355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дональд Голдсмит » История всего » Текст книги (страница 11)
История всего
  • Текст добавлен: 17 марта 2017, 17:30

Текст книги "История всего"


Автор книги: Дональд Голдсмит


Соавторы: Нил Тайсон

Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 11 (всего у книги 22 страниц) [доступный отрывок для чтения: 9 страниц]

Несмотря на то что ученые ничего не знали о сечениях столкновений, в первой половине XX века они на протяжении долгого времени подозревали, что если и есть во Вселенной место экзотических ядерных процессов, то ядра звезд для них – самый подходящий вариант. В 1926 году британский астрофизик-теоретик сэр Артур Эддингтон опубликовал статью, которая называлась «Внутреннее строение звезд» (The Internal Constitution of the Stars). В ней он доказывал, что лаборатория им. Кавендиша, бывшая ведущим центром по исследованиям в области атомной и ядерной физики, не может быть единственным местом во Вселенной, где умеют переплавлять одни элементы в другие.

«Но возможно ли признать, что такое преобразование происходит? Утверждать это непросто, но отрицать, что это происходит, пожалуй еще сложнее… и если что-то можно совершить в лаборатории Кавендиша, вряд ли так уж сложно повторить это внутри Солнца. Думаю, что предположение о том, что звезды – плавильные котлы, в которых более легкие атомы, взятые из туманности, соединяются в более сложные элементы, в целом должно поддерживаться»[41]41
  Пер. М. В. Герман.


[Закрыть]
.

Статья Эддингтона, которая предвосхитила более подробные исследования Бербидж, Бербиджа, Фаулера и Хойла, вышла на несколько лет раньше открытия квантовой механики, без которой наше понимание физических свойств атомов и атомных ядер было бы, мягко говоря, жалким. Словно пророк, Эддингтон сформулировал подобие сценария для создания звездной энергии с помощью термоядерного синтеза водорода и гелия.

«Нам не следует привязываться к реакции образования гелия из водорода как к единственно возможному источнику энергии для звезды, хотя что-то подсказывает, что для дальнейших этапов создания химических элементов характерно гораздо меньше выделения и гораздо больше поглощения энергии. Позицию можно сформулировать следующим образом: атомы всех элементов состоят из атомов водорода, прочно связанных друг с другом, и, вероятно, когда-то они были образованы из водорода; нутро звезды – столь же подходящее место для свершения эволюции, как и любое другое»[42]42
  Пер. М. В. Герман.


[Закрыть]
.

Любая модель преобразования элементов должна объяснять то их разнообразие, которое мы наблюдаем на Земле и в других регионах Вселенной. Для этого физикам требовалось найти некий фундаментальный процесс, который позволял бы звездам извлекать энергию из процесса переплавки одних элементов в другие. К 1931 году, когда теории квантовой механики уже вполне оформились (хотя еще не были открыты нейтроны), другой британский астрофизик, Роберт д'Эскур Аткинсон, опубликовал подробную статью, которая предлагала читателю «теорию синтеза звездной энергии и происхождения элементов… в которой различные химические элементы постепенно создаются из более легких внутри самих звезд с помощью успешной переработки протонов и электронов одного за другим».

В том же году американский ядерный химик Уильямс Д. Харкинс опубликовал статью, в которой отметил, что «элементы с низким атомным весом (помните? речь о количестве протонов и нейтронов в каждом ядре) имеются в природе в гораздо большем изобилии, нежели тяжелые элементы, а элементы с четными атомными числами (по количеству протонов в атомном ядре) в среднем встречаются примерно в десять раз чаще, чем элементы с нечетными атомными числами, но примерно того же достоинства». Харкинс выражал догадку; что относительное изобилие ряда элементов скорее зависит от ядерного синтеза, чем от такого: химического процесса, как возгорание, и что более химические элементы наверняка получились из более легких.

Подробности механики самого процесса термоядерного синтеза, протекающего в звездах, могли бы в результате объяснить наличие в космосе многих элементов, особенно тех, которые получаются каждый раз, когда вы прибавляете ядро гелия с двумя протонами и двумя нейтронами к тому элементу, который получили на предыдущем этапе синтеза. Такие элементы и представляют собой те самые изобилующие с «четными атомными номерами», о которых говорил Харкинс. Однако существование и относительные количества многих других элементов так и оставались необъясненными. Значит, сборка элементов по кирпичикам в космосе происходила по какому-то другому принципу.

Нейтрон, который был открыт в 1932 году британским физиком Джеймсом Чедвиком во время работы в тех же лабораториях им. Кавендиша, играет важнейшую роль в ядерном синтезе – роль, какую Эддингтон себе и вообразить не мог. Собрать что-то из протонов – это большой труд, ведь они естественным образом отталкивают друг друга, как и все одинаково заряженные частицы. Чтобы соединить протоны, нужно приблизить их друг к другу на достаточно малое расстояние (как правило, это делается при воздействии высоких температур, давления и плотности), позволяющее преодолеть их природную взаимную неприязнь, – и тогда сильное ядерное взаимодействие привяжет их друг к другу. Нейтрон, однако, не имея заряда, не отталкивает от себя другие частицы, поэтому он может запросто проследовать в атомное ядро и присоединиться к банкету собравшихся там частиц, удерживаясь на месте благодаря той же силе, что удерживает там и протоны. В итоге новый элемент не образуется, ведь этого в ядре нужно изменить количество протонов. Но, добавляя нейтрон, мы создаем «изотоп» ядра исходного элемента, который лишь немного отличается от своего прототипа, так как даже суммарный электрический заряд у него остается тем же. В некоторых случаях свежепойманный нейтрон, стоит добавить его к ядру, оказывается нестабильном: тогда он спонтанно преобразует сам себя в протон (который уже вполне стабилен и не покидает ядро) и в электрон (который тут же покидает данную систему частиц). Именно таким образом, словно внутри Троянского коня, протоны могут проникать в атомные ядра под видом нейтронов.

Если стабильный поток нейтронов не иссякает, каждое ядро может успеть поглотить немало нейтронов, прежде чем первый из распадется на протон и электрон. Такие «быстро усвоенные» нейтроны помогают образовать группу элементов, происхождение которых отождествляется с «быстрым процессом захвата нейтронов» и которые отличаются от тех элементов, что образуются за счет медленной подачи в их ядро нейтронов (когда каждый последующий нейтрон попадает в ядро только после того, как предыдущий распадется на протон и электрон).

Обе модели захвата нейтронов – быстрая и медленная – в ответе за создание множества элементов, которые не могут сформироваться в процессе традиционного термоядерного синтеза. Все остальные элементы в природе могут быть получены за счет еще ряда процессов, в том числе сталкивания на огромной скорости сильно заряженных фотонов (гамма-излучение) с ядрами тяжелых атомов, которые затем распадаются на несколько меньших по размеру.

Рискуя чрезмерно упростить суть жизненного цикла звезды с высокой массой, мы все же позволим заявить, что каждая звезда живет за счет того, что внутри нее создается и высвобождается энергия, которая позволяет звезде противостоять гравитации. Если бы не это производство энергии с помощью термоядерного синтеза, каждый звездный газовый шар просто коллапсировал бы под тяжестью своего собственного веса. Эта доля ожидает те звезды, которые уже истощили запасы ядер водорода (протонов) в своих звездных ядрах. Как уже было отмечено ранее, превратив водород в гелий, ядро звезды принимается делать из гелия углерод, затем из углерода – кислород, из кислорода – неон и так далее, пока дело не дойдет до железа. Чтобы успешно синтезировать все новые и новые и все более тяжелые элементы в этой последовательности, сопутствующая температура реакций должна постоянно повышаться, чтобы атомные ядра могли преодолевать возникающие между ними силы отталкивания. К счастью, это происходит само собой, потому что в конце каждой промежуточной стадии, когда источник энергии звезды временно перекрывается, ее внутренние регионы сжимаются, температура подскакивает – и запускается новый этап ядерного синтеза. Так как ничто не продолжается вечно, звезда в какой-то момент сталкивается с серьезной проблемой: оказывается, во время синтеза железа энергия не выделяется, но поглощается. Плохие новости для нашей звезды! В ее термоядерной шляпе фокусника нет больше волшебной палочки, одним взмахом которой она могла бы запустить новый процесс, выделяющий энергию противопоставления своей собственной гравитации. В этот момент звезда резко коллапсирует, из-за чего ее внутренняя температура возрастает столь стремительно, что она взрывается, раскидывая свои звездные внутренности во все стороны.

В процессе самого взрыва наличие нейтронов, протонов и энергии позволяет сверхновой звезде создавать элементы множеством разных способов. В своей статье 1957 года Бербидж, Бербидж, Фаулер и Хойл объединили:

♦ хорошо проверенные положения квантовой механики;

♦ физические особенности взрывов;

♦ свои новейшие сечения столкновений;

♦ разнообразные процессы преобразования ок элементов в другие;

♦ основы теории эволюции звезд.

Все это того, чтобы подвести читателя к одной мысли: взрывы сверхновых звезд – это первоосновной источник всех элементов тяжелее водорода и гелия в нашей Вселенной.

Помимо звезд с высокой массой в качестве источников тяжелых элементов и сверхновых звезд в качестве наиболее вероятного источника распространения этих элементов, великолепная четверка заодно получила решение еще одной задачи совершенно даром: когда внутри звездного ядра синтезируются элементы тяжелее водорода и гелия, никакого прока от этого нет, если не отправить их на все четыре стороны в межзвездное пространство, чтобы там из рано поздно получился мир, в котором могут рождаться вомбаты. Бербидж, Бербидж, Фаулер и Хойл объединили наше понимание ядерного синтеза в звездах с той вселенской кузницей элементов, следы которой мы находим в космосе повсеместно. Их выводы пережили десятилетия скептического анализа, поэтому опубликованной ими статье можно отвести лишь одну роль – роль переломной работы в истории изучения человеком устройства Вселенной.

Да, Земля и вся жизнь на ней суть звездная пыль. Нет, мы еще не ответили на все интересующие нас химические вопросы космического масштаба. Так, любопытную загадку современности представляет собой технеций – первый химический элемент, полученный (в 1937 году) искусственным путем в земной лаборатории. (Само слово «технеций», как и другие с префиксом «тех», отсылает к греческому «технетос», что означает «искусственный».) Найти технеций в природе на Земле нам еще предстоит, но астрономы уже нашли его в атмосферах небольшого количества красных гигантов, входящих в нашу галактику. Само по себе это не столь удивительно, если бы не тот факт, что технеций преобразуется в другие элементы с периодом полураспада 2 миллиона лет, что в разы меньше возраста и средней продолжительности жизни звезд, за которыми мы наблюдаем. Эта головоломка привела к рождению разных экзотических теорий, которые пока не получили единодушного одобрения мирового сообщества астрофизиков.

Красные гиганты с такими особенными химическими свойствами встречаются редко, но они оказались достаточно большой занозой (и не только) группы физиков (как правило, спектроскопистов), которые специализируются в подобных вопросах, чтобы те сели, написали и распространили «Новости о химически пекулярных красных звездных гигантах»[43]43
  Англ. Newsletter of Chemically Peculiar Red Giant Stars.


[Закрыть]
. Вы не найдете этого издания в киосках и магазинах с периодикой; в таких тиражах обычно публикуются новости с конференций и заметки о текущих исследованиях. Заинтересованных ученых подобные бесконечные химические загадки пленят столь же сильно, как и темы черных дыр, квазаров и ранней Вселенной. Но вам прочитать о них редко где удается. Почему так? Потому что средства массовой информации уже давно решили, о чем следует писать, а о чем – нет. Судя по всему, новости о космическом происхождении каждого отдельного химического элемента, из которых в общей сложности состоит ваше тело, на повестку дня не попадают.

Не упускайте свой шанс исправить ту несправедливость, которую навязывает вам современное общество! Давайте прогуляемся по периодической таблице, останавливаясь, чтобы обратить отдельное внимание на особенно увлекательные факты о различных химических элементах и восхититься тем, как Вселенная умудрилась сотворить их все из водорода и гелия, появившихся в результате Большого взрыва.

Глава 10
Это элементарно

Периодическая таблица химических элементов, которую в течение последних двух столетий с любовью составляли химики и физики всего мира, отражает собой принцип организации, лежащие в основе свойств и поведения всех известных нам элементов Вселенной, включая те, которые нам еще только предстоит обнаружить. По этой причине следует воспринимать эту таблицу как культурный феномен, наглядно демонстрирующий умение нашего общества организовывать имеющиеся у него знания. Таблица служит свидетельством того, что вся мировая научная инициатива – это одно большое всечеловеческое приключение, и приключение не только в лабораториях, но и в ускорителях частиц, а также на передовых линиях пространства и времени целой Вселенной.

Среди заслуживших признание, а значит, и свое законное место в периодической таблице элементов время от времени тот иной Поражает воображение даже состоявшегося ученого, словно особо странный экземпляр в зоопарке уникальных зверьков, придуманных и претворенных в реальность доктором Сьюзом[44]44
  Dr. Seuss – псевдоним популярного американского детского писателя и мультипликатора Теодора Сьюза Гейзеля, известного своими персонажами из мира животных.


[Закрыть]
. Судите сами: как такое возможно, чтобы из натрия – смертельно опасного реактивного метала, который можно легко разрезать ножом для масла, и чистого хлора – мерзко пахнущего и тоже смертоносного газа – можно было получить хлорид натрия, безобидное соединение, без которого трудно представить себе жизнь на Земле и которое более широко известно как поваренная соль? Как насчет водорода и кислорода, двух самых широко распространенных элементов не только на Земле, но и во всей Вселенной? Один из них – это взрывоопасный газ, а другой – проповедник яростного горения при интенсивном окислении; при этом сочетание данных элементов позволяет получить жидкость – воду, способную тушить огонь.

Среди всех многочисленных взаимодействий, представленных в замечательной лавке возможностей периодической таблицы, есть такие, которые имеют наибольшее значение для космоса. Они предлагают нам возможность взглянуть на таблицу глазами астрофизика. Мы непременно этой возможностью воспользуемся и прогуляемся по таблице, торжественно отдавая честь наиболее приметным ее элементам и восхищаясь некоторыми ее странностями.

Периодическая таблица подчеркивает тот факт, что каждый из встречающихся в природе элементов отличается от других своим порядковым номером, «атомным числом», которое отражает количество протонов (положительных электрических зарядов) в ядре этого элемента. В полноценном атоме всегда есть и электроны (отрицательные электрические заряды), вращающиеся вокруг его ядра. Их столько же, сколько и протонов, поэтому суммарный заряд атома составляет нуль. Разные изотопы каждого конкретного элемента обладают тем же самым количеством протонов и электронов, но различаются по количеству нейтронов в своем составе.

Водород, в ядре которого есть только один протон – это самый легкий и простой элемент, весь его вселенский запас появился в первые несколько минут после Большого взрыва. Из тех 94 элементов, что встречаются в природе в естественных условиях, на долю водорода приходится более двух третей всех атомов в теле человека и более 90 % всех атомов во Вселенной, включая Солнце и его гигантские планеты. Водород в ядре самой крупной планеты Солнца – Юпитера – подвергается столь высокому давлению окружающих его слоев газа, что ведет себя скорее как электромагнитный металл-проводник, чем газ, создавая самое сильное магнитное поле из всех, что окружают планеты Солнечной системы. Английский химик Генри Кавендиш открыл водород в 1766 году, проводя эксперименты с H2O – водой. Английское и латинское название hydrogen(ium) позаимствовано из греческого «гидро-генес», что означает «образующий воду»; а частица «ген» знакома вам, к примеру, по слову «генетика». Однако с точки зрения астрономии главное достижение Кавендиша, снискавшее ему славу, заключается в том, что он стал первым человеком в истории, которому удалось точно вычислить массу Земли, измерив гравитационную постоянную G из знаменитой формулы всемирного тяготения Ньютона. В недрах Солнца, где температура достигает 15 миллионов градусов по шкале Цельсия, каждую секунду каждого дня и ночи 4,5 миллиарда тонн мельтешащих ядер водорода (протонов) сталкиваются друг с другом, вследствие чего образуются ядра гелия. Около 1 % всей массы атомов, что участвуют в этом синтезе, преобразуется в энергию; в гелий же превращаются остальные 99 %.

Гелий, второй по распространенности химический элемент во Вселенной, на Земле можно найти лишь в нескольких подземных месторождениях, где он словно заперт в ловушке. У многих из нас гелий ассоциируется лишь с его развлекательными свойствами, знакомства с которыми нужно всего лишь приобрести его в магазине. Когда вы вдыхаете гелий, его низкая плотность по сравнению с другими атмосферными газами увеличивает частоту вибраций вашего горла, из-за чего голос начинается напоминать Микки-Мауса. Во Вселенной гелий представлен в объеме, в четыре раза большем, чем все остальные элементы, вместе взятые (не считая водорода). Один из столпов, на которых держится космология Большого взрыва, – это предположение, что во всей Вселенной атомы гелия составляют в общей сложности не менее 8 %: они образовались во время краткой первичной раскаленной агонии космоса, последовавшей сразу за большим взрывом. Так как термоядерный синтез водорода внутри звезд образует дополнительные запасы гелия, в некоторых регионах космоса может в заданный момент времени накапливаться более 8 % гелия, однако – что соответствует модели Большого взрыва – никому еще не удавалось найти такой регион нашей еще какой-нибудь галактики, в которой гелия было бы меньше.

За 30 с лишним лет до того, как им удалось обнаружить и выделить гелий в отдельный химический элемент на Земле, астрофизики умудрились вычислить его наличие на Солнце с помощью анализа спектра солнечного излучения во время полного затмения в 1868 году. Разумеется, они назвали этот ранее неизвестный им элемент в честь Гелиоса, древнегреческого бога Солнца. Подъемная сила гелия в воздухе составляет 92 % от подъемной силы водорода, но при этом он не обладает характерным для водорода взрывным нравом (незнание этого факта погубило в свое время немецкий дирижабль «Гинденбург»); поэтому гелий – лучший газ для заполнения огромных надувных шаров и персонажей парада в честь Дня благодарения американского торгового центра Macy’s, что делает его вторым в мире потребителем гелия по количеству тонн в год, впереди которого только военные структуры США.

Литий, третий по простоте строения элемент во Вселенной, содержит в своем ядре три протона. Как водород и гелий, он образовался вскоре после Большого взрыва, но, в отличие от гелия, запасы которого с тех пор регулярно пополняются в последующих ядерных реакциях, литий разрушается в результате ядерного синтеза, протекающего в звездах. По этой причине мы не рассчитываем когда-либо найти объекты регионы, в которых лития было бы больше, чем в среднем по Вселенной (0,0001 % от общего числа атомов, образованных в ее глубоком младенчестве). Наша модель предполагает, что образование элементов протекало лишь в первые полчаса существования Вселенной, и никому еще не удалось найти галактику, в которой лития было бы больше его максимального предельного значения. Такое сочетание предельных значений для лития и гелия ставит нас в рамки мощного двойного ограничения при проверке космологической теории Большого взрыва. Есть и другой подобный тест этой модели, который она всегда проходит с блестящими результатами: в нем сравнивают число ядер дейтерия, в каждом из которых содержатся один протон и один нейтрон, с количеством обычного водорода. В первые несколько минут синтеза были образованы оба этих типа ядра, но обычного водорода (с одним протоном) получилось в разы больше, чем дейтерия (где, помимо протона, есть еще и нейтрон).

Как и литий, следующие два элемента периодической таблицы – бериллий и бор (по четыре и пять протонов в ядре каждого соответственно) – в первую очередь обязаны своим происхождением термоядерному синтезу в ранней Вселенной и встречаются в ней в относительно скромных количествах. Из-за дефицита на Земле этих трех самых легких химических элементов после водорода и гелия случайный их прием внутрь – далеко не самая лучшая и даже опасная идея: ведь наша эволюция протекала, по сути, без их участия. Но, что удивительно, соответствующие дозы лития при этом способны приносить облегчение в борьбе с рядом умственных расстройств.

Начиная с углерода, элемента номер шесть, периодическая таблица расцветает пышным цветом. Количество молекул, в составе которых есть хотя бы один атом углерода (по шесть протонов в ядре каждого), превышает количество всех остальных, вместе взятых молекул мира, углерод не содержащих. Вселенская насыщенность ядрами углерода – он образуется в ядрах звезд, выводится к их поверхности и затем отправляется в огромных количествах в галактику Млечный Путь – в сочетании с его дружелюбной готовностью образовывать химические соединения с другими атомами делает углерод лучшим элементом-основой для формирования природной химии и разнообразия жизненных форм. Минимально опережая углерод по своей распространенности в мире, кислород (восемь протонов в ядре) тоже представляет собой высоко реактивный и распространенный элемент, чьи мировые запасы также образуются как внутри стареющих звезд (и выводятся ими в космос), так и внутри взрывающихся сверхновых. Кислород и углерод – важнейшие ингредиенты жизни на Земле, жизни в привычном для нас виде. Аналогичные процессы участвуют в создании и распространении во Вселенной азота, элемента номер семь, который также встречается в мире в огромных количествах.

Как насчет жизни в непривычном нас виде? Могут ли другие формы жизни использовать другие элементы в качестве основы своих сложных структур? Как насчет жизни, основанной на кремнии, элементе номер 14? В периодической таблице кремний расположен непосредственно под углеродом: это означает, что кремний способен создавать химические соединения того же плана, что и углерод, занимая в них, по сути, место углерода. В конце концов, углерод оказывается выше кремния, и не только потому, что в мире его в десять раз больше, но и потому, что химические связи, образуемые кремнием, получаются намного сильнее ощутимо слабее, чем углеродные связи, то есть ведут себя менее однообразно. Собственно, сила связи кремния и кислорода приводит к образованию крепких скальных пород, в то время как сложным молекулам на основе кремния трудно выживать в условиях экологического стресса, который нипочем соединениям на основании углерода. Эти факты не останавливают писателей научной фантастики, активно отстаивающих права кремния в своих произведениях; заодно это держит биологию внеземной жизни в постоянном напряжении – и мы непрестанно думаем о том, какой могла бы быть по-настоящему чуждая нам внеземная жизнь (и ее формы).

Помимо того что он является активным ингредиентом столовой соли, натрий (11 протонов в ядре) освещает поверхность нашей чудесной Земли[45]45
  Авторы имеют здесь в виду Соединенные Штаты Америки.


[Закрыть]
в качестве горячего натриевого газа, которым наполнено множество уличных фонарей. Такие фонари «горят» ярче и дольше, потребляя меньше энергии, чем традиционные лампы накаливания. Они бывают двух видов: распространенные лампы высокого давления, светящиеся желто-белым, и менее распространенные лампы оранжевого цвета с низким уровнем давления. В принципе, любой свет создает помехи в обзоре для астрономов, но натриевые лампы с низким давлением наносят меньше вреда благодаря тому, что создаваемый ими фон (гораздо более узкого спектра) можно легко вычислить и извлечь из полученных телескопами данных. Демонстрируя прекрасный пример отзывчивости к астрономам, целый город Тусон, штат Аризона – самый крупный муниципалитет по соседству с Национальной обсерваторией в Китт-Пике, – перевел все свои улицы без исключения на натриевые лампы низкого давления; это, кстати, еще и оказалось эффективным с точки зрения потребления энергии и помогает городу на ней экономить.

Алюминий (13 протонов в ядре) составляет почти 10 % земной коры, однако он долгое время оставался неизвестным древнему человеку и даже нашим дедушкам и бабушкам исключительно потому, что невероятно удачно сочетается с другими элементами. Выделить его в отдельный элемент удалось только в 1827 году, а в быту алюминий не получил широкого распространения вплоть до конца 1960-х годов, когда оловянные банки и оловянная фольга уступили место алюминиевым. Благодаря тому что полированный алюминий практически идеально отражает видимый свет, сегодня астрономы покрывают все без исключения зеркала своих телескопов тонкой пленкой из атомов алюминия.

Хотя плотность титана (22 протона в ядре) на 70 % выше плотности алюминия, он в два с лишним раза прочнее. Эта прочность и относительно малый вес делают титан – девятый по распространенности элемент земной коры – современным фаворитом во множестве областей, включая производство запчастей военных самолетов, которых необходим легкий и прочный металл.

В большинстве регионов космоса количество атомов кислорода превышает количество атомов углерода. В звездах, как только каждый атом углерода ухватится за доступный атом кислорода, чтобы образовать молекулу окиси углерода (угарный газ) или двуокиси углерода (углекислый газ), оставшиеся атомы кислорода соединяются с другими элементами, включая титан. Спектр излучения звезд красных гигантов наполнен отзвуками свойств, которые проявляются из-за наличия в нем двуокиси титана (молекул TiO2), встречающегося, кстати, и в «земных звездах»: звездчатые сапфиры и рубины обязаны своими сияющими астеризмами примесям в своих кристаллических решетках двуокиси титана, в то время как примеси алюминия обогащают их оттенки. Двуокись титана также входит в состав белой краски, которой покрывают купола телескопов, – она обладает способностью очень эффективно выделять инфракрасное излучение, что, в свою очередь, позволяет существенно снизить тепло, накапливающееся внутри купола в течение светового дня. В ночное время, когда купол открыт, температура воздуха около телескопа падает быстрее, чем температура ночного воздуха, что уменьшает атмосферное преломление и позволяет свету, излучаемому звездами и другими космическими объектами, достигать наблюдателя с большей точностью и ясностью. Свое имя титан получил от титанов древнегреческой мифологии – как, впрочем, и крупнейшая из лун Сатурна – Титан.

Может, углерод и является самым распространенным элементом в формировании жизни, но во многих других смыслах железо, элемент номер 26, можно назвать одним из самых важных в природе. Звезды с высокой массой синтезируют элементы в своих ядрах, перебирая поочередно один элемент периодической таблицы за другим по мере возрастания количества протонов в их ядрах: от гелия до углерода, кислорода и неона вплоть до железа. Содержащее в себе 26 протонов и как минимум столько же нейтронов железо отличается одной особенностью, следующей из законов квантовой механики, которая управляет взаимодействием протонов и нейтронов: у ядер железа самая высокая энергия связи из расчета на одну ядерную частицу (протон нейтрон). Вот что это значит: если вы хотите раздробить ядро железа (в физике это называется расщеплением), вам потребуется дополнительная энергия. С другой стороны, если вы возьметесь соединять атомы железа (это называется синтезом или сплавлением), они тоже будут поглощать энергию. Получается, энергия нужна и для того, чтобы соединять атомы железа друг с другом, и для того, чтобы расщеплять их.

Для всех остальных элементов справедливо лишь одно из двух: они поглощают энергию либо только при синтезе, либо только в процессе расщепления.

Звезды тем временем заняты превращением массы в энергию согласно постулату E = mc2: это необходимо им для того, чтобы противостоять коллапсу под воздействием своей собственной гравитации. Когда внутри звезд синтезируются атомные ядра, природа требует – и получает – ядерный синтез, при котором выделяется энергия. К тому времени, как массивная звезда превратит большую часть своего содержимого в железо, у нее заканчиваются способы выделения энергии в процессе термоядерного синтеза, потому что весь последующий синтез будет только поглощать энергию, но никак не создавать ее. Лишенное источника энергии, коим был для нее все это время термоядерный синтез, ядро звезды в итоге коллапсирует под своим собственным весом, после чего моментально возрождается в громадном взрыве, известном как сверхновая звезда: ее сияние будет гореть ярче миллиарда Солнц на протяжении как минимум недели. Такие сверхновые звезды рождаются исключительно благодаря удивительному свойству железа – его нежеланию соединяться или делиться на части без дополнительной инъекции энергии.

Мы описали основные свойства водорода и гелия; лития, бериллия и бора; углерода, азота и кислорода; алюминия, титана и железа; таким образом, мы изучили практически все ключевые элементы, благодаря которым космос и жизнь на Земле сегодня существуют.

Ради общекосмического интереса давайте быстро пробежимся и по гораздо более странным участникам периодической таблицы элементов. Вам почти наверняка никогда не доведется владеть сколько-нибудь серьезными объемами этих элементов, но для ученых они не только яркие и загадочные всплески на зеркальной глади природных химических щедрот, но и невероятно ловкие в определенных условиях помощники. Возьмем, к примеру, мягкий металл галлий (31 протон в ядре). Температура плавления галлия настолько мала, что ему хватит тепла человеческого тела, чтобы расплавиться прямо у вас на ладони. Галлий также развлекает астрофизиков, исполняя роль активного ингредиента вещества хлорида галлия – вариации на тему столовой соли (хлорида натрия), что принимает ценное участие в экспериментах по обнаружению нейтрино. Чтобы зафиксировать ускользающие от них нейтрино, астрофизики берут стотонный бак жидкого хлорида галлия и помещают его глубоко под землей (нивелируя воздействие других менее проникающих частиц), после чего внимательно наблюдают за ним, чтобы отследить результаты любых столкновений между нейтрино и ядрами галлия. Такие столкновения ведут к образованию ядер германия по 32 протона каждое. Любое преобразование галлия в германий сопровождается выделением фотонов рентгеновского излучения, которое можно обнаружить и измерить каждый раз, когда на ядро приходится удар. С помощью подобных «нейтриновых телескопов» из хлорида галлия астрофизики разрешили загадку, которую они называли проблемой солнечных нейтрино. Она заключалась в том, что по ранее необъясненным причинам предыдущие поколения детекторов нейтрино обнаруживали их меньше, чем предполагала теория термоядерного синтеза в звездном ядре Солнца.


    Ваша оценка произведения:

Популярные книги за неделю