355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дональд Голдсмит » История всего » Текст книги (страница 6)
История всего
  • Текст добавлен: 17 марта 2017, 17:30

Текст книги "История всего"


Автор книги: Дональд Голдсмит


Соавторы: Нил Тайсон

Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 22 страниц)

Надо отметить, что постоянная Хаббла меняется со временем. Новая и улучшенная диаграмма Хаббла, включающая в себя галактики в миллиардах световых лет от нас, когда-нибудь откроет не только значение сегодняшней постоянной Хаббла (выраженной в градиенте линии, соединяющей точки соответствия расстояния и скорости удаления каждой отдельной галактики), но и динамику скорости расширения Вселенной за последние миллиарды лет. Значение скорости расширения Вселенной в начале ее существования будет определено данными в верхних значениях графика, так как они соответствуют наиболее далеким из изученных галактик (а значит, предстающим перед нами в своем глубоко «прошлом» виде). Таким образом, диаграмма Хаббла, охватывающая расстояния вплоть до многих миллиардов световых лет, сможет дать нам историческую картину расширения Вселенной, описанную ее переменной скоростью расширения.

На пути к данной цели миру астрофизиков повезло: у них было две команды-соперницы, и обе тщательно изучали сверхновые звезды. Результаты этих исследований были впервые обнародованы в феврале 1998 года, и их эффект превзошел все ожидания. Если бы гонцом космических новостей была только одна группа ученых, ей вряд ли удалось бы пробить естественный скептицизм своих многоуважаемых коллег, которые не сдали бы без боя свои давно признанные и выпестованные убеждения об устройстве Вселенной. Но в этом случае две команды скептически целились в первую очередь друг в друга и потому особо тщательно принялись искать ошибки в полученных соперниками данных или выводах на их основании. Когда и те и другие объявили, что их все устраивает (несмотря на изначальную предубежденность друг против друга) и что конкуренты справились с задачей, миру космологии не оставалось иного выбора, кроме как принять, хоть и поначалу довольно сдержанно, новости с передовой космических исследований.

Новости заключались в том, что самая далекая сверхновая звезда типа Ia оказалась более бледной, чем отдалось. Это означает, что сверхзвезды расположены чуть дальше, чем следовало бы, что, в свою очередь, означает, что что-то заставило Вселенную расширяться быстрее, чем следовало бы. Что же спровоцировало ускорение расширения? Единственный возможный обвиняемый, подходящий по всем параметрам, – это темная энергия, таящаяся в пустом пространстве, та самая энергия, чье существование соответствует ненулевой космологической постоянной. Определив расстояние, на которое та далекая сверхновая звезда оказалась дальше, чем ожидалось, две команды астрономов определили саму форму и судьбу Вселенной.

Когда две команды, изучавшие сверхновые звезды, достигли единодушия, оказалось, что космос… плоский. Для наглядности придется немного повозиться с греческим алфавитом. Чтобы описать Вселенную с ненулевой космологической постоянной, нам нужно еще одно число. К постоянной Хаббла, обозначаемой нами как H0 (это ее значение в наше время), и к средней плотности вещества, которая сама по себе определяет кривизну пространства при нулевом значении космологической постоянной, мы должны добавить эквивалент плотности, которую обусловливает темная энергия. Она, согласно эйнштейновской формуле E = mc2, обладает выраженным в массе (т) эквивалентом энергии (E).

Космологи записывают плотность вещества и темной энергии с помощью символов ΩΜ и ΩΛ, где Ω, (греческая заглавная «омега») представляет собой отношение космической плотности к критической. ΩΜ – это отношение средней плотности всего вещества во Вселенной к критической плотности, а ΩΛ – отношение эквивалентной плотности темной энергии к критической. В данном случае Λ (греческая заглавная «лямбда») представляет собой космологическую постоянную. В плоской Вселенной с нулевой кривизной пространства сумма ΩΜ и ΩΛ всегда равняется единице, потому что суммарная плотность (вещества и эквивалентной веществу темной энергии) должна строго равняться критической плотности.

Наблюдения за далекими сверхзвездами типа Ia помогли измерить разницу между ΩΜ и ΩΛ. Вещество замедляет расширение Вселенной, так как гравитация притягивает все ко всему остальному, затрудняя отдаление друг от друга. Чем выше плотность вещества, тем больше гравитационное взаимодействие замедляет процесс. Однако темная энергия делает кое-что принципиально другое. В отличие от скоплений вещества, чье взаимное притяжение замедляет космическое расширение, темная энергия обладает странным свойством: она заставляет пространство расширяться, тем самым дополнительно ускоряя этот процесс. Чем шире пространство, тем больше в нем становится темной энергии, так что расширяющаяся Вселенная – самый что ни на есть настоящий бесплатный сыр сами знаете где. Новоявленная темная энергия заставляет космос расширяться еще быстрее, и бесплатного сыра становится все больше и больше – и так до бесконечности. Значение ΩΛ отражает собой размер космологической постоянной и позволяет нам оценить абсолютное значение тенденции темной энергии к расширению своего окружения. Когда астрономам удалось измерить отношение удаленности галактик к их скоростям удаления, они обнаружили, во что выливается противостояние гравитации и темной энергии. Согласно их подсчетам, ΩΛ– ΩΜ = 0,46 (±0,03). Так как астрономы на тот момент уже определили, что значение ΩΜ составляет примерно 0,25, на основе этой формулы легко установить, что ΩΛ предположительно равняется 0,71. Тогда в сумме ΩΛ и ΩΜ дают 0,96 – а это почти полноценная единица, которую прочит нам инфляционная модель Вселенной. Более свежие данные внесли в эти цифры уточняющие дополнения, благодаря чему сумма ΩΛ + ΩΜ еще больше приблизилась к единице.

Несмотря на единодушие между двумя соперничающими группами экспертов по сверхновым звездам, некоторых космологов все же было трудно убедить до конца. Не каждый день ученым случается оставить многолетние убеждения, такие, скажем, как нулевое значение космологической постоянной, и заменить их принципиально новым выводом о том, что темная энергия заполняет собой каждый кубический сантиметр пустого пространства. Почти все скептики, которые внимательно следили за приключениями теорий об устройстве космоса, в конце концов присоединились к новой версии, после того как смогли переварить результаты новой серии отчетов спутника, созданного для того, чтобы с беспрецедентной точностью записывать свои наблюдения за реликтовым излучением. Этот спутник – всемогущий WMAP, уже упомянутый в главе 3, – начал записывать свои полезные наблюдения в 2002 году, и к началу 2003 года у него накопилось для космологов достаточно данных для того, чтобы на их основании составить всеохватную небесную карту микроволнового излучения, несущего на себе большую часть космического фонового излучения. Хотя более ранние исследования уже позволили сделать несколько базовых выводов и без такой карты, они все же были сделаны на основании куда более скудных данных, собранных лишь с отдельных участков неба.

Полноценная карта неба от WMAP стала кульминацией многолетних трудов множества специалистов, а также определила раз и навсегда самые важные особенности реликтового излучения.

Самый выдающийся и значительный аспект новой карты, как и в случае с наблюдениями с аэростатов и наблюдениями, сделанными с помощью предшественника WMAP – спутника COBE[24]24
  От англ. COsmic Background Explorer – «Исследователь фонового излучения».


[Закрыть]
, заключается в ее почти полной безликости. Вы не найдете никаких заметных различий в интенсивности излучения, идущего со всех сторон, пока не доберетесь в своих измерениях примерно до одной тысячной доли значений. Но и тогда едва различимые отличия принимают форму лишь незначительного повышения интенсивности излучения в одном конкретном направлении и соответствующего незначительного понижения интенсивности излучения в противоположном направлении. Эти различия вызваны движением нашей галактики Млечный Путь среди соседних с ней галактик. Из-за эффекта Доплера мы принимаем чуть более явный сигнал в направлении такого движения не потому, что само реликтовое излучение сильнее, а потому, что наше движение навстречу ему слегка увеличивает энергетический след фотонов, которые мы можем обнаружить.

Скорректировав результат со скидкой на эффект Доплера, мы получаем ровное реликтовое излучение, но это только вплоть до уровня стотысячных долей его величины. На этом уровне обнаруживаются крошечные отклонения от всеобщего единообразия. Эти отклонения можно сопоставить с участками, из которых реликтовое излучение приходит чуть более или чуть менее ярким. Как уже отмечалось ранее, разница в интенсивности связана с направлениями, в которых вещество чуть горячее и плотнее (или прохладнее и разреженнее) среднестатистического вещества в районе 380 тысяч лет после Большого взрыва. Спутник COBE первым заметил эти различия. Инструментальные измерения с помощью аэростатов и исследования на Южном полюсе уточнили имеющиеся у нас данные, а затем спутник WMAP предоставил еще более детальные сведения о небесном своде, что дало космологам возможность создать подробную карту плотности реликтового излучения с невообразимой ранее точностью углового разрешения вплоть до одного градуса.

Незначительные отклонения в однообразии реликтового излучения, обнаруженные и спутником COBE, и спутником представляют космологов более чем просто мимолетный интерес. Так, они показывают нам зачатки структурного строения Вселенной в то время, когда фоновое излучение перестало взаимодействовать с веществом. Регионы, в которых вещество чуть плотнее среднего, в те далекие времена получили фору для дальнейшего сокращения и выиграли эти космические соревнования, собрав у себя большую часть вещества с помощью гравитации. Первым важным заключением, которое позволяет сделать новая карта распределения реликтового излучения, является следующее: подтверждаются космологические теории о том, что огромная разница в плотности вещества от региона к региону Вселенной, наблюдаемая сегодня, существует благодаря крошечным различиям в плотности вещества, которые сложились во Вселенной через несколько сотен лет после Большого взрыва.

Однако космологи могут использовать новые результаты своих наблюдений за реликтовым излучением еще и того, чтобы разгадать другую, более фундаментальную особенность устройства Вселенной. Подробная карта распределения реликтового излучения показывает нам кривизну самого пространства. Это удивительное заключение основано на том факте, что кривизна пространства влияет на путешествующее сквозь него излучение. Если, например, пространство искривлено положительно, тогда при наблюдении за реликтовым излучением мы оказываемся примерно в позиции стороннего наблюдателя, стоящего на Северном полюсе и глядящего вдоль поверхности Земли в направлении источника излучения в районе экватора. Так как линии долготы сходятся на полюсе, источник излучения предстает перед таким наблюдателем более остроугольным, чем было бы при абсолютно плоском пространстве.

Чтобы понять, как кривизна пространства влияет на угловой размер составляющих реликтового излучения, представьте себе время, когда оно наконец-то перестало взаимодействовать с веществом. Тогда крупнейшие отклонения от однообразия, что только могли существовать во Вселенной, обладали размером, который космологи могут подсчитать: возраст Вселенной, умноженный на скорость света, – и это равняется примерно 380 тысячам световых лет поперек. Это то самое максимальное расстояние, на котором частицы вещества еще могли иметь друг на друга какое-либо влияние и создавать какие-либо шероховатости. В случае с большими расстояниями «новости» от других частиц просто не успели бы еще добраться куда следовало, так что их нельзя винить в нарушениях распределения реликтового излучения.

Под каким углом эти максимальные отклонения расположились бы на небе сейчас, зависит от кривизны пространства, которую можно определить, сложив ΩΜ и ΩΛ. Чем ближе эта сумма к единице, тем ближе кривизна пространства к нулю (то есть тем более плоское пространство мы имеем) и тем больше угловой размер наблюдаемых нами максимальных отклонений от однообразия реликтового излучения. Данная кривизна пространства зависит только от суммы двух Ω, потому что оба типа плотности провоцируют кривизну пространства одинаковым образом. Получается, что наблюдения за реликтовым излучением предлагают нам прямое значение суммы ΩΜ + ΩΛ, а изучение сверхновых звезд – значение алгебраической разницы между ΩΜ и ΩΛ.

Данные спутника показывают, что для самых заметных отклонений от однообразия реликтового излучения характерен угол 1 градус, и это означает, что сумма ΩΜ + ΩΛ равняется 1,02 (±0,02). Так, в рамках границ экспериментально допустимой точности мы можем сделать вывод, что ΩΜ + ΩΛ = 1. Значит, пространство плоское. Результаты наблюдений за далекими сверхновыми типа Ia можно резюмировать строчкой ΩΛ – ΩΜ = 0,46. Если мы совместим этот результат с утверждением о том, что ΩΜ + ΩΛ = 1, мы получим следующие значения: ΩΜ = 0,27, а ΩΛ = 0,73; погрешность каждого из составляет несколько процентов. Как уже отмечалось ранее, это лучшие на сегодня предполагаемые значения двух ключевых космических параметров, имеющиеся в распоряжении у астрофизиков. Они демонстрируют, что на вещество – как на обычное, так и на темную материю – приходится лишь 27 % суммарной плотности вещества (или обычной энергии в его эквиваленте), в то время как на долю темной энергии приходится 73 %. Если хотите, можно рассматривать массовый эквивалент темной энергии – E/c2; тогда на долю темной энергии приходится 73 % всей массы Вселенной.

Ученые установили, что при ненулевом значении космологической постоянной относительное влияние вещества и темной энергии должны меняться с течением времени. С другой стороны, плоская Вселенная навсегда останется плоской, от своего рождения в результате Большого взрыва и вплоть до того бесконечного будущего, что ждет нас впереди. В плоской Вселенной сумма ΩΜ и ΩΛ всегда равна единице, а значит, если изменится одно слагаемое, и другое не сможет остаться неизменным.

В космические эпохи, наступившие вскоре после Большого взрыва, темная энергия не играла во Вселенной почти никакой роли. По сравнению с предстоящими вехами в ее истории, Вселенная тогда была столь мала, что на долю ΩΛ приходилось число немногим больше нуля, в то время как ΩΜ практически равнялась единице. В те времена Вселенная напоминала собой пространство без какой-либо космологической постоянной. Шло время, и значение ΩΜ постепенно уменьшалось, зато значение ΩΛ росло в обратной к нему пропорции, сумма же неизменно оставалась равной единице. Рано или поздно, через сотню миллиардов лет от сегодняшнего дня, ΩΜ упадет почти до нуля, зато ΩΛ будет расти и расти, пока не приблизится по своему значению к единице. Мы видим, что история плоской Вселенной с ненулевой космологической постоянной подразумевает переход от «ранних лет», когда темной энергии отводилась самая незначительная роль, к «настоящему», когда ΩΜ и ΩΛ были приблизительно равны, а затем и к бесконечному будущему, в котором вещество будет распределено по Вселенной столь разреженно, что ΩΜ будет бесконечно стремиться к нулю, хотя сумма двух Ω, все равно будет оставаться равной единице.

Наши наблюдения позволяют, с одной стороны, вычислить, что в данный момент в галактических кластерах величина. ΩΜ составляет примерно 0,25, с другой – наблюдения за реликтовым излучением и далекими сверхновыми звездами приводят значение, скорее близкое к 0,27. С учетом экспериментальной погрешности эти два значения можно считать «совпадающими». Если мы действительно живем во Вселенной с ненулевой космологической постоянной и если эта постоянная отвечает (в паре с веществом) за формирование плоской Вселенной, как это предсказывает инфляционная модель, тогда космологическая постоянная должна иметь значение, которое, в свою очередь, приближает значение ΩΛ к 0,7 с лишним. То есть оно в два с половиной раза больше значения ΩΜ. Другими словами, сейчас выполняет основную часть работы во имя того, чтобы сумма ΩΜ + ΩΛ равнялась единице. Это означает, что мы уже оставили позади ту эпоху, в которой вклад вещества и космологической постоянной в поддержание плоской формы Вселенной был равен (значение каждой Ω составило 0,5).

Прошло менее 10 лет, и прозвучавший двойной выстрел результатов наблюдений за сверхновыми звездами типа Ia и реликтовым излучением привел к переходу концепции темной энергии из статуса «какой-то там» идеи, на которой в свое время ненадолго остановился Эйнштейн, в статус непреложного космического факта о жизни. Если только в будущем не окажется, что все эти многочисленные данные получили неверную трактовку, были некорректно собраны или просто в корне неверны, нам останется лишь принять тот факт, что Вселенная никогда не сократится в размере и не прекратит свое существование. Вместо этого нас ждет довольно скучное будущее: через сотню миллиардов лет, когда большинство звезд уже выгорит, все, кроме самых ближайших галактик, навсегда исчезнет из нашего поля зрения.

К тому времени Млечный Путь соединится со своими ближайшими соседями, создав одну огромную – гигантскую! – галактику в буквальном смысле в настоящей космической глуши. В нашем ночном небе останется сколько-то звезд, мертвых еще функционирующих, и больше ничего. Астрофизикам будущего предстоит жить в весьма жестоком мире. Вокруг не будет ни одной галактики, которая помогла бы им отследить факт расширения Вселенной, и они, как и Эйнштейн, ошибочно предположат, что живут в статической Вселенной. Космологическая постоянная и ее темная энергия доведут Вселенную до состояния, в котором их нельзя будет не только измерить, но и в принципе вообразить.

Рекомендуем получать удовольствие от космологии, пока это еще возможно.

Глава 6
Одна Вселенная или множество?

В начале 1998 года мир космологии потрясло открытие, что мы живем в мире ускорения, в котором Вселенная не только постоянно расширяется, но и делает это все быстрее и быстрее. Тогда были объявлены первые результаты наблюдений за сверхновыми звездами, которые и помогли ученым прийти к заключению о расширении Вселенной. Сегодня, когда эта идея также окончательно заручилась поддержкой исследователей реликтового излучения (а у космологов было достаточно лет для того, чтобы пропустить через себя мысль о постоянно ускоряющемся космическом расширении), возникают два серьезных вопроса, и в поиске ответов на них космологи проводят дни и ночи: почему скорость расширения Вселенной растет, почему у этого ускорения именно такое значение и как оно характеризует Вселенную?

Простой ответ на первый вопрос перекладывает всю ответственность за ускорение расширения Вселенной на сам факт существования темной энергии же, что равнозначно, на наличие ненулевой космологической постоянной. Сама степень ускорения напрямую зависит от количества темной энергии на каждый кубический сантиметр пустого пространства: чем больше энергии, тем быстрее ускорение. Так, если бы ученые смогли объяснить, откуда берется эта самая темная энергия и почему сегодня во Вселенной ее именно столько, сколько есть, они могли бы с чистой совестью заявить, что разгадали фундаментальную загадку Вселенной: происхождение той энергии в пустом пространстве, которая неуклонно провоцирует космос на дальнейшее и все более стремительное расширение – вперед в будущее, в котором нас ждет поистине необъятное космическое пространство, не менее гигантские запасы темной энергии в нем и почти никакого вещества на один кубический световой год.

Откуда берется и что представляет собой темная энергия? Нащупать ответ космологи могут в глубинных пластах своих знаний о физике частиц: темная энергия – это продукт каких-то событий, происходящих в пустом пространстве (если не терять надежды на то, что квантовая теория достоверно описывает суть вещества и энергии). Вся физика частиц основана на данной теории, состоятельность которой столь многократно и очень точно была подтверждена в микроскопических условиях, что почти все физики не видят повода сомневаться в ней. Неотъемлемая часть квантовой теории подразумевает, что так называемое пустое пространство на самом деле гудит и дрожит от «виртуальных частиц», которые появляются в нем и исчезают быстрее, чем мы успеваем их заметить, однако позволяют нам отследить эффект своего существования (темную энергию). Собственно, возникает она в результате этого постоянного мельтешения – появления и исчезновения – виртуальных частиц, которое мы называем квантовыми флуктуациями вакуума (это специально для тех, кому нравится звонкая терминология физиков, остальные могут использовать слово «колебания»). Далее исследователи частиц могут без особых трудностей вычислить точное количество энергии, заполняющей каждый кубический сантиметр вакуума. Непосредственное применение квантовой теории к так называемому вакууму напрямую предполагает, что такие квантовые колебания должны производить темную энергию. Со стороны эта история звучит весьма непринужденно, и возникает резонный вопрос: почему же космологам понадобилось так много времени на то, чтобы обнаружить существование этой энергии?

К сожалению, в силу особенностей реального расклада вещей нам следует иначе сформулировать вопрос: как могли физики, изучающие частицы, так радикально ошибиться? Подсчеты количества темной энергии на каждый кубический сантиметр вакуума указывают на число примерно в 10120 раз большее, чем значение, экспериментально найденное космологами в процессе наблюдения за сверхновыми звездами и реликтовым излучением. В абстрактных астрономических ситуациях расчеты, которые оказываются приблизительно верными, демонстрируя ошибочность в десять или менее раз, зачастую воспринимаются как «временно удовлетворительные». Однако ошибку в 10120 раз под диван не спрячешь, даже если вы неисправимый оптимист в огромных очках с толстыми розовыми стеклами. Если бы в реальном вакууме темной энергии было столько, сколько следует из квантовых законов физики, Вселенная уже давно бы распухла до таких размеров, которых нам с вами никогда даже близко не вообразить, причем крошечной доли секунды хватило бы на то, чтобы разнести вещество по всему космосу в невероятно разреженном виде. Теория и наблюдения единодушны в своих выводах о том, что в пустом пространстве содержится темная энергия, однако в вопросах того, сколько именно такой энергии там можно обнаружить, они расходятся в миллиард в десятой степени раз. Чтобы наглядно проиллюстрировать это колоссальное расхождение, не получается придумать ни одного «земного» примера, да и космический тоже не приходит в голову. Расстояние от Земли до самой далекой известной нам галактики превышает размер одного протона в 1040 раз. Даже это гигантское число – всего лишь кубический корень из того, во сколько раз расходятся теория и практика относительно значения нашей космологической постоянной.

Специалисты по физике частиц и космологи давно знают, что квантовая теория задает неприемлемо высокое значение объема мировой темной энергии. Но в те дни, когда считалось, что значение космологической постоянной равно нулю, они надеялись обнаружить какое-либо еще объяснение своим наблюдениям – такое, которое, по сути, свело бы на нет сам вопрос к устройству Вселенной с помощью взаимного исключения положительных и отрицательных величин теории. Подобное взаимоисключение когда-то решило проблему того, каким количеством энергии виртуальные частицы наделяют обычные – видимые нам – частицы. Теперь же, когда мы знаем, что космологическая постоянная не равна нулю, надежды на то, что подобное решение методом «взаимоисключения» найдется, довольно призрачны. Однако, если такое решение существует, оно каким-то образом должно будет обесценить практически все те теоретические знания, которыми мы обладаем на сегодняшний день. Сейчас, из-за отсутствия объяснения размера космологической постоянной, ученым остается лишь продолжать плотное сотрудничество в областях космологии и физики частиц, стремясь найти способ привести в соответствие теорию о том, как в космосе рождается темная энергия с ее невероятно высокой концентрацией из расчета на один кубический сантиметр вакуума.

Светила современной физики частиц и космологии тратят немало сил на то, чтобы объяснить значение космологической постоянной – и безрезультатно. Отсюда и жаркий гнев бессилия в рядах ученых-теоретиков, не в последнюю очередь потому, что тот, кто сможет объяснить, как природа смогла создать именно такое космическое пространство, каким мы его наблюдаем, получит и Нобелевскую премию, и невообразимую радость открытия и научного прорыва. Но объяснение требуется еще многим вещам, и одна из них имеет самое прямое отношение к нашей теме обсуждения: почему количество темной энергии, выраженное в ее массовом эквиваленте, примерно равно количеству энергии, производимой всем веществом во Вселенной?

Этот вопрос можно задать и иллюстративно, с помощью двух Ω, представляющих собой плотность вещества и плотность массового эквивалента темной энергии: почему значения ΩΜ и ΩΛ приблизительно равны? Почему одно из них не больше другого в разы? В первый миллиард лет после Большого взрыва ΩΜ была практически равна единице, в то время как ΩΛ – нулю. В те далекие времена ΩΜ сначала была в миллионы, затем в тысячи и потом уже в сотни раз больше ΩΛ. Сегодня же, когда ΩΜ = 0,27 и ΩΛ = 0,73, эти два значения можно считать примерно равными друг другу, хотя ΩΛ и явно выше. В далеком будущем, более 50 миллиардов лет спустя, ΩΛ будет сначала в сотни, потом в тысячи и даже в миллионы, а потом и в миллиарды раз больше ΩΜ. Только в течение периода космической истории примерно от 3 до 50 миллиардов лет после Большого взрыва эти два значения более или менее соответствуют друг другу.

Для беспечного ума обывателя промежуток времени от 3 до 50 миллиардов лет – это очень много. С астрономической точки зрения это совсем мало. В астрономии популярен логарифмический подход к времени, когда рассматриваемый промежуток для удобства делят на интервалы так, чтобы каждый последующий был больше предыдущего в десять раз. Сначала Вселенной было столько-то лет, потом она стала в десять раз старше, потом еще в десять раз старше и так до бесконечности – бесконечное количество умножений на десять. Предположим, мы начхали отсчитывать время в тот самый миг, который с точки зрения квантовой теории имеет хотя бы какое-то значение – в 10–43 секунд после Большого взрыва. Так как в каждом году примерно 30 миллионов секунд (если точнее, то их 3 х 107), нам нужно примерно 60 степеней десяти (1060), чтобы пройти путь от 10-43 секунд после Большого взрыва до 3 миллиардов лет спустя. Но нам требуется всего лишь чуть больше, чем умножить имеющееся на этот момент число еще на десять, чтобы проскочить отрезок от 3 до 50 миллиардов лет – а именно в этот промежуток времени ΩΜ и ΩΛ приблизительно равны. Еще дальше – и бесконечное количество степеней десяти открывают дорогу в бесконечное будущее. С такой логарифмической точки зрения вероятность того, что мы будем жить в космических условиях приблизительного равенства ΩΜ и ΩΛ ничтожно мала. Майкл Тернер, ведущий американский космолог, даже дал этому парадоксальному явлению – вопросу о том, почему нам довелось жить в эпоху приблизительного равенства ΩΜ и ΩΛ, – шуточное название «загадка Нэнси Керриган» в честь олимпийской чемпионки США по фигурному катанию, которая, получив удар по коленке перед выходом на лед на этапе чемпионата США., в слезах вопрошала: «Почему я? Почему сейчас?»[25]25
  От англ. «Why me? Why now?» – этой фразой Нэнси Керриган, крутясь от боли и держа пострадавшее колено обеими руками, запомнилась в СМИ. Нападение на нее было совершено 6 января 1994 года по заказу доброжелателей ее соперницы – фигуристки Тони Хардинг.


[Закрыть]

Несмотря на то что космологам не удается вычислить такое значение космологической постоянной, которое хотя бы приблизительно походило на правду, у них есть ответ на загадку Нэнси Керриган. Правда, мнения о важности этого ответа и возможных из него выводах сильно расходятся. Одни принимают предлагаемые объяснения; другие внимают им весьма неохотно; третьи гарцуют вокруг да около; а четвертые отвергают полностью. Это объяснение связывает значение космологической постоянной с тем фактом, что вот они мы – живем именно на этой планете, вращающейся вокруг средней звезды в средней галактике именно сейчас. Аргумент следующий: раз мы существуем, значит, параметры, описывающие Вселенную, – и особенно величина космологической постоянной – обладают такими значениями, которые допускают наше существование.

Представьте, какой была бы Вселенная, в которой космологическая постоянная существенно превышала бы свое реальное значение. В разы большее количество темной энергии существенно увеличило бы значение ΩΛ по сравнению с ΩΜ, и на это не понадобилось бы 50 миллиардов лет – хватило бы всего нескольких миллионов. К этому времени в космосе, в котором преобладало бы ускорение – продукт темной энергии, – вещество разлетелось бы в разные стороны так быстро, что ни галактики, ни звезды, ни планеты просто не успели бы сформироваться. Если предположить, что от начала формирования первых небольших скоплений вещества до зарождения на Земле жизни прошло не менее одного миллиарда лет, мы можем достаточно уверенно заключить, что само наше существование ограничивает значение космологической постоянной до некой величины в промежутке от нуля до числа, в несколько раз превышающего ее реальное значение. Бесконечно большие значения она явно принимать не может.

Аргумент начинает выглядеть более весомо, если предположить вместе со многими космологами, что все, что мы с вами называем Вселенной, является частью гораздо более огромной мультивселенной (ее еще называют «мультиверс» – от англ. multiverse). Мультивселенная состоит из бесконечного множества вселенных, никаким образом друг с другом не взаимодействующих. Согласно концепции Мультивселенной, все устройство каждой отдельной вселенной – это высокая материя и некие высшие измерения, вследствие чего пространство нашей Вселенной недоступно ни какой другой вселенной – и наоборот. Это отсутствие даже гипотетического взаимодействия между ними ставит теорию Мультивселенной в число непроверяемых, а значит, неподтверждаемых (но и неопровергаемых!) гипотез, как минимум пока какие-нибудь мудрецы не найдут способа ее протестировать. В Мультивселенной новые вселенные зарождаются в произвольном порядке и с произвольной частотой, набухая за счет инфляции до гигантских размеров, но никак при этом не взаимодействуя с бесконечным количеством других вселенных.

В Мультивселенной каждая новая вселенная зарождается и существует по своим законам физики, обладая своими характерными космическими параметрами – включая те, что определяют такой вселенной значение космологической постоянной. У большого количества таких вселенных космологическая постоянная в разы превышает нашу – и они быстро разгоняются и разбегаются до состояния почти нулевой плотности вещества; жизни в таких вселенных просто не из чего появиться. Только в крошечной доле всех вселенных, составляющих Мультивселенную, комплекс условий складывается так, чтобы допустить возможность зарождения и существования жизни, потому что только эти несколько комплексов параметров позволяют веществу формировать галактики, звезды и планеты и дают возможность всем этим объектам существовать миллиарды лет.


    Ваша оценка произведения:

Популярные книги за неделю