355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дональд Голдсмит » История всего » Текст книги (страница 9)
История всего
  • Текст добавлен: 17 марта 2017, 17:30

Текст книги "История всего"


Автор книги: Дональд Голдсмит


Соавторы: Нил Тайсон

Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 9 (всего у книги 22 страниц)

Квазары были обнаружены в начале 1960-х годов, когда астрономы стали переходить на телескопы с детекторами, достаточно чувствительными для того, чтобы реагировать на невидимое излучение, такое как радиоволны и рентгеновские лучи. Новые портреты галактик теперь могли также включать в себя информацию о том, как выглядят галактики в гораздо более широком диапазоне спектра электромагнитного излучения. Добавьте сюда дальнейшие улучшения в составе и работе фотоэмульсий – и из глубин космоса уже выглядывает целый новый зоопарк различных видов галактик. Наибольший интерес среди них представ объекты, которые на фотографиях выглядели как обычные звезды, но, в отличие от звезд, обладали исключительно высоким радиоизлучением. В качестве рабочего описания для этих объектов был выбран термин «квазизвездный источник радиоизлучения», быстро сократившийся до одного слова – «квазар»[35]35
  Англ. термин quasistellar radio source, давший название квазарам (quasar), означает «Похожий на звезду источник радиоизлучения».


[Закрыть]
. Еще больший интерес вызвало даже не столько радиоизлучение данных объектов, сколько их удаленность: как отдельный класс небесных тел они оказались самыми далекими из всех известных нам объектов во всей Вселенной. Будучи столь небольшими и при этом обладая столь высокой светимостью, которая делала их видимыми на немыслимо огромных расстояниях, квазары явно походили на принципиально новый тип небесного объекта. Что значит «небольшими»? Не больше Солнечной системы. Что значит «высокая светимость»? Это значит, что даже самый захудалый и бледный квазар излучает больше света, чем среднестатистическая галактика.

К началу 1970-х годов астрофизики сошлись на том, что двигателем и сердцем квазаров являются сверхмассивные черные дыры, поглощающие за счет своей гравитации все, до чего «могут дотянуться». Такая модель учитывает относительно малый размер квазаров и их яркость, но ничего не рассказывает нам об источниках питания черных дыр. Только в 1980-х годах астрофизики начнут проникать в устройство окружающей среды квазаров. Огромная яркость центральных регионов квазара не давала толком рассмотреть его более бледное окружение, однако с помощью новых методик визуального приглушения центрального свечения квазаров астрофизикам удалось обнаружить слабосветящиеся туманности, окружающие некоторые из менее ярких квазаров. По мере совершенствования методик и технологий обнаружения излучения было продемонстрировано, что такая туманность есть вокруг каждого квазара, более того, выяснилось, что некоторые из них обладают спиральной структурой. Оказывается, квазар – это не новый тип объекта, но скорее новый тип галактического ядра.

В апреле 1990 года Национальное управление по аэронавтике и исследованию космического пространства (NASA) отправило в космос один из самых дорогих астрономических инструментов в истории человечества – космический телескоп Хаббла. Размером с крупный автобус и управляемый с Земли, телескоп Хаббла занял наблюдательную позицию на орбите за пределами нашей атмосферы, частично искажающей получаемые с Земли картины космоса. Как только астронавты установили линзы, исправляя ошибки в рабочих характеристиках его основного зеркала, телескоп получил возможность заглядывать в ранее не описанные учеными регионы обычных галактик, включая их самый центр. Бесстрастно изучая эти центры, телескоп обнаружил в них звезды, движущиеся с неприлично высокой скоростью – это с учетом воздействия на них гравитации других близлежащих звезд, обнаруживаемых за счет своего излучения. М-м-м… сильная гравитация… малая площадь… да это же черная дыра! Одна за другой, целыми десятками, галактики обнаруживали в самом своем центре подозрительно проворные звезды. Всегда, когда телескопу Хаббла удавалось получить ясный и четкий обзор центра такой галактики, там находились такие звезды.

Теперь уже не кажется невероятным, что внутри каждой огромной галактики находится сверхмассивная черная дыра, которая могла бы служить неким гравитационным зерном, вокруг которого постепенно собирается вещество, в том числе с самых окраин галактики. Но не все галактики в своей молодости представ собой квазары.

От постоянно растущего списка обычных галактик, в сердце которых обнаруживались черные дыры, исследователи постепенно испытывали все большее изумление: сверхмассивная черная дыра, которая не является квазаром? Квазар, вокруг которого расположилась целая галактика? Отогнать от себя вырисовывающуюся новую картину мироздания становится все труднее. Эта картина повествует о том, что некоторые галактики начинают свое существование в качестве квазаров. Чтобы быть квазаром, который, по сути, представляет собой яростно сияющее ядро в остальном заурядной галактики, системе нужна не только массивная и голодная черная дыра в самом своем центре, но и щедрый запас падающего в нее газа. Как только сверхмассивная черная дыра поглотит всю доступную в ее окружении пищу, оставляя нетронутыми более далекие звезды и газ, занимающие безопасно удаленные орбиты, квазар просто «выключается». VI мы получаем смирную галактику, в центре которой спит, сладко посапывая, сытая черная дыра.

Астрономы нашли и другие новые типы объектов, которые они классифицировали как нечто среднее между квазарами и нормальными галактиками. Их свойства тоже зависят от хулиганского поведения сверхмассивных черных дыр. Иногда потоки вещества, падающего в направлении центральной черной дыры, движутся медленно и однообразно. В других случаях эти потоки «рваные» и эпизодичные. Подобные системы населяют мировой зверинец галактик с активными, но не агрессивными ядрами. За прошедшие годы для разных типов таких объектов сформировались и устоялись определенные названия: слабоионизированные регионы с узкими эмиссионными линиями (англ. LINERs – low-ionization nuclear emission-line regions), сейфертовские галактики, N-галактики, блазары. Все вместе они называются АЯГ, что расшифровывается как «активные ядра галактик». В отличие от квазаров, которые можно обнаружить лишь на огромных расстояниях от нас, АЯГ появляются как далеко, так и относительно близко от нас. Получается, что АЯГ дополняют собой список непослушных галактик-хулиганок. Квазары уже давным-давно «отобедали», и мы можем видеть их лишь тогда, когда заглядываем в далекое прошлое, изучая их излучение. Зато АЯГ отличаются более скромным аппетитом, поэтому некоторых из них «обед» может затянуться на несколько миллиардов лет.

Классификация АЯГ исключительно на основании их внешнего вида, безусловно, не позволяет составить полноценное представление об их природе, поэтому астрофизики делят АЯГ на категории по спектру и по диапазону их электромагнитного излучения. В период середины и конца 1990-х годов исследователи усовершенствовали свою модель черных дыр и обнаружили, что могут достаточно точно описать практически всех обитателей разношерстного зверинца АЯГ, измерив лишь несколько параметров: массу черной дыры объекта, скорость поглощения ею окружающего материала и наш угол обзора аккреционного диска и его потоков материала. Если бы, к примеру, нам довелось проследить взглядом прямо в направлении такого потока, появляющегося из окрестностей сверхмассивной черной дыры, мы увидели бы гораздо более яркий объект, чем если бы смотрели на него сбоку под принципиально другим углом. Вариации в данных трех параметрах позволяют описать практически весь впечатляющий диапазон квазаров, который на данный момент знаком астрофизикам, сводя на нет определенные видовые классификации и в обмен предлагая более глубокое понимание того, как формируются и эволюционируют галактики. Сам факт того, что столь многое можно отразить всего лишь несколькими переменными (различия в формах, размерах, светимости и палитре), является незаслуженно невоспетым триумфом астрофизики конца XX века. Да, на это ушло много лет, много часов, проведенных у телескопа, на это были положены усилия множества людей, поэтому в вечернем выпуске новостей об этом не всегда услышишь, но в том, что это самый настоящий триумф, нет ни малейшего сомнения.

Не будем делать поспешных заключений о том, что сверхмассивные черные дыры являются ключом к объяснению всех и вся. Даже несмотря на то, что они обладают массой, в миллионы и миллиарды раз превосходящей массу Солнца, их вклад незначителен по сравнению с вкладом тех галактических масс, внутри которых они расположены. Как правило, масса черной дыры составляет менее 1 % суммарной массы крупной галактики. Принимая во внимание существование темной материи или других невидимых нам источников гравитации во Вселенной, мы можем считать такие черные дыры несущественными и не принимать их гравитационное воздействие в расчет. Но когда мы подсчитываем, сколько энергии они производят (речь об энергии, излученной в процессе формирования), то оказывается, что черные дыры играют преобладающую роль в энергетическом обороте формирования галактик. Вся энергия всех орбит всех звезд и газовых облаков, составляющих собой галактику, меркнет в сравнении с энергией, необходимой существования черной дыры. Без сверхмассивных черных дыр где-то в подвалах мироздания галактики могли вообще никогда не сформироваться. Когда-то сияющая, а ныне невидимая черная дыра, парящая в центре каждой гигантской галактики, является тайной связкой – физическим объяснением того, как могло вещество собраться в сложную систему из миллиардов звезд, вращающихся вокруг общего для них центрального ядра.

Более широкое объяснение принципа формирования галактик основано не только на гравитации сверхмассивных черных дыр, но и на гравитации в более традиционном астрономическом ее понимании. Что соединило миллиарды звезд в одну галактику? Это заслуга гравитации, благодаря которой в одном облаке газа и материи образовывалось до сотен тысяч звезд. Большинство звезд галактики рождается в довольно «демократичных» скоплениях вещества. Более компактные регионы звездообразования остаются различными «звездными скоплениями», внутри которых звезды вращаются вокруг центра скопления, прокладывая себе траектории в пространстве и повинуясь хореографии чудесного космического балета, поставленного главным маэстро – гравитацией, которую излучают все остальные звезды внутри скопления. Не забывайте о том, что каждое такое скопление – кластер – само вращается по своей собственной орбите вокруг центра галактики, пребывая в безопасном удалении от разрушительной силы центральной черной дыры.

Внутри самого кластера звезды движутся с разной скоростью, некоторые из них так быстро, что рискуют вообще покинуть систему, «вылетев» из нее. Иногда это действительно происходит – особенно быстрые звезды вырываются из-под влияния гравитации всего кластера и отправляются в свободное плавание по галактике. Такие свободно пасущиеся звезды вместе с так называемыми шаровыми звездными скоплениями, содержащими сотни тысяч звезд каждое, становятся частью сферических гало галактик. Изначально светящиеся, но на сегодня уже лишившиеся своих самых ярких звезд из-за их короткой продолжительности жизни, галактические гало – самые древние видимые объекты во всей Вселенной; их свидетельства о рождении можно проследить вплоть до формирования самих галактик.

Последние в очереди на коллапс, а значит, и последние в очереди на превращение в звезды – это газ и звездная пыль, которые притягивает и удерживает на себе галактическая плоскость. В эллиптических галактиках ее не существует, так как в них весь газ уже давно превратился в звезды. Зато в спиральных галактиках вещество распределено очень «плоско»: для них характерна некая центральная плоскость, внутри которой самые молодые и яркие звезды формируют спиральные нити, что является доказательством крупнейших вибрирующих воли плотного и разреженного газа, сменяющих друг друга и вращающихся вокруг центра галактики. Как горячие кусочки зефира, мягко слипающиеся, если прижать их друг к другу, весь газ в спиральной галактике, который не смог принять участие в создании звездных кластеров, уже упал в направлении галактической плоскости, собрался в единое целое и сформировал собой диск вещества, из которого там будут медленно создаваться звезды. Так было на протяжении последних миллиардов лет, и так будет продолжаться еще многие миллиарды лет: в спиральных галактиках будут формироваться звезды, и каждое поколение будет все богаче на тяжелые химические элементы, чем предыдущее. Эти тяжелые элементы (под ними астрофизики подразумевают все, что тяжелее гелия) были выпущены в межзвездное пространство исходящими потоками вещества от стареющих и слабеющих звезд попали туда после взрыва какой-нибудь звезды с большой массой, одной из сверхновых. Их существование располагает галактику, а значит, и всю Вселенную к тем химическим процессам, что необходимы для зарождения и поддержания жизни.

Мы описали в общих чертах процесс рождения классической спиральной галактики, взяв за основу эволюционную последовательность, которая повторялась в мире десятки миллиардов раз, создавая галактики самых разных формирований: кластеры галактик, нити и ленты галактик, а также пласты галактик.

Из-за того что, заглядывая в глубину космоса, мы смотрим в прошлое, у нас есть уникальная возможность рассматривать галактики не такими, какие они есть сейчас, а такими, какими они были миллиарды лет назад. Для этого нам достаточно лишь поднять глаза к небу. Однако воплотить это в реальность не так уж просто: расположенные от нас в миллиардах световых лет галактики выглядят ужасно маленькими и бледными, и даже наши лучшие телескопы могут лишь с трудом зафиксировать их общие очертания. Тем не менее астрофизики сделали существенный прорыв в этом направлении за последние несколько лет. Главный успех пришелся на 1995 год, когда Роберт Уильямс, занимавший тогда должность директора Института исследования космоса с помощью космического телескопа при университете Джона Хопкинса[36]36
  Англ. Space Telescope Science Institute at John Hopkins University.


[Закрыть]
, направил телескоп Хаббла в одном-единственном направлении – примерно в сторону Большой Медведицы – и оставил его записывать наблюдения в течение целых десять дней. Это считается заслугой в первую очередь Уильямса потому, что Комитет по распределению рабочего времени телескопа, дающий к нему ограниченный доступ на основании одобренных им же заявок на различные космические исследования, изначально отказал Уильямсу в его запросе. Уильямс просил десять дней на изучение региона, специально выбранного за отсутствие в нем чего-либо откровенно интересного, – типичного «скучного» участка неба. Соответственно, от его исследований другим текущим проектам не было бы особой пользы, а ведь конкуренция за драгоценные часы у телескопа и так была очень высокой. К счастью, Уильямс, как директор Института исследования космоса, имел право на бронирование времени у телескопа в «личных директорских целях», он не постеснялся воспользоваться этим преимуществом – и по итогам проекта Hubble Deep Field[37]37
  С англ. Hubble Deep Field можно перевести как «Глубинное месторождение Хаббла»; термин deep field относится к области добычи нефти, а в данном контексте отсылает к «месторождениям звезд».


[Закрыть]
получил одну из самых знаменитых фотографий в мире астрономии.

Десятидневное наблюдение, случайно совпавшее с временным прекращением работы американского правительства в 1995 году, подарило миру самый изучаемый и исследуемый снимок в истории астрономии. Усыпанный галактиками и галактикообразными объектами, он предлагает нам своеобразный космический палимпсест, на котором объекты, находящиеся на самых разных расстояниях от Млечного Пути, оставили свои автографы светом на протяжении многих лет. Обзор демонстрирует нам объекты такими, какими они были, скажем, 1,3 миллиарда, 3,6 миллиарда, 5, 7 миллиарда или 8,2 миллиарда лет назад, и эпоха каждого объекта определяется его удаленностью от нас. Сотни астрономов уцепились за этот кладезь информации, уместившийся на одном-единственном снимке, чтобы получить новые данные о том, как эволюционировали галактики, и о том, как они выглядели в ближайшее время после своего формирования. В 1998 году телескоп добавил к этому снимку еще один – так называемый Hubble Deep Field South. На этот раз в течение десяти дней наблюдения непрерывно велись на другом участке неба – в противоположном направлении от первого, над Южным полушарием. Сравнение двух снимков позволило астрономам убедиться, что результаты первого из них не являются аномальными (например, если бы оба снимка получились совершенно идентичными же категорически разными вплоть до мельчайших подробностей, мы могли бы заподозрить тут происки потусторонних сил), а также дополнительно скорректировать умозаключения о том, как рождаются и формируются разные типы галактик. После успешного ремонтного обслуживания, в рамках которого телескоп Хаббла был оснащен еще более чувствительными детекторами, Институт исследования космоса с помощью космического телескопа не смог устоять перед тем, чтобы в 2004 году не дать разрешения на проект Hubble Ultra Deep Field, в рамках которого предстояло проникнуть в еще более далекие регионы Вселенной.

К сожалению, самые ранние стадии формирования галактик, которые можно было бы оценить, наблюдая за еще более далекими звездными скоплениями, оказались недоступны даже для телескопа Хаббла – не в последнюю очередь потому, что космическое расширение сместило большую часть их излучения в инфракрасный диапазон спектра, который остается недоступным для оборудования телескопа. Для того чтобы увидеть эти еще более дальние галактики, астрономы ждут разработки, сборки, запуска и успешной работы преемника телескопа Хаббла – космического телескопа имени Джеймса Уэбба (James Webb Space Telescope, или JWST), получившего свое название в честь главы NASA времен запуска спутника «Аполлон». (Циники поговаривают, что такое имя, в отличие от имени какого-нибудь знаменитого ученого, телескопу дали для того, чтобы проект по его созданию не мог быть отменен, ведь, в таком случае будет затронуто наследие важного должностного лица.)

Телескоп JWST будет оснащен более крупным зеркалом, чем хаббловский, и оно будет развертываться и раскрываться, распускаясь в космосе замысловатым механическим цветком для того, чтобы сформировать отражающую поверхность, превышающую по площади любую из тех, что вообще можно разместить на борту наших космических ракет. Новый космический телескоп также будет оснащен богатым инструментарием, превосходящим оснащение телескопа Хаббла, которое было изначально разработано в 1960-х годах, построено в 1970-х годах и запущено в работу в 1991 году. По этой причине, хотя в 1990-х годах оно и было усовершенствовано, оборудование «Хаббла» все-таки не обладает фундаментальными возможностями вроде умения обнаруживать инфракрасное излучение. Некоторые из подобных возможностей сегодня есть у космического телескопа «Спитцер»[38]38
  Полное название – Инфракрасный телескопический аппарат им. Спитцера (Spitzer InfraRed Telescope Facility, и, сокращено, SIRTF).


[Закрыть]
, запущенного в космос в 2003 году: он вращается вокруг Солнца и расположен гораздо дальше от Земли, чем телескоп Хаббла, что позволяет ему обходить помехи в виде бесчисленных потоков инфракрасного излучения, источником которого является наша планета. Аналогичным образом телескопу JWST также будет нужно расположиться на орбите, намного более удаленной от Земли, чем хаббловская, что, в свою очередь, означает, что отправить к нему команду техобслуживания будет невозможно, так что было бы неплохо, если бы у NASA в этот раз все получилось с первого же раза. Работая в тандеме с новым космическим телескопом, как и раньше, крупные наземные инструментальные обсерватории смогут подробно изучить то космическое наследие, которое станет доступным нам вместе со следующим большим шагом в направлении «инструментального» освоения космоса человеком.

Какие бы открытия ни были осуществлены в будущем, нельзя забывать о впечатляющих достижениях астрофизики последних трех десятилетий, которые являются плодом умелого создания все более новых инструментов для наблюдений за Вселенной. Карл Саган любил повторять, что только сделанный из дерева человек не способен испытывать восхищение и уважение ко всему, что на сегодня удалось сотворить космосу. Благодаря новым возможностям наблюдения мы теперь знаем больше, чем Саган в свое время, о той изумительной последовательности событий, что легли в основу нашего существования. Знаем о квантовых флуктуациях в распределении вещества и энергии в масштабе менее одного протона, которые в результате привели к формированию суперкластеров галактик размером до 30 миллионов световых лет от края до края. От хаоса к космосу эта причинно-следственная связь охватывает более 38 степеней десяти в размере и более 42 степеней десяти во времени. Словно микроскопические нити ДНК, которые предопределяют сущность макроскопического биологического вида и уникальные характеристики составляющих его особей, так и современный образ Вселенной был вплетен в ее канву с самого начала и пронесен сквозь время и пространство. Мы ощущаем это, когда смотрим вверх. Мы ощущаем это, когда смотрим вниз. Мы ощущаем это, когда заглядываем внутрь самих себя.


    Ваша оценка произведения:

Популярные книги за неделю