Текст книги "Удивительная логика"
Автор книги: Дмитрий Гусев
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 3 (всего у книги 14 страниц) [доступный отрывок для чтения: 6 страниц]
Транспорт бывает общественным, личным и наземным (Деление понятия)
Деление понятия– это логическая операция, которая раскрывает его объем. Принято выделять делимое понятие, результаты деления и основание деления (признак, по которому производится деление). Например, в делении Люди бывают мужчинами и женщинами(или, что то же самое: Люди делятся на мужчин и женщин) делимымявляется понятие люди, результаты деления– это понятия мужчиныи женщины,а основание деления– пол, так как люди в нем разделены по половому признаку. В зависимости от основания деление может быть различным. Например: Люди бывают высокими, низкими и среднего роста(основание деления – рост); Люди бывают монголоидами, европеоидами и негроидами(основание деления – раса); Люди бывают учителями, врачами, инженерами и т. д.(основание деления – профессия). Иногда понятие делится дихотомически(от греч. dicha –«на две части» и tome –«разрез, сечение») по типу А и не А.Например: Люди бывают спортсменами и не спортсменами.Дихотомическое деление всегда правильное, т. е. в нем автоматически исключаются все возможные в делении ошибки, о которых речь пойдет ниже.
Мы хорошо знаем, зачем нам нужна операция определения понятия: знакомство с новым предметом начинается с его определения. Теперь ответим на вопрос, какую роль в мышлении и языке выполняет операция деления понятия. Изучая разные науки, вы заметили, что ни одна из них не обходится без различных классификаций: разделений каких-то областей действительности на группы, части, виды и т. п. (классификация растений в ботанике, животных – в зоологии, химических элементов – в химии и т. д.).
Любая классификация – это не что иное, как логическая операция деления понятия. Классификации могут быть как обширными, подробными, научными, так и простыми, обыденными, повседневными. Когда мы говорим: Люди делятся на мужчин и женщинили Учебные заведения бывают начальными, средними и высшими,то создаем пусть маленькую и простую, но классификацию. Итак, логическая операция деления понятия лежит в основе любой классификации, без которой не обходится ни научное, ни повседневное мышление.
Существует несколько логических правил деления. Нарушение хотя бы одного из них приводит к тому, что объем понятия не раскрывается и деление становится неверным. Рассмотрим эти правила.
1. Деление должно проводиться по одному основанию,т. е. при делении понятия следует придерживаться только одного выбранного признака. Например, в делении Люди бывают мужчинами, женщинами и учителямииспользуются два разных основания (пол и профессия), что недопустимо. Ошибка, возникающая при нарушении этого правила, называется подменой основания. В делении с подменой основания могут использоваться не только два разных основания, как в приведенном выше примере, но и больше. Например, в делении Люди бывают мужчинами, женщинами, китайцами и блондинамииспользованы три разных основания (пол, национальность и цвет волос), что, конечно же, тоже является ошибкой.
Подмена основания присутствует в следующих примерах делений:
• Транспорт бывает наземным, подземным, водным, воздушным, общественным и личным.
• Речь бывает устной, письменной, путаной и заумной.
• Оружие бывает холодным, огнестрельным и старинным.
2. Деление должно быть полным,т. е. надо перечислить все возможные результаты деления (суммарный объем всех результатов деления должен быть равен объему исходного делимого понятия). Например, деление Учебные заведения бывают начальными и среднимиявляется неполным, так как не указан еще один результат деления – высшие учебные заведения. Но как быть, если надо перечислять не два или три, а десятки или сотни результатов деления. В этом случае можно употреблять выражения и другие, и прочие, и так далее, и тому подобное, которые будут включать в себя неперечисленные результаты деления. Например: Люди бывают русскими, немцами, китайцами, японцами и представителями других национальностей.
Примеры неполных делений:
Энергия бывает механической и химической.
Треугольники бывают тупоугольными и прямоугольными.
3. Результаты деления не должны пересекаться,т. е. понятия, представляющие собой результаты деления, должны быть несовместимыми, их объемы не должны иметь общих элементов (на схеме Эйлера круги, соответствующие результатам деления, не должны соприкасаться). Например, в делении Страны мира делятся на северные, южные, восточные и западныедопущена ошибка – пересечение результатов деления. На первый взгляд, приведенное деление кажется безошибочным: оно проведено по одному основанию (сторона света) и является полным (все стороны света перечислены). Чтобы увидеть ошибку, надо рассуждать так. Возьмем какую-нибудь страну, например Канаду, и ответим на вопрос, является ли она северной. Конечно, является, так как расположена в северном полушарии Земли. А является ли Канада западной страной? Да, потому что она расположена в западном полушарии. Таким образом, получается, что Канада – одновременно и северная, и западная страна, т. е. она является общим элементом объемов понятий северные страны(С) и западные страны(3), а значит, эти понятия пересекаются. То же самое можно сказать и относительно понятий южные страны(Ю) и восточные страны(В). На схеме Эйлера результаты деления из нашего примера будут располагаться так (рис. 14).
Вспомним, каждая классификация построена таким образом, что любой элемент, попадающий в одну ее группу (часть, вид), ни в коем случае не попадает в другие. Это и есть следствие непересечения результатов деления (их взаимоисключения).
Примеры делений с пересечением результатов:
Художественные романы бывают приключенческими, детективными, фантастическими, историческими, любовными и другими.
Спортивные состязания бывают мировыми, международными, олимпийскими и другими.
По темпераменту люди делятся на сангвиников, меланхоликов, флегматиков и холериков.
4. Деление должно быть последовательным,т. е. не допускающим пропусков и скачков. Рассмотрим следующее деление: Леса бывают хвойными, лиственными, смешанными и сосновыми.Явно лишним здесь выглядит понятие сосновые леса,в силу чего допущенная в делении ошибка напоминает подмену основания. Однако основание в данном случае не менялось: деление было проведено по одному и тому же основанию – тип древесных листьев. Правильно было бы разделить леса на хвойные, лиственные и смешанные, а потом произвести второе деление – разделить хвойные леса на сосновые и еловые. Таким образом, надо было совершить два последовательных деления, а в приведенном примере второе деление пропущено, через него как бы перескочили, в результате чего два деления смешались в одно. Такая ошибка называется скачком в делении. Еще раз отметим, что скачок в делении не следует путать с подменой основания. Например, в делении Учебные заведения бывают начальными, средними, высшими и университетамиприсутствует скачок, а в делении Учебные заведения бывают начальными, средними, высшими и коммерческимидопущена подмена основания.
Примеры делений, в которых присутствует скачок:
Геометрические фигуры делятся на плоские, объемные, треугольники и квадраты.
Учащиеся бывают успевающими, отстающими и отличниками.
Преступления делятся на умышленные, неумышленные и квартирные кражи.
Либо школьник, либо спортсмен (Сложение и умножение понятий)
Помимо рассмотренных нами логических операций ограничения, обобщения, определения и деления понятия, существуют еще две важные операции. Это сложение и умножение понятий.
Сложение понятий– это логическая операция объединения двух и более понятий, в результате которой образуется новое понятие с объемом, охватывающим собой все элементы объемов исходных понятий. Например, при сложении понятий школьник(Ш) и спортсмен(С) образуется новое понятие, в объем которого входят как все школьники, так и все спортсмены. Результат сложения понятий, часто называемый логической суммой, на схеме Эйлера изображается штриховкой (рис. 15).
Умножение понятий– это логическая операция объединения двух и более понятий, в результате которой образуется новое понятие с объемом, охватывающим собой только совпадающие элементы объемов исходных понятий. Например, при умножении понятий школьник(Ш) и спортсмен(С) образуется новое понятие, в объем которого входят только школьники, являющиеся спортсменами, и спортсмены, являющиеся школьниками. Результат умножения понятий, часто называемый логическим произведением, на схеме Эйлера изображается штриховкой (рис. 16).
Мы привели примеры сложения и умножения понятий, которые находятся между собой в отношении пересечения: школьники спортсмен.При других отношениях между понятиями результаты сложения и умножения (логическая сумма и логическое произведение), разумеется, будут иными. Результаты сложения понятий, при сравнении их с результатами умножения, полностью совпадают только в случае равнозначности, частично совпадают в пересечении и совершенно не совпадают в соподчинении, противоположности и противоречии (в этих трех случаях результатом умножения является нулевое или пустое понятие). В отношении подчинения результатом сложения является родовое понятие, а результатом умножения – видовое.
Как правило, в естественном языке (том, на котором мы общаемся) результат сложения понятий выражается союзом ИЛИ,а умножения – союзом И.В результате сложения понятий школьники спортсменобразуется новое понятие, в объем которого входит любой человек, если он является ИЛИшкольником, ИЛИспортсменом, а в результате умножения этих понятий в объем нового понятия входит любой человек, если он является Ишкольником, Испортсменом одновременно.
О возможных разночтениях при употреблении союзов ИЛИ и ИВ.И. Свинцов [4]4
Свинцов В. И.Логика. Элементарный курс для гуманитарных специальностей. – М.: Скорина, 1998. С. 60–61.
[Закрыть]пишет: «Что касается союзов ИЛИи И,то нужно отметить их многозначность, способную в известных ситуациях создавать достаточно неопределенное представление о характере связи между некоторыми исходными понятиями. Удачна ли, например, следующая формулировка одного из правил пользования городским транспортом: Безбилетный проезд и бесплатный провоз багажа наказываются штрафом!Представим себе два подмножества, которые могут быть выделены во множестве пассажиров-нарушителей. В одно из них войдут пассажиры, не взявшие билеты, в другое – не оплатившие провоз багажа.Если союз Ирассматривать как показатель логического умножения, то придется признать, что штраф должен быть наложен только на тех пассажиров, которые совершили сразу два проступка (но не какой-то один из них). Разумеется, житейский смысл ситуации, предусмотренной данным правилом, настолько ясен, что всякие разночтения этой формулировки, вероятно, были бы признаны казуистикой, но все же использование союза ИЛИздесь следует признать предпочтительным».
Однако следует отметить, что и в данном случае из-за неоднозначности разделительного союза ИЛИмогут возникнуть недоразумения. Дело в том, что этот союз может употребляться в нестрогом (неисключающем) значении и в строгом (исключающем). Например, в высказывании Можно изучать английский язык или немецкийсоюз ИЛИупотребляется в нестрогом значении, так как можно изучать и тот, и другой язык одновременно, одно другого не исключает. В данном случае разделительный союз ИЛИочень близок к соединительному союзу И.С другой стороны, в высказывании Он родился в 1987 году или в 1989 годусоюз ИЛИупотребляется в строгом значении, так как если он родился в 1987 году, то никак не в 1989 году, и наоборот, два варианта здесь друг друга исключают. (О различных значениях союза ИЛИмы еще будем говорить далее.)
Если в рассмотренное выше правило пользования городским транспортом поставить союз ИЛИвместо союза И,как предлагает В. И. Свинцов, то получится следующее: Безбилетный проезд или бесплатный провоз багажа наказываются штрафом.В данном случае союз ИЛИ,являясь показателем логического сложения, должен восприниматься в его нестрогом, неисключающем значении. Но ведь в указанной фразе этот союз можно истолковать и в строгом, исключающем значении. Тогда получится, что штраф накладывается или только на тех пассажиров, которые не оплатили проезд, или же только на тех, которые бесплатно провозят багаж. Правда, в этом случае не совсем понятно, кто же наказывается штрафом – те или другие. Поразмыслив, можно прийти к выводу, что штрафу подвергаются то те, то другие – на усмотрение контролера и в зависимости от ситуации.
В силу всего сказанного надо отметить, что употребление союза ИЛИвсякий раз нуждается в комментарии относительно того, в строгом или нестрогом значении он используется. Понятно, что без этого комментария вполне возможны различного рода недоразумения. Поэтому нередко употребляется своеобразный союз-гибрид ИЛИ/И,указывающий на то, что союз ИЛИиспользуется в некоем тексте в его нестрогом значении. Таким образом, наиболее целесообразно сформулировать правило оплаты проезда в городском пассажирском транспорте следующим образом: Безбилетный проезд или/и бесплатный провоз багажа наказываются штрафом.В данной, может быть, не совсем удобной, с точки зрения языка, формулировке все возможные разночтения и недоразумения исключаются.
Суждение
Параллельные прямые не пересекаются (Что такое суждение)
Суждение(высказывание) – это форма мышления, в которой что-либо утверждается или отрицается. Например: Все сосны являются деревьями, Некоторые люди – это спортсмены, Ни один кит – не рыба, Некоторые животные не являются хищниками.Рассмотрим несколько важных свойств суждения, которые в то же время отличают его от понятия.
1. Любое суждение состоит из понятий, связанных между собой.Например, если связать понятия карасьи рыба,то могут получиться суждения Все караси являются рыбами, Некоторые рыбы являются карасями.
2. Любое суждение выражается в форме предложения(как мы помним, понятие выражается словом или словосочетанием). Однако не всякое предложение может выражать суждение. Как известно, предложения бывают повествовательными, вопросительными и восклицательными. В вопросительных и восклицательных предложениях ничего не утверждается и не отрицается, поэтому они не могут выражать собой суждение. Повествовательное предложение, наоборот, всегда что-либо утверждает или отрицает, в силу чего суждение выражается в форме повествовательного предложения.
Тем не менее есть такие вопросительные и восклицательные предложения, которые только по форме являются вопросами и восклицаниями, а по смыслу что-то утверждают или отрицают. Они называются риторическими. Например, известное высказывание И какой же русский не любит быстрой езды?представляет собой риторическое вопросительное предложение (риторический вопрос), так как в нем в форме вопроса утверждается, что всякий русский любит быструю езду. В подобном вопросе заключено суждение. То же самое можно сказать о риторических восклицаниях. Например, в высказывании Попробуй найти черную кошку в темной комнате, если ее там нет!в форме восклицательного предложения утверждается мысль о невозможности предложенного действия, в силу чего данное восклицание выражает собой суждение. Понятно, что не риторический, а настоящий вопрос (например: Как тебя зовут?) не выражает суждение, точно так же, как не выражает его настоящее, а не риторическое восклицание (например: Прощай, свободная стихия!).
Чтобы лучше уяснить, что такое суждение, рассмотрим несколько примеров.
• Неужели ты не знал, что Земля вращается вокруг Солнца?(Риторический вопрос – является суждением).
• Прощай, немытая Россия!(Восклицание – суждением не является).
• Кто написал философский трактат« Критика чистого разума»? (Вопрос – суждением не является).
• Логика появилась примерно в V в. до н. э. в Древней Греции.(Повествование – является суждением).
• Первый президент Америки.(Понятие – суждением не является).
• Разворачивайтесь в марше!(Восклицание – суждением не является).
• Мы все учились понемногу…(Повествование – является суждением).
• Попробуй-ка двигаться со скоростью света!(Риторическое восклицание – является суждением).
• Средняя школа № 469 г. Москвы.(Понятие – суждением не является).
• Как тебе только не стыдно?(Риторический вопрос – является суждением).
• Каким образом решается знаменитая задача о квадратуре круга?(Вопрос – суждением не является).
• Общая теория относительности А. Эйнштейна.(Понятие – суждением не является).
• Почему нельзя делить на ноль?(Вопрос – суждением не является).
• Бескрайние просторы Вселенной.(Понятие – суждением не является).
• Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов.(Повествование – является суждением).
3. Любое суждение является истинным или ложным.
Если суждение соответствует действительности, оно истинное, а если не соответствует – ложное. Например, суждение Все розы – это цветыявляется истинным, а суждение Все мухи – это птицы –ложным. Надо отметить, что понятия, в отличие от суждений, не могут быть истинными или ложными. Невозможно, например, утверждать, что понятие школа –истинное, а понятие институт –ложное, понятие звезда –истинное, а понятие планета –ложное и т. п. Но разве понятия Змей Горыныч, Кощей Бессмертный, вечный двигательне ложные? Нет, эти понятия являются нулевыми (пустыми), но не истинными и не ложными. Вспомним, понятие – это форма мышления, которая обозначает какой-либо объект, и именно поэтому не может быть истинным или ложным. Истинность или ложность – это всегда характеристика какого-то высказывания, утверждения или отрицания, поэтому она применима только к суждениям, а не к понятиям.
4. Суждения бывают простыми и сложными.Сложные суждения состоят из простых, соединенных каким-либо союзом.
Как видим, суждение – это более сложная форма мышления по сравнению с понятием. Неудивительно поэтому, что суждение имеет определенную структуру, в которой можно выделить четыре части: субъект, предикат, связка и квантор.
Субъект(обозначается латинской буквой S) – это то, о чем идет речь в суждении. Например, в суждении Все учебники являются книгамиречь идет об учебниках, поэтому субъектом данного суждения выступает понятие учебники.
Предикат(обозначается латинской буквой Р) – это то, что говорится о субъекте. Например, в том же суждении Все учебники являются книгамио субъекте (об учебниках) говорится, что они – книги, поэтому предикатом данного суждения выступает понятие книги.
Связка– это то, что соединяет субъект и предикат. В роли связки могут быть слова есть, является, этои т. п.
Квантор– это указатель на объем субъекта. В роли квантора могут быть слова все, некоторые, ни одини т. п.
Рассмотрим суждение Некоторые люди являются спортсменами.В нем субъектом выступает понятие люди,предикатом – понятие спортсмены,роль связки играет слово являются,а слово некоторыепредставляет собой квантор. Если в каком-то суждении отсутствует связка или квантор, то они все равно подразумеваются. Например, в суждении Тигры – это хищникиквантор отсутствует, но он подразумевается – это слово все.С помощью условных обозначений субъекта и предиката можно отбросить содержание суждения и оставить только его логическую форму. Например, если у суждения Все прямоугольники – это геометрические фигурыотбросить содержание и оставить форму то получится: Все S есть Р.Логическая форма суждения Некоторые животные не являются млекопитающимиесть Некоторые S не есть Р.
Субъект и предикат любого суждения всегда представляют собой какие-либо понятия, которые, как мы уже знаем, могут находиться в различных отношениях между собой. Между субъектом и предикатом суждения могут быть следующие логические отношения: равнозначности, пересечения, подчинения и несовместимости.
Отношение равнозначностипредполагает, что субъект и предикат представляют собой равнозначные понятия. В суждении Все квадраты – это равносторонние прямоугольникисубъект квадратыи предикат равносторонние прямоугольникинаходятся в отношении равнозначности, потому что квадрат – это обязательно равносторонний прямоугольник, а равносторонний прямоугольник – это обязательно квадрат (рис. 17).
Отношения равнозначности субъекта и предиката иллюстрируют примеры ниже:
Антарктида представляет собой ледовый материк(равнозначность).
Д. И. Менделеев – создатель Периодической системы химических элементов(равнозначность).
Отношение пересеченияпоказывает, что субъект и предикат суждения являются пересекающимися понятиями. В суждении Некоторые писатели – это американцысубъект писателии предикат американцынаходятся в отношении пересечения (так как писатель может быть американцем и может им не быть, и американец может быть писателем, но также может им не быть) (рис. 18).
Отношением пересечения связаны субъект и предикат следующих суждений:
Некоторые русские писатели – это всемирно известные люди.
Некоторые грибы – несъедобные объекты.
Некоторые ученые – древние греки.
При отношении подчинениясубъект и предикат суждения соотносятся как видовое и родовое понятия. В суждении Все тигры – это хищникисубъект тигрыи предикат хищникинаходятся в отношении подчинения, потому что тигр – это обязательно хищник, но хищник не обязательно тигр. Так же в суждении Некоторые хищники являются тиграмисубъект хищникии предикат тигрынаходятся в отношении подчинения, будучи родовым и видовым понятиями.
Отношение подчинения хорошо иллюстрируют следующие суждения:
• Все бактерии являются живыми организмами.
• Солнце – это одна из звезд.
• Не все спортсмены являются олимпийскими чемпионами.
Отметим, в случае подчинения между субъектом и предикатом суждения возможны два варианта отношений: объем субъекта полностью включается в объем предиката (рис. 19), или наоборот (рис. 20).
Отношение несовместимости означает,что субъект и предикат суждения являются несовместимыми (соподчиненными) понятиями. В суждении Все планеты не являются звездамисубъект планетыи предикат звездынаходятся в отношении несовместимости, так как ни одна планета не может быть звездой, и ни одна звезда не может быть планетой (рис. 21).
В приведенных ниже суждениях субъект и предикат находятся в отношении несовместимости:
Параллельные прямые не пересекаются(несовместимость).
Учебники не могут быть развлекательными книгами(несовместимость).
Чтобы установить, в каком отношении находятся субъект и предикат того или иного суждения, надо сначала установить, какое понятие данного суждения является субъектом, а какое предикатом. Для примера определим отношение между субъектом и предикатом в суждении Некоторые военнослужащие являются россиянами.
Сначала находим субъект суждения, – это понятие военнослужащие,затем устанавливаем его предикат, – это понятие россияне.Понятия военнослужащиеи россияненаходятся в отношении пересечения (военнослужащий может быть россиянином и может им не быть; и россиянин может как быть, так и не быть военнослужащим). Следовательно, в указанном суждении субъект и предикат пересекаются.
Точно так же в суждении Все планеты – это небесные теласубъект и предикат находятся в отношении подчинения, а в суждении Ни один кит не является рыбойсубъект и предикат несовместимы.
Как правило, все суждения подразделяют на три вида:
Атрибутивные суждения(от лат. attributum –«неотъемлемый признак») – это суждения, в которых предикат представляет собой какой-либо существенный, неотъемлемый признак субъекта. Например, суждение Все воробьи – это птицы –атрибутивное, потому что его предикат является неотъемлемым признаком субъекта, ведь быть птицей – это главный признак воробья, его атрибут, без которого он не будет самим собой (если некий объект не птица, то он обязательно и не воробей).
Надо отметить, что в атрибутивном суждении не обязательно предикат является атрибутом субъекта, может быть и наоборот – субъект представляет собой атрибут предиката. Например, в суждении Некоторые птицы – это воробьи(как видим, по сравнению с вышеприведенным примером, субъект и предикат поменялись местами) субъект является неотъемлемым признаком (атрибутом) предиката. Однако эти суждения всегда можно формально изменить таким образом, что предикат станет атрибутом субъекта. Поэтому атрибутивными обычно называются те суждения, в которых предикат является атрибутом субъекта.
Экзистенциальные суждения(от лат. existentia –«существование») – это суждения, в которых предикат указывает на существование или несуществование субъекта. Например, суждение Вечных двигателей не бываетявляется экзистенциальным, так как его предикат не бываетсвидетельствует о несуществовании субъекта (вернее – предмета, который обозначен субъектом).
Релятивные суждения(от лат. relativus –«относительный») – это суждения, в которых предикат выражает собой какое-то отношение к субъекту. Например, суждение Москва основана раньше Санкт-Петербургаявляется релятивным, потому что его предикат основана раньше Санкт-Петербургауказывает на временное (возрастное) отношение одного города и соответствующего понятия к другому городу и соответствующему понятию, представляющему собой субъект суждения.
В мышлении и языке большую часть составляют атрибутивные суждения. Они встречаются чаще, чем экзистенциальные и релятивные. Кроме того, последние, в принципе, можно представить как атрибутивные. Вернемся к экзистенциальному суждению Вечных двигателей не бывает.Его предикат ( не бытьили не существовать) вполне можно рассматривать как атрибут субъекта ( вечные двигатели), ведь не существовать –это действительно неотъемлемый признак вечных двигателей, следовательно, данное суждение возможно расценивать как атрибутивное.
Теперь обратимся к релятивному суждению Москва основана раньше Санкт-Петербурга,предикат которого ( быть основанным раньше Санкт-Петербурга) вполне можно рассматривать как атрибут субъекта ( Москва), ведь быть старше Санкт-Петербурга (ранее основанным городом) – это действительно неотъемлемый признак Москвы. Таким образом, это суждение также возможно охарактеризовать как атрибутивное.