355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дж. Д. Магдугалл » Краткая история планеты Земля. Горы, животные, огонь и лед » Текст книги (страница 5)
Краткая история планеты Земля. Горы, животные, огонь и лед
  • Текст добавлен: 17 сентября 2016, 19:06

Текст книги "Краткая история планеты Земля. Горы, животные, огонь и лед"


Автор книги: Дж. Д. Магдугалл


Жанр:

   

История


сообщить о нарушении

Текущая страница: 5 (всего у книги 19 страниц)

Глава 5.

ТАНЕЦ ПЛИТ

Лет тридцать или сорок тому назад некоторые идеи, высказанные в предыдущей главе, в частности, мысль о том, что в течение протерозоя континенты раскалывались и расходились в стороны или спаивались вместе, многим геологам показались бы просто скандальными. Сегодня такие описания принимаются как должное. В последние годы развитие теории тектоники плит полностью изменило представление геологов о Земле. Прежде чем продолжить наше путешествие по геологической истории, стоит коротко рассмотреть эволюцию самой тектоники плит и наше современное представление о движении континентов по поверхности Земли.

Большинство людей, вдумчиво рассматривавших карту мира, в центре которой обычно располагается Атлантический океан, замечали, что, если его удалить, контуры его береговых линий совпали бы. Несмотря на тот факт, что тысячи людей должны были заметить эту особенность, лишь в начале двадцатого века стали серьезно обдумывать последствия этого наблюдения. Именно тогда Альфред Вегенер, немецкий метеоролог, стал собирать и изучать сведения о флоре и фауне континентов, разделенных Атлантическим океаном. Он также тщательно исследовал все, что было тогда известно об их геологии и палеонтологии, о найденных на них ископаемых остатках организмов. Проанализировав полученные данные, Вегенер пришел к неизбежному выводу, что различные континенты, включая Южную Америку и Африку, в далеком прошлом составляли одно целое. Он открыл, например, что некоторые черты геологического строения Южной Америки, которые резко обрываются береговой линией Атлантического океана, имеют как бы продолжение в Африке, и когда он, вырезав из карты, сдвинул эти континенты навстречу друг другу, как кусочки гигантской головоломки, то геологические особенности этих континентов совпали, как бы продолжив друг друга. Он также обнаружил, что существуют геологические признаки древнего оледенения, охватившего примерно в одно и то же время Австралию, Индию и Южную Африку. Он также обнаружил, что можно совместить эти континенты таким образом, что районы их оледенений образовали бы единую площадь. В 1915 году он опубликовал (в Германии) книгу, озаглавленную «Происхождение континентов и океанов», в которой очень подробно рассмотрел эти доказательства и выдвинул свою теорию «континентального дрейфа». И все же, несмотря на массу собранных геологических данных, Вегенер проглядел многие важные детали и весьма вольно отбирал факты в поддержку своей гипотезы. Частью по этой причине его гипотезу не приняли в то время всерьез. Более того, выдающиеся физики того времени объявили, что внешние части Земли слишком жестки, чтобы позволить континентам дрейфовать подобно кораблям в море. В частности, они указали, что те силы, которые призвал Вегенер, чтобы передвигать континенты, – центробежные силы, возникающие в результате вращения Земли вокруг своей оси, – слишком слабы для такой работы. Идеи Вегенера «пошли ко дну» из-за отсутствия подходящего механизма: было сказано, что без подходящей движущей силы дрейф континентов невозможен.

И все же Вегенер был на правильном пути. Пускай и не совсем так, как он предполагал, но континентальный дрейф оказался реальностью. Как и предполагал Вегенер, Африка и Южная Америка действительно в древности соединялись друг с другом. По крайней мере один раз за всю историю Земли все современные континенты соединялись, образуя один сверхконтинент, который протягивался от полюса до полюса. Континентальный дрейф Вегенера рассматривается в учебниках геологии, его преподают в институтах, он образует фундамент многого из того, что сейчас понято в механизмах работы Земли. Сегодня это называется тектоникой плит.

ФАКТЫ» ДОБЫТЫЕ С ОКЕАНСКОГО ДНА

Возрождение идей Вегенера в виде теории тектоники плит произошло главным образом в результате исследований океанского дна, выполненных в 1950-е и 1960-е годы. Во время и после Второй мировой войны Военно-Морской флот США был очень заинтересован в том, чтобы узнать об океанском дне как можно больше. Геологи и геофизики с готовностью включились в эту работу – одни, возможно, из патриотических побуждений, но многие потому, что увидели в интересе Флота золотую возможность узнать больше об океанском дне. В то время это был передовой край науки, ведь дно океанов было практически неведомой территорией. Даже в более позднее время многие геологи любили говорить, что мы больше знаем об обращенной к нам поверхности Луны, чем о морском дне. Флотское начальство оказалось щедрым, и океанографические исследования быстро расширялись. Результаты их по большей части были засекречены, но сделанные открытия подтолкнули науку о Земле к новому и более качественному пониманию протекающих в Земле процессов.

Одним из поразительных результатов интенсивного исследования дна океанов стали новые знания о его топографии. Конечно, кое-какая информация, собранная за долгую историю морских путешествий, уже имелась. Самые первые измерения производились очень просто – бросали за борт измерительный трос (лот) и отмеряли длину вытравленного троса, но эти данные были ограничены мелководными, прибрежными районами моря, где в основном было сосредоточено мореходство. Появившиеся на кораблях в 20-х годах эхолоты были еще очень несовершенны и широко распространились значительно позже. Именно с их помощью в 1950-е и 1960-е годы была собрана обширная информация об океанском дне. Проведенные тогда измерения позволили определить с высокой точностью продолжительность времени, необходимого для прохождения звукового импульса от корабля до морского дна и обратно. Так как скорость звука в морской воде хорошо известна, то по времени прохождения звукового импульса легко вычислить глубину моря. Вся прелесть эхолота заключается в том, что он может работать непрерывно, день и ночь, независимо от того, что делает корабль. В каждой океанографической экспедиции эхолот работал постоянно; в результате стали проясняться детали строения океанского дна.

Сегодня гораздо легче картировать топографию океанского дна – это можно сделать с помощью спутников, даже не посылая корабли в море. Спутники очень точно измеряют «высоту» морской поверхности. После того как учтено влияние приливов и волн и введены соответствующие поправки в исходные измерения, появляется удивительная картина. Различия в уровне моря от места к месту в точности отображают топографию морского дна. Это объясняется тем, что мелкие вариации земного притяжения, обусловленные рельефом дна, – например, избыточная масса крупного вулкана или, наоборот, дефицит массы из-за наличия глубокого рва – влияют на уровень поверхности моря над ними. Эта сравнительно новая технология позволила обнаружить некоторые особенности дна, которые были неразличимы при исследовании с кораблей.

Но вернемся к информации о топографии морского дна, собранной океанографическими кораблями в 50-х и 60-х годах. Скоро после начала работ стало совершенно ясно, что дно океанов по своему рельефу и другим особенностям отнюдь не так однообразно, как это представлялось. По общему мнению, глубокие моря рассматривались как геологически спокойные, не подверженные изменениям места, где с начала времен слой за слоем откладывались тонкий ил и другие осадки, смываемые с континентов. Лишь немногие исследователи пробовали глубже задуматься над этой картиной, поскольку если бы она была верна, то количество накопившихся в океане осадков было бы огромно. Однако по мере поступления материала об океанском дне стало очевидно, что вместо плоского, лишенного каких-либо особых примет дна глубоких морей, прикрытого покровом осадков, на нем обнаружились огромные хребты, глубокие рвы, крупнейшие вулканы и крутые обрывы. Науке был брошен вызов, необходимо было немедленно разобраться, каким образом могли возникнуть такие особенности морского дна.

Многие из читателей, вероятно, видели популярные карты мира, впервые изданные Национальным географическим обществом, на которых показан рельеф не только суши, но и дна морей и океанов. Хотя они до некоторой степени идеализированы, наиболее бросающейся в глаза особенностью этих карт являются огромные хребты, или поднятия, выступающие над средним уровнем дна. Уже говорилось о том, что если бы из океанов удалить воду, то именно эти черты рельефа Земли были бы в первую очередь заметны при взгляде из космоса. Особенно выделяется на картах горный хребет, протянувшийся по оси Атлантического океана, что частично обусловлено тем, что этот океан обычно расположен на картах в центре. Срединно-Атлантический хребет рассекает океан точно посредине, повторяя все выступы и впадины береговой линии на каждой его стороне, и таким образом грубо рассекая карту на две половины. В среднем он возвышается приблизительно на 2,5 километра над наиболее глубокими частями океана, расположенными к западу и к востоку от него; на большей части его протяжения как раз по осевой линии проходит рифт, то есть ущелье или долина с крутыми склонами. В северной части Атлантического океана. Срединно-Атлантический хребет поднимается над поверхностью океана, образуя остров Исландию.

Хребет, рассекающий Атлантику, является фактически лишь частью более или менее непрерывной системы хребтов, которая протягивается через все океаны. Она окружает антарктический континент, протягивается двумя ветвями в Индийский океан и до Аравийского моря. Она изгибается вдоль берегов восточной части Тихого океана и, кажется, заканчивается тупиком недалеко от нижней Калифорнии в Мексике, но затем небольшой сегмент ее появляется снова у берегов северо-западной части Соединенных Штатов и Британской Колумбии. Каково происхождение этой системы океанических хребтов, являющихся такой заметной особенностью Земли? Почему она не оказалась погребенной под покровом осадков, вынесенных из континентов? И какую связь она имеет с дрейфом континентов и тектоникой плит?

Наблюдение, которое, как считается, породило вспышку интуиции, прояснившей происхождение системы океанических хребтов и в конце концов приведшее к разработке теории тектоники плит, пришло из совершенно неожиданного источника, а именно из исследования магнитных свойств пород океанического дна. В своих попытках узнать как можно больше о морском дне геофизики в числе других показателей измеряли магнитные поля вдоль многочисленных маршрутов экспедиционных кораблей. Было уже известно, что горные породы, содержащие магнитные минералы, могут несколько изменять земное магнитное поле над ними, а на континентах измерения интенсивности магнитного поля проводились с целью поисков полезных ископаемых и для решения задач геологического картирования. Многие промышленные месторождения полезных ископаемых содержат в высоких концентрациях магнитные минералы; их присутствие создает характерные аномалии регионального магнитного поля. Следует отметить, что на континентах структура магнитного поля обычно очень сложна, в соответствии со сложной геологией. В противоположность этому, когда впервые позади океанологических кораблей стали буксировать магнитомеры, было обнаружено, что рисунок магнитных аномалий на дне океанов, отражающий магнитные свойства пород океанского дна, отличается замечательной закономерностью. Это наблюдение впервые было сделано учеными из Института океанографии Скриппса; оно весьма их озадачило. Когда они проводили морскую магнитную съемку в районе северо-западного побережья Соединенных Штатов еще в 1950-е годы, оказалось, что узоры магнитных карт, которые они получили, резко отличались от всего, что они видели на континентах. В конце концов был сделан вывод, что закономерный рисунок локальных магнитных аномалий был, вероятно, каким-то образом связан с довольно правильным рисунком рельефа морского дна в этом районе с характерным чередованием удлиненных параллельных низкогорий и долин. Однако эта гипотеза продержалась очень недолго. Проведенная в 60-х годах воздушная магнитная съемка на территории Атлантического океана как раз к югу от Исландии принесла поразительные, ставшие с тех пор классическими, результаты. В серии параллельных маршрутов, пересекающих ось Срединно-Атлантического хребта, ученые из Геологической обсерватории Ламонта из Колумбийского университета обнаружили, что узоры магнитного поля над морским дном изменяются симметрично относительно осевой линии хребта. Более того, они нашли, что график изменения магнитного поля вдоль маршрута, пересекающего хребет, был на разных маршрутах в основном одинаков. Когда эти данные (то есть местоположения точек замера и измеренные значения интенсивности магнитного поля) были нанесены на карту и проведены изолинии (линии равных значений характеристик магнитного поля), то они образовали полосатый зеброподобный узор на карте интенсивности магнитного поля, напоминающий узор, открытый учеными Института Скриппса в северо-восточной части Тихого океана, но отличающийся от последнего явной симметрией (рис. 5.1). И в этом случае поражал контраст с характером поля над континентами. По мере дальнейшего накопления данных становилось все более ясно, что эта симметрия узора магнитного поля встречается повсюду вдоль системы океанических хребтов.

Когда изверженные породы охлаждаются из исходного расплавленного состояния, некоторые железосодержащие минералы, образующиеся в них, магнетизируются земным магнитным полем. Это выглядит так, словно сами минералы содержат крохотные магнитные стерженьки – наподобие компасных игл, – и все они ориентируются одинаково под воздействием окружающего магнитного поля Земли. Эта магнитизация является непрерывным во времени процессом; таким образом, график магнитного поля вдоль маршрута, пересекающего хребет, является как бы ископаемой записью изменений магнитного поля во время образования пород разных частей графика. Эта запись оказывается весьма стойкой и сохраняется в течение долгого времени. Геолого-геофизические съемки вдоль маршрутов, ориентированных перпендикулярно простиранию Срединно-Атлантического хребта, показали, что породы, находящиеся точно над осью хребта, сильно намагничены в направлении современного магнитного поля, как и следовало ожидать. Но симметричный зеброобразный узор магнитного поля, по-видимому, указывает, что морское дно намагничено по-разному в разных полосках, параллельных протяжению хребта. Некоторые из этих полос намагничены нормально, подобно полоскам, лежащим на оси хребта: направление их намагниченности соответствует ориентировке современного магнитного поля Земли. Но они чередуются с полосками, намагниченными противоположным образом, как если бы в то время, когда эти полосы возникали, северный и южный полюсы Земли поменялись местами.

Земное магнитное поле имеет строение так называемого диполя, то есть подобно полю, которое получилось бы, если бы в немагнитную Землю вставить гигантский магнитный стержень. В то время, когда проводились первые магнитные съемки морского дна, у большинства ученых не было никаких оснований полагать, что в геологическом прошлом магнитное поле Земли очень отличалось от современного. Однако приблизительно в это же время исследования намагниченности горных пород на континентах обнаружили загадочное явление. Было установлено, что в некоторых районах, в которых накопились мощные толщи базальтовых потоков, большая часть потоков имеет направление намагничивания, соответствующее ориентировке изолиний земного магнитного поля, но в других потоках направление намагничивания оказалось прямо противоположным. Первоначально полагали, что причиной этого явления был какой-то вторичный процесс, но когда аналогичная последовательность лавовых потоков с прямой и обратной намагниченностью была обнаружена в нескольких различных местностях, ученые поняли, что магнитное поле Земли в течение геологического времени неоднократно меняло свою полярность! Это был ошеломляющий вывод. На фоне этого открытия симметричное расположение меняющихся по своей полярности магнитных полос на морском дне приобрело большое значение. Хотя они, возможно, и не восклицали «Эврика!», но несколько исследователей – Лоренс Морли в Канаде, а также Фрэд Вайи и Драммонд Мэтьюз в Соединенном Королевстве – почти одновременно поняли, что магнитные полосы морского дна, колебания направления полярности на 180 градусов и дрейф континентов – все эти явления являются взаимосвязанными. Они неожиданно сообразили, что зеброобразный узор распределения намагниченности горных пород морского дна отражает ту же последовательность смены полярности земного магнитного поля, что и континентальные базальты.

Рис. 5.1. Магнитный узор морского дна южнее Исландии (верхняя схема) напоминает ряд полос зебры и состоит из чередующихся полос нормального (черное) и обращенного (белое) намагничения, располагающихся параллельно простиранию Срединно-Атлантического хребта. Во время своего излияния вдоль хребта и последующего затвердевания базальт намагничивается под воздействием магнитного поля Земли и затем расходится в стороны от разлома, как показано схематически на нижней части рисунка. На карте магнитных свойств морского дна видны только более долгие промежутки времени между обращениями полярности. Предполагаемое положение хребта, пересекающего Исландию, показано более крупным узором на сером фоне. Составлено по рисунку 1 из статьи Дж. Р. Херцлера, Кс. Ле Пишона и Дж. С. Бэррона в журнале «Глубоководные исследования» (Deep Sea Research), том 13, стр. 428 (1966). Использовано с любезного разрешения компании Элснвир Сайенс Лимитед. The Boulevard, Langford Lane, Kidlington, OXSIGB, U.K.

Эти наблюдения убедили большинство геологов, что раздвиг морского дна в стороны от океанических разломов – это реальность. Новая океаническая кора образуется лавой, непрерывно поступающей с глубины в осевых частях океанических хребтов. Магнитный узор пород морского дна симметричен по обе стороны оси хребта потому, что вновь поступившая порция лавы намагничивается при своем застывании в твердую породу и равномерно расширяется по обе стороны от срединного разлома. Морское дно, таким образом, работает, как гигантский магнитофон, точно записывающий смену направления напряженности земного магнитного поля (рис. 5.1). Поскольку даты различных обращений были известны в результате анализа горных пород на суше, магнитные полосы океанского дна можно было использовать как метки. Скорость возникновения новой порции морского дна можно очень просто рассчитать, измерив расстояние от центра – точнее, оси хребта, где возраст морского дна всегда равен нулю, к полосам, соответствующим различным датированным обращениям поля. Геологи называют эти магнитные полосы магнитными аномалиями и для удобства ссылок на них дали им номера. Для тех, кто с ними работает, эти аномалии стали добрыми друзьями. «Ага, это похоже на Аномалию 29Р!» (буква Р обозначает обращенную, то есть с обратным направлением намагниченности, a N – аномалию с нормальным, соответствующим современному направлению поля).

Хотя скорость образования морского дна и варьируется от места к месту, ее величина, вычисленная по магнитным аномалиям, составляет в основном несколько сантиметров в год. Она примерно соответствует скорости роста ваших ногтей – не так уж быстро, но в то же время заметно, если время от времени будете забывать подстригать их. Континенты, расположенные по разные стороны Атлантического океана, с этой скоростью движутся в разные стороны, отдаляясь друг от друга, что объясняет, почему океаны не заполнены доверху осадками: в геологическом смысле они очень молоды. Хотя несколько сантиметров в год – это действительно очень медленно, весь Атлантический океан при такой скорости мог образоваться за двести миллионов лет, не так уж много по геологическим меркам. На самом деле дно любого из существующих мировых океанов не намного старше. По сравнению с континентами породы океанского дна просто младенцы.

По обе стороны Атлантического океана континенты прочно прикреплены к породам океанского дна. Они расходятся в стороны со скоростью, зависящей от скорости образования новой порции морского дна на оси Срединно-Атлантического хребта. В силу этого механизма возражения физиков против вегенеровского понимания континентального дрейфа оказываются, в сущности, недействительными, поскольку континенты в своем движении не пропахивают себе путь через твердые породы океанского дна; и континенты и океаническая кора движутся вместе, как одно целое, являясь частями одной литосферной плиты (рис. 1.2 и 5.2).

ТЕКТОНИКА ПЛИТ

Существование узора магнитных аномалий морского дна и понимание описанного выше процесса их образования окончательно решили проблему континентального дрейфа. Этот термин был быстро заменен в равной степени описательным, но более точным выражением «раздвиг морского дна». 1960-е годы были трудным временем для геологов – развитие идей о расширении морского дна и его последствий некоторые называли даже революцией и сравнивали с подъемом в физике, вызванным появлением теории относительности и квантовой механики. Все следствия факта раздвига морского дна были быстро выведены как теоретиками, пытавшимися объяснить этот процесс математически, так и экспериментаторами, которые, используя все более изощренные приборы, проводили измерения с целью проверки математических теорий. Многие еще недавно малопонятные явления вдруг стали казаться совершенно естественными в контексте теории раздвига дна океанов. Вскоре после этого и раздвиг морского дна, и дрейф континентов были вписаны в более широкую и далеко идущую теорию, которая получила название теории тектоники плит.

Что же в сущности представляет собой эта теория плит и почему ей уделяется столько внимания в науке о Земле? На самом простейшем уровне это как бы глобальная рама, или основа, в которой протекают почти все геологические процессы нашего времени, и с помощью которой можно понять большую часть истории Земли. Конечно, есть еще много деталей, которые нельзя объяснить с помощью тектоники плит, но пока неясно, вытекает это из недостатков самой теории или мы просто не до конца понимаем все процессы. Тем не менее в общем и целом теория тектоники плит является очень мощным инструментом, облегчающим наше понимание того, как работает Земля.

Слово «тектоника» происходит от греческого «тектон», означающего «строитель» или «плотник». Плитами в тектонике плит называют куски литосферы, то есть сравнительно жесткой внешней оболочки Земли, которая в среднем простирается на глубину до 100 километров (рис. 1.2), хотя местами бывает толще или тоньше. В настоящее время различают десять плит среднего и большого размера и значительно больше «микроплит» (рис. 5.2). Как отмечалось выше, по поверхности Земли движутся не континенты, а литосферные плиты. Континенты и океаны – это только попутные пассажиры. Плиты могут перемещаться в силу того, что внутренняя часть Земли имеет высокую температуру и может пластически деформироваться и течь. Трудно представить себе, чтобы обычные породы вели себя так пластично, но полезно вспомнить, что другие твердые вещества, которые мы в повседневной жизни считаем хрупкими, также становятся текучими, если их подвергнуть умеренным давлениям в течение длительного промежутка времени, например, лед ледников. Основание плит находится на такой глубине, где породы пребывают практически в диапазоне своей температуры плавления и трение между относительно жесткой литосферой и подстилающей ее мантией почти минимально.

Механизм движения плит, их действительная движущая сила все еще до конца неизвестны. Но это больше не является поводом для осмеяния, как было во времена Вегенера. Мы знаем, что плиты действительно перемещаются; мы можем даже, чтобы доказать этот факт, с помощью спутников достаточно точно измерить, как изменяется расстояние между двумя точками на разных плитах и даже определить скорость перемещения плит.

Мы знаем также, что требующаяся для движения плит энергия исходит в конечном итоге из самой Земли, как вследствие ее продолжающегося охлаждения из первоначального горячего состояния, так и от тепла, создаваемого в результате радиоактивного распада урана и тория, распределенных во всей массе Земли. Это тепло переносится к поверхности путем медленной, происходящей в твердом состоянии конвекции и в конце концов рассеивается в космическом пространстве. Сцепление между горячей, конвектирующей мантией и более холодной жесткой литосферой тоже, вероятно, частично обусловливает движение плит.

Большая часть геологического представления происходит у границ между плитами. Сюда входят вулканизм, землетрясения, горообразование, метаморфизм и даже образование многих типов промышленно важных месторождений полезных ископаемых. Но не все края плит ведут себя одинаково. Рисунок 5.2 показывает, что в одних местах плиты расходятся в стороны, в других они сталкиваются, а в некоторых местах они просто скользят друг мимо друга. Поскольку не существует никакой независимой системы отсчета для изучения движения плит, нам известны только их относительные движения. Можно, конечно, стать на краю какой-нибудь плиты и определить, движется ли соседняя с ней плита в нашу сторону или от нее, но мы никак не можем определить их абсолютные направления движения.

Рис. 5.2. Карта мира, показывающая расположение главных литосферных плит. Каждая плита окружена океаническими хребтами, от осей которых идет растяжение (жирные линии), зонами столкновения и субдукции (зазубренные линии) и/или трансформными разломами (тонкие линии). Названия приведены только для некоторых из самых крупных плит. Стрелки указывают направления относительных движений плит.

Границы плит классифицируются в зависимости от типа относительного движения плит вдоль этих границ. Каждая граница имеет свои особые характеристики. Например, на границах различного типа образуются разные породы. Распознавание их стало особенно важным для ученых, стремящихся заглянуть в прошлое, поскольку древние аналоги современных явлений могут быть определены на основе сохранившихся записей в геологической летописи.

РАСХОДЯЩИЕСЯ ПЛИТЫ

Там, где плиты расходятся друг от друга, в земной коре возникают рифты, то есть глубокие трещины. Базальт, наиболее обычный результат расплавления пород земных глубин, поднимается, чтобы заполнить их; как мы видели, именно таким образом образуется морское дно. Расходящиеся границы плит встречаются большей частью в океанах. Как ни парадоксально это может показаться с первого взгляда, рифты, проявляющиеся в рельефе Земли как долины или впадины, часто находятся как раз в осевой части океанических хребтов, представляющих собой широкие топографические поднятия, как это показано на рис. 5.3. Океанические хребты возникают в результате поднятия вещества мантии и сопутствующих термодинамических процессов. По мере того как вновь образовавшаяся кора отодвигается в стороны от хребта, она охлаждается, сжимается, уплотняется и опускается на меньшую высоту. Глубина океана здесь увеличивается приблизительно в два раза, от 2,5 километра до пяти, считая от осевой линии хребта до более древних частей океанского дна, далеко отстоящих от района раздвига плит.

Большинство современных океанических хребтов фактически зародились как рифты внутри континентов.

Рис. 5.3. Схематический поперечный разрез через среднеокеанский хребет, показывающий рифтовую долину внутри приподнятой центральной части хребта. Черные вертикальные линии обозначают проводники, через которые магма изливается из мантии на морское дно.

Начальной стадией этого процесса является образование глубокой, с крутыми стенками долины, отличающейся в типичном случае сильным вулканизмом. Таково было происхождение среднеконтинентального рифта, который почти расколол пополам Северную Америку в протерозое; современным примером такого раскола может служить Восточно-Африканская рифтовая долина. По мере продолжения раздвига полная активности континентальная кора, состоящая из пород, менее плотных по сравнению с базальтом, внедрившимся в рифт, в конце концов раскалывается на две части. Между ними вторгается море; таким образом возникает зародыш нового океанического бассейна. Именно так должен был протекать этот процесс, когда около 180 миллионов лет назад начал раскрываться Атлантический океан, отделяя Европу и Африку от Америки. В наше время начальные этапы расщепления континента можно наблюдать в Красном море, где Африка отделяется от Саудовской Аравии вдоль линии, являющейся продолжением системы хребтов Индийского океана. Все океанические бассейны мира возникли в результате рифтообразования; все они вымощены океаническим базальтом. Контраст между плотной корой океанов и более легкой, более плавучей корой континентов является причиной разницы их высот над уровнем моря.

Вдоль океанических хребтов непрерывно возникает новое океанское дно и тут же симметрично отходит в стороны от разлома. В то время как очертания берегов континентов сохраняют свою узнаваемость на протяжении долгих промежутков геологического времени, география океанских бассейнов изменяется гораздо быстрее. Измеренные скорости раздвига около современных океанических хребтов колеблются от одного-двух сантиметров в год до двадцати. Даже если взять нижнюю границу этого интервала, то и в этом случае выходит, что за 100 миллионов лет может образоваться океанский бассейн шириной в 1000 километров.

СТОЛКНОВЕНИЕ ПЛИТ И ЗОНЫ СУБДУКЦИИ

Если постоянно возникает так много нового морского дна, а Земля не расширяется (и существует достаточно доказательств этого), тогда, чтобы компенсировать этот процесс, что-то на глобальной коре должно разрушаться. Именно это происходит на окраинах большей части Тихого океана. Здесь литосферные плиты сближаются, и на их границах одна из сталкивающихся плит погружается под другую и уходит глубоко внутрь Земли. Такие участки столкновения плит называются зонами субдукции (погружения, подныривания одной плиты под другую); на поверхности Земли они отмечаются глубокими океаническими рвами (желобами) и активными вулканами (рис. 5.4). Грандиозные цепи вулканов, образующие так называемое огненное кольцо, протянувшееся вдоль берегов Тихого океана, – Анды, Алеутские острова, а также вулканы Камчатки, Японии и Марианских островов – все они обязаны своим существованием явлению субдукции.

Рис. 5.4. Схематический поперечный разрез зоны субдукции (верхняя часть, не в масштабе) показывает литосферную плиту, опускающуюся в глубины мантии, и активные вулканы над нею. В нижней части рисунка точками изображены положения очагов землетрясений, зафиксированных под желобом Тонга в юго-западной части Тихого океана. В совокупности они отмечают расположение погружающейся плиты до глубины приблизительно 700 километров. Отметки на горизонтальной шкале показывают расстояние от желоба. Составлено с частичным использованием рисунка 4-10 из книги П. Дж. Уилли «Как работает Земля». Изд-во «Джон Уайли и Сыновья», 1976.


    Ваша оценка произведения:

Популярные книги за неделю