355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дмитрий Гусев » Удивительная логика » Текст книги (страница 6)
Удивительная логика
  • Текст добавлен: 15 октября 2016, 00:54

Текст книги "Удивительная логика"


Автор книги: Дмитрий Гусев



сообщить о нарушении

Текущая страница: 6 (всего у книги 14 страниц) [доступный отрывок для чтения: 6 страниц]

Когда все суждения простые (Категорический силлогизм)

Все дедуктивные умозаключения называются силлогизмами(от греч. sillogismos –«подсчитывание, подытоживание, выведение следствия»). Существует несколько видов силлогизмов. Первый из них называется простым, или категорическим, потому что все входящие в него суждения (две посылки и вывод) являются простыми, или категорическими. Это уже известные нам суждения видов А, I, Е, О.

Рассмотрим пример простого силлогизма:

Все цветы( М)  – это растения( Р).

Все розы( S)  – это цветы( М).

=> Все розы( S)  – это растения( Р).

Обе посылки и вывод являются в данном силлогизме простыми суждениями, причем и посылки, и вывод – это суждения вида А(общеутвердительные). Обратим внимание на вывод, представленный суждением Все розы – это растения.В этом выводе субъектом выступает термин розы,а предикатом – термин растения.Субъект вывода присутствует во второй посылке силлогизма, а предикат вывода – в первой. Так же в обеих посылках повторяется термин цветы,который, как нетрудно увидеть, является связующим: именно благодаря ему не связанные, разобщенные в посылках термины растенияи розыможно связать в выводе. Таким образом, структура силлогизма включает в себя две посылки и один вывод, которые состоят из трех (различным образом расположенных) терминов.

Субъект вывода располагается во второй посылке силлогизма и называется меньшим термином силлогизма(вторая посылка также называется меньшей).

Предикат вывода располагается в первой посылке силлогизма и называется б́ольшим термином силлогизма(первая посылка также называется большей). Предикат вывода, как правило, является по объему большим понятием, чем субъект вывода (в приведенном примере понятия розыи растениянаходятся в отношении родовидового подчинения), в силу чего предикат вывода называется б́ольшим термином, а субъект вывода – меньшим.

Термин, который повторяется в двух посылках и связывает субъект с предикатом (меньший и больший термины), называется средним термином силлогизмаи обозначается латинской буквой М(от лат. medium –«средний»).

Три термина силлогизма могут быть расположены в нем по-разному. Взаимное расположение терминов друг относительно друга называется фигурой простого силлогизма. Таких фигур четыре, т. е. все возможные варианты взаимного расположения терминов в силлогизме исчерпываются четырьмя комбинациями. Рассмотрим их.

Первая фигура силлогизма– это такое расположение его терминов, при котором первая посылка начинается со среднего термина, а вторая заканчивается средним термином. Например:

Все газы( М)  – это химические элементы( Р).

Гелий( S)  – это газ( М).

=> Гелий( S)  – это химический элемент( Р).

Учитывая, что в первой посылке средний термин связан с предикатом, во второй посылке субъект связан со средним термином, а в выводе субъект связан с предикатом, составим схему расположения и связи терминов в приведенном примере (рис. 34).

Прямые линии на схеме (за исключением той, которая отделяет посылки от вывода) показывают связь терминов в посылках и в выводе. Поскольку роль среднего термина заключается в том, чтобы связывать больший и меньший термины силлогизма, то на схеме средний термин в первой посылке соединяется линией со средним термином во второй посылке. Схема показывает, каким именно образом средний термин связывает между собой другие термины силлогизма в его первой фигуре. Кроме того, отношения между тремя терминами можно изобразить с помощью кругов Эйлера. В данном случае получится следующая схема (рис. 35).

Вторая фигура силлогизма– это такое расположение его терминов, при котором и первая, и вторая посылки заканчиваются средним термином. Например:

Все рыбы( Р) дышат жабрами( М).

Все киты( S) не дышат жабрами( М).

=> Все киты( S) не рыбы( Р).

Схемы взаимного расположения терминов и отношений между ними во второй фигуре силлогизма выглядят так, как показано на рис. 36.

Третья фигура силлогизма– это такое расположение его терминов, при котором и первая, и вторая посылки начинаются со среднего термина. Например:

Все тигры( М)  – это млекопитающие( Р).

Все тигры( М)  – это хищники( S).

=> Некоторые хищники( S)  – это млекопитающие( Р).

Схемы взаимного расположения терминов и отношений между ними в третьей фигуре силлогизма изображены на рис. 37.

Четвертая фигура силлогизма– это такое расположение его терминов, при котором первая посылка заканчивается средним термином, а вторая начинается с него. Например:

Все квадраты( Р)  – это прямоугольники( М).

Все прямоугольники( М)  – это не треугольники( S).

=> Все треугольники( S)  – это не квадраты( Р).

Схемы взаимного расположения терминов и отношений между ними в четвертой фигуре силлогизма показаны на рис. 38.

Отметим, что отношения между терминами силлогизма во всех фигурах могут быть и другими.

Любой простой силлогизм состоит из трех суждений (двух посылок и вывода). Каждое из них является простым и принадлежит к одному из четырех видов ( А, I, Е, О). Набор простых суждений, входящих в силлогизм, называется модусом простого силлогизма. Например:

Все небесные тела движутся.

Все планеты – это небесные тела.

=> Все планеты движутся.

В этом силлогизме первая посылка является простым суждением вида А(общеутвердительным), вторая посылка – это тоже простое суждение вида А,и вывод в данном случае представляет собой простое суждение вида А.Поэтому рассмотренный силлогизм имеет модус AAA,или barbara.Последнее латинское слово ничего не обозначает и никак не переводится – это просто сочетание букв, подобранное таким образом, чтобы в нем присутствовали три буквы а,символизируя собой модус силлогизма AAA.Латинские «слова» для обозначения модусов простого силлогизма были придуманы еще в Средние века.

Следующий пример – силлогизм с модусом ЕАЕ,или cesare:

Все журналы – это периодические издания.

Все книги не являются периодическими изданиями.

=> Все книги не являются журналами.

И еще один пример. Этот силлогизм имеет модус AAI,или darapti.

Все углероды – простые тела.

Все углероды электропроводны.

=> Некоторые электропроводники – простые тела.

Всего модусов во всех четырех фигурах (т. е. возможных комбинаций простых суждений в силлогизме) – 256. В каждой фигуре 64 модуса. Однако из этих 256 модусов только 19 дают достоверные выводы, остальные приводят к вероятностным выводам. Если принять во внимание, что одним из главных признаков дедукции (а значит, и силлогизма) является достоверность ее выводов, то становится понятным, почему эти 19 модусов называются правильными, а остальные – неправильными.

Наша задача – уметь определять фигуру и модус любого простого силлогизма. Например, требуется установить фигуру и модус силлогизма:

Все вещества состоят из атомов.

Все жидкости – это вещества.

=> Все жидкости состоят из атомов.

Прежде всего надо найти субъект и предикат вывода, т. е. меньший и больший термины силлогизма. Далее следует установить местоположение меньшего термина во второй посылке и большего – в первой. После этого можно определить средний термин и схематично изобразить расположение всех терминов в силлогизме (рис. 39).

Все вещества( М) состоят из атомов( Р).

Все жидкости( S)  – это вещества( М).

=> Все жидкости( S) состоят из атомов( Р).

Как видим, рассматриваемый силлогизм построен по первой фигуре. Теперь надо найти его модус. Для этого следует выяснить, к какому виду простых суждений относятся первая и вторая посылки и вывод. В нашем примере обе посылки и вывод являются суждениями вида А(общеутвердительными), т. е. модус данного силлогизма – AAA, или b arb ar a.Итак, предложенный силлогизм имеет первую фигуру и модус AAA.

Хождение в школу вечно (Общие правила силлогизма)

Правила силлогизма делятся на общие и частные.

Общие правила применимы ко всем простым силлогизмам, независимо от того, по какой фигуре они построены. Частныеправила действуют только для каждой фигуры силлогизма и поэтому часто называются правилами фигур. Рассмотрим общие правила силлогизма.

В силлогизме должно быть только три термина.Обратимся к уже упоминавшемуся силлогизму, в котором данное правило нарушено.

Движение вечно.

Хождение в школу – это движение.

=> Хождение в школу вечно.

Обе посылки этого силлогизма являются истинными суждениями, однако из них вытекает ложный вывод, потому что нарушено рассматриваемое правило. Слово движениеупотребляется в двух посылках в двух разных значениях: движение как всеобщее мировое изменение и движение как механическое перемещение тела из точки в точку. Получается, что терминов в силлогизме три: движение, хождение в школу, вечность,а смыслов (поскольку один из терминов употребляется в двух разных смыслах) четыре, т. е. лишний смысл как бы подразумевает лишний термин. Иначе говоря, в приведенном примере силлогизма было не три, а четыре (по смыслу) термина. Ошибка, возникающая при нарушении вышеприведенного правила, называется учетверением терминов.

Средний термин должен быть распределен хотя бы в одной из посылок.О распределенности терминов в простых суждениях речь шла в предыдущей главе. Напомним, что проще всего устанавливать распределенность терминов в простых суждениях с помощью круговых схем: надо изобразить кругами Эйлера отношения между терминами суждения, при этом полный круг на схеме будет обозначать распределенный термин (+), а неполный – нераспределенный (—). Рассмотрим пример силлогизма.

Все кошки( К)  – это живые существа( Ж. с).

Сократ( С)  – это тоже живое существо.

=> Сократ – это кошка.

Из двух истинных посылок вытекает ложный вывод. Изобразим кругами Эйлера отношения между терминами в посылках силлогизма и установим распределенность этих терминов (рис. 40).

Как видим, средний термин ( живые существа) в данном случае не распределен ни в одной из посылок, а по правилу он должен быть распределен хотя бы в одной. Ошибка, возникающая при нарушении рассматриваемого правила, так и называется – нераспределенность среднего термина в каждой посылке.

Термин, который был не распределен в посылке, не может быть распределен в выводе.Обратимся к следующему примеру:

Все яблоки( Я)  – съедобные предметы( С. п.).

Все груши( Г)  – это не яблоки.

=> Все груши – несъедобные предметы.

Посылки силлогизма являются истинными суждениями, а вывод – ложным. Как и в предыдущем случае, изобразим кругами Эйлера отношения между терминами в посылках и в выводе силлогизма и установим распределенность этих терминов (рис. 41).

В данном случае предикат вывода, или больший термин силлогизма ( съедобные предметы), в первой посылке является нераспределенным (—), а в выводе – распределенным (+), что запрещается рассматриваемым правилом. Ошибка, возникающая при его нарушении, называется расширением большего термина. Вспомним, что термин распределен, когда речь идет обо всех предметах, входящих в него, и нераспределен, когда речь идет о части предметов, входящих в него, именно поэтому ошибка и называется расширением термина.

В силлогизме не должно быть двух отрицательных посылок.Хотя бы одна из посылок силлогизма должна быть положительной (могут быть положительными и обе посылки). Если две посылки в силлогизме отрицательные, то вывод из них или вообще сделать нельзя, или же, если его сделать возможно, он будет ложным или, по крайней мере, недостоверным, вероятностным. Например:

Снайперы не могут иметь плохое зрение.

Все мои друзья – не снайперы.

=> Все мои друзья имеют плохое зрение.

Обе посылки в силлогизме являются отрицательными суждениями, и, несмотря на их истинность, из них вытекает ложный вывод. Ошибка, которая возникает в данном случае, так и называется – две отрицательные посылки.

В силлогизме не должно быть двух частных посылок.

Хотя бы одна из посылок должна быть общей (могут быть общими и обе посылки). Если две посылки в силлогизме представляют собой частные суждения, то вывод из них сделать невозможно. Например:

Некоторые школьники – это первоклассники.

Некоторые школьники – это десятиклассники.

=>?

Из этих посылок никакой вывод не следует, потому что обе они являются частными. Ошибка, возникающая при нарушении данного правила, так и называется – две частные посылки.

Если одна из посылок отрицательная, то и вывод должен быть отрицательным.Например:

Ни один металл не является изолятором.

Медь – это металл.

=> Медь не является изолятором.

Как видим, из двух посылок данного силлогизма не может вытекать утвердительный вывод. Он может быть только отрицательным.

Если одна из посылок частная, то и вывод должен быть частным.Например:

Все углеводороды – это органические соединения.

Некоторые вещества – это углеводороды.

=> Некоторые вещества – это органические соединения.

В этом силлогизме из двух посылок не может следовать общий вывод. Он может быть только частным, так как вторая посылка является частной.

Приведем еще несколько примеров простого силлогизма – как правильных, так и с нарушениями каких-то общих правил.

Все травоядные питаются растительной пищей.

Все тигры не питаются растительной пищей.

=> Все тигры не являются травоядными.

(Правильный силлогизм)

Все отличники не получают двоек.

Мой друг – не отличник.

=> Мой друг получает двойки.

(Ошибка – две отрицательные посылки в силлогизме)

Все рыбы плавают.

Все киты тоже плавают.

=> Все киты являются рыбами.

(Ошибка – средний термин не распределен ни в одной из посылок)

Лук – это древнее орудие для стрельбы.

Одна из овощных культур – это лук.

=> Одна из овощных культур – это древнее орудие для стрельбы.

(Ошибка – учетверение терминов в простом силлогизме)

Любой металл не является изолятором.

Вода – это не металл.

=> Вода является изолятором.

(Ошибка – две отрицательные посылки в силлогизме)

Ни одно насекомое не является птицей.

Все пчелы – это насекомые.

=> Ни одна пчела не является птицей.

(Правильный силлогизм)

Все стулья – это предметы мебели.

Все шкафы – это не стулья.

=> Все шкафы – это не предметы мебели.

(Ошибка – расширение большего термина в силлогизме)

Законы придумывают люди.

Всемирное тяготение – это закон.

=> Всемирное тяготение придумали люди.

(Ошибка – учетверение терминов в простом силлогизме)

Все люди смертны.

Все животные – не люди.

=> Животные бессмертны.

(Ошибка – расширение большего термина в силлогизме)

Все олимпийские чемпионы являются спортсменами.

Некоторые россияне – это олимпийские чемпионы.

=> Некоторые россияне – это спортсмены.

(Правильный силлогизм)

Материя несотворима и неуничтожима.

Шелк – это материя.

=> Шелк несотворим и неуничтожим.

(Ошибка – учетверение терминов в простом силлогизме)

Все выпускники школы сдают экзамены.

Все студенты-пятикурсники не являются выпускниками школы.

=> Все студенты-пятикурсники не сдают экзамены.

(Ошибка – расширение большего термина в силлогизме)

Все звезды не являются планетами.

Все астероиды – это малые планеты.

=> Все астероиды – не звезды.

(Правильный силлогизм)

Все дедушки являются отцами.

Все отцы – это мужчины.

=> Некоторые мужчины – это дедушки.

(Правильный силлогизм)

Ни один первоклассник не является совершеннолетним.

Все взрослые люди – это не первоклассники.

=> Все взрослые люди – это несовершеннолетние.

(Ошибка – две отрицательные посылки в силлогизме)

Краткость – сестра таланта (Виды сокращенного силлогизма)

Простой силлогизм – это одна из широко распространенных разновидностей умозаключения. Поэтому он часто используется в повседневном и научном мышлении. Однако при его употреблении мы, как правило, не соблюдаем его четкую логическую структуру. Например:

Все рыбы не являются млекопитающими.

Все киты являются млекопитающими.

=> Следовательно, все киты не являются рыбами.

Вместо этого, мы, скорее всего, скажем: Все киты не рыбы, так как они – млекопитающиеили: Все киты не рыбы, потому что рыбы – не млекопитающие.Нетрудно увидеть, что эти два умозаключения представляют собой сокращенную форму приведенного простого силлогизма.

Таким образом, в мышлении и речи обычно используется не простой силлогизм, а его различные сокращенные разновидности. Рассмотрим их.

Энтимема– это простой силлогизм, в котором пропущена одна из посылок или вывод. Понятно, что из любого силлогизма можно вывести три энтимемы. Для примера возьмем следующий силлогизм:

Все металлы электропроводны.

Железо – это металл.

=> Железо электропроводно.

Из данного силлогизма следуют три энтимемы: Железо электропроводно, так как оно является металлом(пропущена большая посылка); Железо электропроводно, потому что все металлы электропроводны(пропущена меньшая посылка); Все металлы электропроводны, а железо – это металл(пропущен вывод).

Эпихейрема– это простой силлогизм, в котором обе посылки являются энтимемами. Возьмем два силлогизма и выведем из них энтимемы.

Силлогизм 1

Все, что приводит общество к бедствиям, есть зло.

Социальная несправедливость приводит общество к бедствиям.

=> Социальная несправедливость – это зло.

Пропуская в этом силлогизме большую посылку, получаем следующую энтимему: Социальная несправедливость – это зло, так как она приводит общество к бедствиям.

Силлогизм 2

Все, что способствует обогащению одних за счет обнищания других, – это социальная несправедливость.

Частная собственность способствует обогащению одних за счет обнищания других.

=> Частная собственность – это социальная несправедливость.

Пропуская в этом силлогизме большую посылку получаем такую энтимему: Частная собственность – это социальная несправедливость, так как она способствует обогащению одних за счет обнищания других.Если расположить эти две энтимемы друг за другом, то они станут посылками нового, третьего силлогизма, который и будет эпихейремой:

Социальная несправедливость – это зло, так как оно приводит общество к бедствиям.

Частная собственность – это социальная несправедливость, так как она способствует обогащению одних за счет обнищания других.

=> Частная собственность – это зло.

Как видим, в составе эпихейремы можно выделить три силлогизма: два из них являются посылочными, а один строится из выводов посылочных силлогизмов. Этот последний силлогизм представляет собой основу для окончательного вывода.

Полисиллогизм(сложный силлогизм) – это два или несколько простых силлогизмов, связанных между собой таким образом, что вывод одного из них является посылкой следующего. Например:

Здесь и далее скобками показаны два силлогизма, объединенные в полисиллогизм.

Обратим внимание на то, что вывод предыдущего силлогизма стал большей посылкой последующего. В этом случае получившийся полисиллогизм называется прогрессивным. Если же вывод предыдущего силлогизма становится меньшей посылкой последующего, то полисиллогизм называется регрессивным. Например:

Вывод предыдущего силлогизма является меньшей посылкой следующего. Можно заметить, что в этом случае два силлогизма невозможно графически соединить в последовательную цепочку, как в случае прогрессивного полисиллогизма.

Выше говорилось, что полисиллогизм может состоять не только из двух, но и из большего числа простых силлогизмов. Приведем пример полисиллогизма (прогрессивного), который состоит из трех простых силлогизмов:

Сорит(сложносокращенный силлогизм) – это полисиллогизм, в котором пропущена посылка последующего силлогизма, являющаяся выводом предыдущего. Вернемся к рассмотренному выше примеру прогрессивного полисиллогизма и пропустим в нем большую посылку второго силлогизма, которая представляет собой вывод первого силлогизма. Получится прогрессивный сорит:

Все, что развивает мышление, полезно.

Все интеллектуальные игры развивают мышление.

Шахматы – это интеллектуальная игра.

=> Шахматы полезны.

Теперь обратимся к рассмотренному выше примеру регрессивного полисиллогизма и пропустим в нем меньшую посылку второго силлогизма, которая является выводом первого силлогизма. Получится регрессивный сорит:

Все звезды – это небесные тела.

Солнце – это звезда.

Все небесные тела участвуют в гравитационных взаимодействиях.

=> Солнце участвует в гравитационных взаимодействиях.

То ли дождик, то ли снег (Умозаключения с союзом ИЛИ)

Умозаключения, которые содержат в себе разделительные (дизъюнктивные) суждения, называются разделительными. В мышлении и речи часто используется разделительно-категорический силлогизм, в котором, как явствует из названия, первая посылка представляет собой разделительное (дизъюнктивное) суждение, а вторая посылка – простое (категорическое) суждение. Например:

Учебное заведение может быть начальным, или средним, или высшим.

МГУ является высшим учебным заведением.

=> МГУ – это не начальное и не среднее учебное заведение.

Разделительно-категорический силлогизм имеет два модуса: утверждающе-отрицающий и отрицающе-утверждающий.

В утверждающе-отрицающем модусепервая посылка представляет собой строгую дизъюнкцию нескольких вариантов чего-либо, вторая утверждает один из них, а вывод отрицает все остальные (таким образом, рассуждение движется от утверждения к отрицанию). Например:

Леса бывают хвойными, или лиственными, или смешанными.

Этот лес хвойный.

=> Этот лес не лиственный и не смешанный.

В отрицающе-утверждающеммодусе первая посылка представляет собой строгую дизъюнкцию нескольких вариантов чего-либо, вторая отрицает все данные варианты, кроме одного, а вывод утверждает один оставшийся вариант (таким образом, рассуждение движется от отрицания к утверждению). Например:

Люди бывают европеоидами, или монголоидами, или негроидами.

Этот человек не монголоид и не негроид.

=> Этот человек является европеоидом.

Первая посылка разделительно-категорического силлогизма является строгой дизъюнкцией, т. е. представляет собой уже знакомую нам логическую операцию деления понятия. Поэтому неудивительно, что правила этого силлогизма повторяют известные нам правила деления понятия. Рассмотрим их.

Деление в первой посылке должно проводиться по одному основанию.Например:

Транспорт бывает наземным, или подземным, или водным, или воздушным, или общественным.

Пригородные электропоезда – это общественный транспорт.

=> Пригородные электропоезда – это не наземный, не подземный, не водный и не воздушный транспорт.

Силлогизм построен по утверждающе-отрицающему модусу: в первой посылке представлено несколько вариантов, во второй посылке один из них утверждается, в силу чего в выводе отрицаются все остальные. Однако из двух истинных посылок вытекает ложный вывод.

Почему так получается? Потому что в первой посылке деление проводилось по двум разным основаниям: в какой природной среде передвигается транспорт и кому он принадлежит. Уже знакомая нам подмена основания деленияв первой посылке разделительно-категорического силлогизма приводит к ложному выводу.

Деление в первой посылке должно быть полным.Например:

Математические действия бывают сложением, или вычитанием, или умножением, или делением.

Логарифмирование – это не сложение, не вычитание, не умножение и не деление.

=> Логарифмирование – это не математическое действие.

Известная нам ошибка неполного деленияв первой посылке силлогизма обусловливает ложный вывод, вытекающий из истинных посылок.

Результаты деления в первой посылке не должны пересекаться, или дизъюнкция должна быть строгой.Например:

Страны мира бывают северными, или южными, или западными, или восточными.

Канада – это северная страна.

=> Канада – это не южная, не западная и не восточная страна.

В силлогизме вывод является ложным, так как Канада в такой же степени северная страна, в какой и западная. Ложный вывод при истинных посылках объясняется в данном случае пересечением результатов деленияв первой посылке, или, что одно и то же, – нестрогой дизъюнкцией. Следует отметить, что нестрогая дизъюнкция в разделительно-категорическом силлогизме допустима в том случае, когда он построен по отрицающе-утверждающему модусу. Например:

Он силен от природы или же постоянно занимается спортом.

Он не является сильным от природы.

=> Он постоянно занимается спортом.

В силлогизме нет ошибки, несмотря на то что дизъюнкция в первой посылке была нестрогой. Таким образом, рассматриваемое правило безоговорочно действует только для утверждающе-отрицающего модуса разделительно-категорического силлогизма.

Деление в первой посылке должно быть последовательным.Например:

Предложения бывают простыми, или сложными, или сложносочиненными.

Это предложение сложносочиненное.

=> Это предложение не простое и не сложное.

В силлогизме ложный вывод следует из истинных посылок по той причине, что в первой посылке была допущена уже известная нам ошибка, которая называется скачком в делении.

Приведем еще несколько примеров разделительно-категорического силлогизма – как правильных, так и с нарушениями рассмотренных правил.

Четырехугольники бывают квадратами, или ромбами, или трапециями.

Эта фигура – не ромб и не трапеция.

=> Эта фигура – квадрат.

(Ошибка – неполное деление)

Отбор в живой природе бывает искусственным или естественным.

Данный отбор не является искусственным.

=> Данный отбор является естественным.

(Правильное умозаключение)

Люди бывают талантливыми, или бесталанными, или упрямыми.

Он является упрямым человеком.

=> Он не талантлив и не бесталанен.

(Ошибка – подмена основания в делении)

Учебные заведения бывают начальными, или средними, или высшими, или университетами.

МГУ – это университет.

=> МГУ – это не начальное, не среднее и не высшее учебное заведение.

(Ошибка – скачок в делении)

Можно изучать естественные науки или гуманитарные.

Я изучаю естественные науки.

=> Я не изучаю гуманитарные науки.

(Ошибка – пересечение результатов деления, или нестрогая дизъюнкция)

Элементарные частицы имеют отрицательный электрический заряд, или положительный, или нейтральный.

Электроны имеют отрицательный электрический заряд.

=> Электроны не имеют ни положительного, ни нейтрального электрического заряда.

(Правильное умозаключение)

Издания бывают периодическими, или непериодическими, или зарубежными.

Это издание является зарубежным.

=> Это издание не является периодическим и не является непериодическим.

(Ошибка – подмена основания)

Разделительно-категорический силлогизм в логике часто называют просто разделительно-категорическим умозаключением. Помимо него существует также чисто разделительный силлогизм(чисто разделительное умозаключение), обе посылки и вывод которого являются разделительными (дизъюнктивными) суждениями. Например:

Зеркала бывают плоскими или сферическими.

Сферические зеркала бывают вогнутыми или выпуклыми.

=> Зеркала бывают плоскими, или вогнутыми, или выпуклыми.


    Ваша оценка произведения:

Популярные книги за неделю