в конце концов, когда прекратится относительное движение между двумя ранее отделенными друг от друга континентами, Гималаи будут признаны неактивной шовной зоной, находящейся внутри континента. Но когда это произойдет, кое-чему другому придется отодвинуться, чтобы дать пристанище новой области морского дна, образующейся вдоль океанического хребта, лежащего далеко к югу (рис. 5.2). Проведенные в последние годы исследования морского дна вблизи от Шри-Ланки показывают, что южнее этого острова, возможно, образуется новая зона субдукции, которая разрешит геометрическую головоломку.

Столкновения континента с континентом, подобные тому, что произвели на свет Гималаи, видимо, происходят регулярно на протяжении геологической истории. Хотя созданные ими высокие горы давно разрушились, следы таких событий можно распознать в древних породах по тому факту, что они образуют характерные длинные полосы сильно метаморфизованных пород, имеющих приблизительно одинаковый возраст. Хорошим примером такой области является провинция Грэнвиль в восточной части Северной Америки (рис. 4.3), которая была, без сомнения, в глубокой древности очень похожа на нынешние Гималаи.

РАЗЛОМ САН-АНДРЭАС

Разлом Сан-Андрэас в Калифорнии является, подобно Гималаям и среднеокеанским хребтам, границей плиты. Города Лос-Анджелес и Сан-Диего, лежащие западнее этого разлома, располагаются на Тихоокеанской плите и движутся в том же направлении, что и остров Гавайи, в то время как город Беркли, находящийся к востоку от разлома, движется вместе с Нью-Йорком и Майами на Северо-Американской плите (рис. 5.6). Границы между плитами, которые проходят по разломам, подобным разлому Сан-Андрэас, были названы трансформными разломами; они встречаются главным образом в океанах, соединяя между собой сегменты раздвигающихся хребтов. Именно они являются причиной того, что края плит имеют зигзагообразную форму. Около таких разломов нет ни схождения (сближения), ни расхождения (раздвига) плит; они просто движутся мимо друг друга. Если попробовать изобрести тектонику плит, разбив внешнюю оболочку шара на куски, которые заходили бы друг под друга на одних границах и обновлялись бы на других, то обнаружится, что особые формы, похожие на трансформные разломы, – это просто геометрическая необходимость.

Наиболее знаменитый или, если угодно, печально известный трансформный разлом – это разлом Сан-Андрэас в Калифорнии. Он также соединяет сегменты системы океанических хребтов, но в противоположность большинству трансформных разломов, прорезает часть континента. Эволюция разлома Сан-Андрэас весьма интересна (рис. 5.6). Около 50 или 60 миллионов лет назад существовала зона субдукции, протягивавшаяся вдоль всего Западного берега Северной Америки. Западнее от нее в море находился океанический хребет, вдоль которого в осевом разломе формировалось новое морское дно. Но Северо-Американская плита двигалась на запад быстрее, чем росло новое морское дно, и в конце концов континент просто переехал через океанический хребет. Это впервые случилось около тридцати миллионов лет назад и продолжалось с перерывами до тех пор, пока небольшая плита между хребтом и зоной субдукции не была постепенно попросту съедена. Сохранились кое-какие небольшие обломки ее против берегов Мексики и южнее, а также против штатов Орегон, Вашингтон и Британская Колумбия к северу. Но по мере исчезновения этой плиты появились новые границы между плитами, чтобы облегчить глобальное взаимодействие плит в их движении. В ответ на это литосфера раскололась около края континента. Небольшая часть Северо-Американской плиты прикрепилась к Тихоокеанской плите, и родился разлом Сан-Андрэас.

На мировой карте литосферных плит, как, например, на рис. 5.2, трансформные разломы имеют вид аккуратных тонких линий. В действительности они представляют собой очень сложные границы, особенно когда они располагаются на континентальной коре. Хотя на геологической карте есть только один большой разлом, обозначенный как «разлом Сан-Андрэас», который действительно имеет вид величественного ущелья, особенно сверху, на самом деле литосферные плиты скользят одна вдоль другой на протяжении очень широкой области Калифорнии, отличающейся множеством разломов и признаков деформации. Многие из них ориентированы более или менее параллельно по отношению к самому разлому Сан-Андрэас; большая часть проявлений столь известной сейсмической активности в Калифорнии сосредоточена вдоль этих менее известных разломов.

Рис. 5.6. Эти диаграммы (сверху вниз) показывают, как развивался западный край Северной Америки, постепенно надвигаясь на раздвигающийся среднеокеанический хребет (двойные линии) в Тихом океане. Вплоть до первой половины третичного периода вдоль всего побережья существовала зона субдукции (зубчатые линии), в которой дно Тихого океана подворачивалось под Северную Америку (верхняя схема). В настоящее время (нижняя схема) трансформный разлом – разлом Сан-Андрэас – соединяет сохранившиеся сегменты океанического хребта в Калифорнийском заливе и к западу от Ванкувера в северо-восточной части Тихого океана. Небольшой осколок континента, включающий Баджа (Baja), Калифорния, Лос-Анджелес и побережье Калифорнии к северу от Сан-Франциско, является сейчас частью Тихоокеанской плиты, движущейся на северо-запад относительно остальной части континента. Составлено согласно рис. 16.24 из книги: В. Дж. Скиннер и С. С. Портер «Динамическая Земля». Изд-во «Джон Уайли и Сыновья». Использовано с разрешения.

Итак, суммируя вышеизложенное, отметим, что литосферные плиты придают поверхности Земли мозаичную структуру, имеют края, представляющие собой океанические хребты, от которых расходится морское дно, либо зоны субдукции или трансформные разломы; именно в этих краевых областях сосредоточена большая часть проявлений земного вулканизма, сейсмической активности и метаморфизма. Окружающая всю Землю система океанических хребтов, самые высокие горы Земли и ее самые прекрасные и самые опасные вулканы – все они располагаются на границах литосферных плит.

ГОРЯЧИЕ СТОЛБЫ В МАНТИИ

Из вышесказанного можно было бы сделать вывод, что внутренние части плит являются в геологическом плане спокойными областями земной коры, и по большей части это так и есть. Тем не менее есть и исключения. Например, при взгляде на карту Тихого океана сразу же бросается в глаза, что внутри Тихоокеанской плиты, вдалеке от ее краев, очень много островов. И все они являются вулканами. Многие из них уже неактивны («потухшие вулканы»), а некоторые даже целиком заросли кораллами, но все они образовались в результате вулканизма.

Но как возможна вулканическая активность в таком удалении от границ плит? Гавайские острова являются в этом отношении поучительным примером. Подобно многим другим островным группам в океанах они расположены цепочкой. В сущности, если обозначить на карте и подводные вулканы, то получится очень длинная и действительно впечатляющая цепь, простирающаяся от собственно Гавайских островов до Алеутского рва (рис. 5.7). В 1840-х годах американский геолог Джеймс Дэли заметил, что различные острова этой группы, видимо, прошли сходный путь геологической эволюции, но все более эродируются и поэтому, вероятно, чем восточнее, тем старше. Затем в 1963 году, в самом начале эпохи разработки тектоники плит, канадский геофизик Тьюзо Уилсон понял, что это закономерное увеличение возраста островов могло получиться при условии, что они возникали в поверхностной литосферной плите, перемещавшейся над неподвижным вулканическим источником, находящимся под нею. Уилсон предположил, что длинная цепь вулканов, протянувшаяся на северо-запад от острова Гавайи, представляет собой проявление на поверхности какой-то древней и глубоко укорененной локальной структуры в мантии.

Рис. 5.7. Цепь островов и подводных погасших вулканов простирается на запад от Гавайских островов в направлении к Алеутскому желобу. Определение абсолютного возраста пород из этих вулканов показало, что в направлении от ныне активных вулканов Гавайских островов на запад и северо-запад их возраст увеличивается (цифры на карте обозначают возраст в миллионах лет). Резкий изгиб цепи отражает изменение направления движения Тихоокеанской плиты около 45 миллионов лет назад.

Хотя эта идея и не была сразу воспринята геологами и геофизиками, сейчас она составляет главную опору тектоники плит. Ее подтверждает также тот важный факт, что датировка лавы из разных островов Гавайской (и других аналогичных ей) островной цепи показала, что их возраст увеличивается при движении от ныне активного вулкана именно так, как предполагал Дэли (рис. 5.7). Большинство вулканов, расположенных во внутренних частях плит, образовалось, как сейчас считается, в результате деятельности мантийных столбов – неподвижных источников вулканического материала, которые поднимаются из глубин мантии. Их современные проявления, такие как остров Гавайи, называются «горячими точками». Большинство крупных и активных вулканов, расположенных внутри океанических плит, сопровождаются образованным горячей точкой «хвостом», или цепью еще более древних потухших вулканов, которые как бы маркируют или провешивают путь поверхностной литосферной плиты над глубоко сидящим мантийным столбом. Эти столбы, по-видимому, возникают на больших глубинах, возможно даже на границе между ядром и мантией, и многие из них очень долго сохраняют свою активность. Самые древние вулканы в цепи Гавайских островов, образующие «хвост», связанный с конкретной горячей точкой, имеют возраст, приближающийся к восьмидесяти миллионам лет. Острова Таити и остров Пасхи в Тихом океане, острова Реюньон и Маврикий в Индийском океане и вообще большая часть островов во всех океанах Земли обязаны своим существованием мантийным столбам.

КАК ДАВНО РАБОТАЕТ ТЕКТОНИКА ПЛИТ?

Помимо того что многие из океанических вулканических островов являются очень приятным местом для посещения, эти острова и сопровождающие их «хвосты», образованные горячими точками, особенно полезны для геологов, поскольку они фиксируют места расположения плиты во время ее прохождения над неподвижным источником лавы. Поэтому они позволяют как бы прокрутить назад запись процесса расширения морского дна и реконструировать географию континентов и океанских бассейнов в далеком прошлом. Поскольку плиты обладают жесткостью, положение Тихоокеанской плиты, скажем, пятьдесят миллионов лет назад можно определить, передвигая ее так, чтобы вулканы, которым пятьдесят миллионов лет, оказались на месте расположения ныне действующего вулкана, например, сегодняшнего острова Гавайи.

Однако поскольку океанские бассейны являются на самом деле довольно эфемерными образованиями на геологической временной шкале, реконструирование географии мира путем прослеживания движения плит через горячие точки возможно только для последних пяти процентов геологического времени. Те же трудности возникают при попытке проследить историю расширения дна океана, используя аномалии магнитного поля, обусловленные сменой полярности магнитного поля Земли. Как можем мы получить информацию о движении плит в более ранние времена? О процессах, происходивших более 200 миллионов лет назад, единственные указания мы получаем только на континентах, но и их трудно найти и интерпретировать. Например, магнитные свойства континентальных пород можно иногда использовать для определения их положения относительно магнитного полюса во время их образования, но это можно сделать только в том случае, если породы имеют сегодня в точности ту же ориентировку, что и в то время, когда они приобрели свои магнитные свойства. Если они были смяты в складки или наклонились, то их интерпретация становится гораздо более трудной, если вообще возможной. Более того, поскольку континенты на протяжении своей геологической истории путешествовали по всему земному шару, то для очень древних пород оказывается невозможно даже определить, в северном или южном полушарии произошло их намагничивание.

Иногда информацию о положении плит дают ископаемые остатки организмов. Аргументы Вегенера в пользу дрейфа континентов опирались частично на свидетельство ископаемых остатков, показывавших, что некоторые материки, отделенные сейчас друг от друга широкими пространствами океана, когда-то соединялись друг с другом. Иногда они могут даже указывать на географическую широту места своего образования или по крайней мере их можно использовать для различения тропических типов среды их обитания от полярных. Однако ископаемые остатки организмов характеризуют лишь сравнительно поздние этапы геологической истории и бесполезны для этой цели в докембрии. Для протерозойской и архейской эр относительное положение плит и даже, в некоторых случаях, состав плит почти неизвестны. И в самом деле, еще недавно велись горячие споры о том, действовала ли вообще тектоника плит в столь отдаленном прошлом. И тем не менее, как было отмечено в главе 4, имеются многочисленные свидетельства о существовании континентальных швов в докембрии; эти швы должны отмечать места расположения древних зон субдукции, в которых древние континенты или их фрагменты сталкивались друг с другом при закрытии океанских бассейнов. Характер пород в этих зонах в общем похож на тот, что наблюдается в более поздних примерах. Убедительным признаком во многих таких шовных зонах является наличие небольших осколков океанского дна, выброшенных на материк во время столкновения плит, – ясное указание на то, что они образовались в районе сближения и столкновения плит в области субдукции морского дна. Таким образом, хотя и существует еще некоторое количество скептиков, большинство геологов убеждено, что тектоника плит действовала приблизительно так же, как и в наше время, миллиарды лет и даже, вероятно, с самого начала истории Земли.

Глаза 6.

ПРИРОДНЫЕ ЧАСЫ

В предыдущих главах много говорилось о времени. Геология является, в сущности, исторической наукой и поэтому время имеет в ней первостепенное значение. Земля образовалась 4,5 миллиарда лет назад, Атлантический океан начал открываться около 200 миллионов лет назад, динозавры вымерли 66 миллионов лет назад. Все эти утверждения содержат вполне точные даты важных событий в истории Земли. Как можем мы быть уверенными в том, что они верны?

Древние греки и римляне вывели из своих наблюдений над природой, что осадочные породы образовывались в течение долгих промежутков времени. Однако только Джеймс Хаттон, выдающийся шотландский геолог, выдвинувший принцип актуализма, первый в Новое время стал убеждать своих современников, что летопись горных пород уходит поистине в древнейшие времена. Его подход к проблеме геологического времени был прост и классически научен: он наблюдал протекающие вокруг него процессы осадконакопления и понял, что обычно они протекают очень медленно. Из этого он сделал вывод, что мощные выходы недавно затвердевших осадков, которые он наблюдал в крутых обрывах, должны свидетельствовать об очень длительных периодах накопления осадков. Дарвин, который был знаком с идеями Хаттона, также пришел к выводу, что для объяснения процессов биологической эволюции, которые записаны

в ископаемых остатках горных пород, требуется огромное время.

Но ни один из этих ученых, как и никто из их современников, которые были убеждены в огромной древности Земли и медленном темпе геологических изменений, не имели способа точно определить геологическое время. И тем не менее геологами была предложена шкала времени, охватывающая сотни миллионов лет, и числовые оценки, которые были революционными в их время. Многие представители влиятельной элиты того времени получили образование, опирающееся на теологию; такие идеи находились в резкой оппозиции к принятой тогда буквальной интерпретации Библии. Ведь именно из-за враждебного отношения христианской церкви были отброшены идеи древних греков о древности осадочных пород и находящихся в них окаменевших остатках организмов. Более того, подобно гипотезе Вегенера о континентальном дрейфе, представления передовых ученых о настолько древней Земле подвергались нападкам других ученых. Особенным влиянием во второй половине девятнадцатого века пользовался английский физик Лорд Кельвин, который еще в конце этого века доказывал, что Земля не может быть старше сорока миллионов лет, а вероятнее всего имеет возраст не больше двадцати миллионов лет, который он определил на основе своей теории о процессе ее охлаждения. Его доводы, казалось, были правильными, и геологам было трудно в то время противопоставить им какие-либо количественные расчеты, но они противоречили геологическим фактам.

Один из просчетов в аргументации Лорда Кельвина, как мы сейчас знаем, состоит в том, что он не знал того факта, что Земля содержит ряд естественно встречающихся радиоактивных изотопов. Она медленно распадаются, выделяя тепло в этом процессе и эффективно продлевая процесс охлаждения Земли. Но в то время, когда Кельвин делал свои вычисления, радиоактивность была еще неизвестна, поэтому он не мог учесть ее влияние на процесс охлаждения Земли.

Существует забавный рассказ об Эрнесте Резерфорде, одном из пионеров исследования радиоактивности, который имеет отношение к оценке возраста Земли Лордом Кельвином. Однажды Резерфорд читал лекцию о теплоте, выделяющейся в процессе радиоактивного распада. Он нервничал, поскольку Лорд Кельвин, еще имевший мощное влияние в английской науке, находился среди публики. В своей гладкой речи он объявил, что в сущности Лорд Кельвин предвидел открытие радиоактивности, поскольку его расчет возраста Земли был сделан при условии, что результат вычислений мог бы оказаться иным, если бы был найден новый источник внутреннего тепла Земли. Рассказывали, что Лорд Кельвин, которому тогда было восемьдесят лет, клевал носом во время лекции, но проснулся с широкой улыбкой, когда услышал заявление Резерфорда.

Помимо выделения тепла внутри Земли, радиоактивность также снабдила геологов целой серией надежных «часов» для измерения возраста горных пород и скорости протекания различных геологических процессов. Но прежде чем обсудить подробности того, как это делается, имеет смысл рассмотреть, как ученые подходили к оценке геологического времени до открытия методов датировки горных пород на основе явления радиоактивности. Ведь по существу большая часть элементов за период в 550 миллионов лет геологической шкалы времени (рис. 1.1), то есть весь фанерозойский эон, была разработана задолго до того, как были определены действительные даты важнейших геологических границ. Были известны относительные положения различных временных подразделений, но не их длительность.

Понятие относительного времени просто, но в то же время является очень мощным инструментом для определения возрастных взаимоотношений между различными геологическими телами, как уже отмечалось в главе 4 и иллюстрировалось на рис. 4.1. Этот подход очень прост и часто сводится к вопросу: порода А старше, чем порода Б, или наоборот? Один из наиболее очевидных аспектов понятия относительного времени был интуитивно известен многие тысячи лет, но был четко сформулирован только в семнадцатом столетии: в последовательности осадочных слоев самый молодой материал находится наверху. Человеком, который придумал этот закон, был датский анатом, который жил в Италии и латинизировал свое скандинавское имя (Нильс Стеной) в Николаус Стеной. Стеной внес важный вклад в медицину, а также в геологию и минералогию, но, к сожалению, в возрасте тридцати семи лет сделался священником и оставил науку. Указав на очевидное – а именно, что осадки, выпавшие в воде, должны первоначально образовать горизонтальные слои, независимо от их теперешней ориентировки, и что самые молодые слои должны быть сверху, – он заложил основу для создания геологической шкалы времени.

Однако Земля представляет собой весьма динамичное место и невозможно найти в каждой отдельной местности полную, слой за слоем, запись всех событий фанерозоя. Как же можно в таком случае построить геологическую временную шкалу, даже пользуясь только относительным временем? Ответ заключается в факте эволюции и в постоянной и непрерывной изменчивости ассоциаций – то есть совместно встречающихся сообществ – ископаемых остатков организмов, сохранившихся в осадочных породах.

И действительно, более чем за полстолетия до того, как Дарвин опубликовал свои идеи об эволюции, некий английский инженер по имени Уильям Смит, который занимался составлением карт вдоль каналов в южной части Англии, обнаружил, что может начертить всю объединенную вертикальную последовательность осадочных слоев, которые он нашел на разной высоте и в разных местностях. Он сделал это, используя ископаемые остатки, или, говоря точнее, ассоциации ископаемых остатков, которые встречались в различных осадочных породах, которые он наносил на карту. Он смог свести в один разрез сложную последовательность пород, поскольку во многих местах наблюдалось их частичное перекрытие. Это легко себе представить, если обозначить конкретные группы ископаемых остатков, совместно и постоянно встречающиеся в осадочных породах, буквами латинского алфавита, – так, чтобы буква А обозначала самые древние (рис. 6.1). В обрыве в некоторой местности могут выходить на поверхность осадочные слои, содержащие группы ископаемых остатков А, В, С и D, в другом обнажении встречаются слои с группами С, D и Е; в третьей местности обнаружены группы С, Е, F и G. Совмещая слои с одинаковыми группами ископаемых остатков, встречающиеся в разных местах, можно построить на сводном разрезе полную вертикальную последовательность, как если бы все эти слои присутствовали в одном месте. Согласно правилу Стенона, в таком разрезе самые древние породы должны находиться внизу, а самые молодые наверху. Исходя из этого, несмотря на то, что группы А и В ни разу не были найдены в тех же местностях, что и группы F и G, очевидно, что F и G моложе, что следует из сводной относительной временной последовательности. В принципе мы знаем также, что, если бы какая-либо из этих групп была встречена где-нибудь в другом месте мира, ее можно было бы поместить на ее место во временной шкале эволюции по отношению к другим группам.


    Ваша оценка произведения:

Популярные книги за неделю