Текст книги "Сферландия"
Автор книги: Дионис Бюргер
Жанры:
Научная фантастика
,сообщить о нарушении
Текущая страница: 8 (всего у книги 12 страниц)
18. НЕРАЗРЕШИМАЯ ЗАДАЧА
Прошла целая неделя, прежде чем мой друг Пункто навестил меня, чтобы обсудить полученные им данные. За это время он успел построить множество больших и малых треугольников и с высокой точностью измерить их углы. Сумма углов у больших треугольников неизменно оказывалась больше 180°, причем с увеличением размеров треугольника невязка возрастала. У маленьких треугольников отклонение суммы их углов от 180° было столь незначительным, что обнаружить его не удалось.
Немало часов я провел, проверяя выкладки доктора Пункто, по не нашел ни одной ошибки.
– Отсюда следует, – констатировал я, – что собранные вами факты можно считать твердо установленными и теперь мы вправе перейти к следующему этапу.
– Боюсь, что в дальнейшем ничем не смогу быть вам полезным, – огорченно заметил доктор Пункто. – Все по-прежнему выглядит весьма странно, и мы не располагаем ни малейшим намеком на то, в каком направлении надлежит искать объяснение.
– Без вас мы не сможем продвинуться ни на шаг, – заверил я его. – Прежде всего факты, объяснение придет потом. Мы на правильном пути, и я не сомневаюсь в том, что в конце концов нам удастся найти истину.
Мы сидели до поздней ночи, перебирая всевозможные гипотезы, но безрезультатно. Случай был поистине удивительный! Мы условились, что до следующей встречи, назначенной через три дня, каждый из нас попытается самостоятельно обдумать факты, после чего мы обменяемся идеями. Даже в том случае, если они окажутся неудачными, ошибка одного вполне может навести другого на верную мысль. Мы сердечно распрощались и расстались в полной уверенности, что совместными усилиями найдем выход из лабиринта.
Излишне говорить о том, что все три дня я провел в напряженных размышлениях. Ежедневно, прежде чем заснуть, я подолгу обдумывал проблему в надежде увидеть во сне какую-то подсказку, которая бы помогла ее решить или хотя бы направила поиски решения по правильному пути. Но все было напрасно. Днем я пытался выстроить в логической последовательности все известные мне факты, но каждый раз заходил в тупик: логика была бессильна найти ответ на столь «нелогичный» вопрос. Погруженный в свои размышления, я забыл обо всем на свете. Перед моим мысленным взором мелькали разнообразнейшие треугольники: большие и маленькие, правильные и неправильные, тупоугольные и остроугольные. Каждый из них я обходил по периметру, измерял все углы и принимался за следующий.
Мои близкие, не желая мне мешать, и не пытались пробудить меня от грез наяву. Но порой мне случалось ловить на себе их удивленные взгляды. Я не слышал, когда ко мне обращались, и в ответ неизменно задавал один и тот же сакраментальный вопрос: «Не могли бы вы указать треугольник, у которого сумма углов больше 180°?»
На утро третьего дня (того самого, на который у меня была назначена встреча с моим другом Пункто) ко мне в кабинет заглянул мой внук.
– Дедушка, – сказал он, – не знаю, смогу ли я помочь тебе, но вчера ты все время спрашивал о треугольнике, сумма углов которого больше 180°.
– Да, – подтвердил я, – и мне хорошо известно, о чем ты сейчас думаешь. Ты, естественно, считаешь, что твой старый дедушка выжил из ума. Я и сам прекрасно знаю, что мой вопрос звучит бессмысленно, но это, поверь мне, далеко не так. Я пытаюсь найти ответ на один вопрос и не знаю толком, математический он или философский, а для того чтобы найти ответ, мне необходимо своим глазом увидеть треугольник, у которого сумма углов была бы больше 180°.
– Дедушка, – воскликнул мой внук, – я прекрасно понимаю, что какой бы обычный треугольник мы ни взяли, сумма его углов не будет отличаться от суммы углов любого другого обычного треугольника. Треугольник, который нужен тебе, должен быть необычным треугольником, ибо лишь у необычного треугольника может быть необычное свойство. Если ты разрешишь, я нарисую один такой треугольник.
Хотя я не возлагал особых надежд на помощь со стороны представителя младшего поколения, тем не менее мой утвердительный ответ на его просьбу был продиктован не только любовью к внуку, но и любопытством: мне не терпелось узнать, что за необычный треугольник выдумал мой внук. Мальчик был очень польщен, увидев, что дед проявляет к его открытию искренний интерес, и тотчас же принялся рисовать «необычную» фигуру.
– Дедушка, вот треугольник, у которого сумма углов больше двух прямых углов.

Треугольник, нарисованный моим внуком. Сумма углов такого треугольника больше 180°.
– Да, но у твоего треугольника стороны не прямые, – возразил я.
– В этом и заключается мое открытие, – заявил юный геометр. – Нужно же было придумать нечто необычное для того, чтобы ответить на необычный вопрос.
– Что касается необычности, то тут мы квиты, – вынужден был признать я. – Но должен тебе сказать, что до сих пор мне никогда не приходилось видеть треугольники с кривыми сторонами.
– А ты в этом уверен? – спросил мальчуган.
Услышав вопрос внука, я даже рассердился. Мне ли не быть уверенным! Производя измерения на местности, мы даже не проводили стороны треугольников, а провешивали с помощью измерительных приборов прямые, вдоль которых свет распространялся от одного наблюдательного пункта к другому, а свет, как известно, распространяется вдоль прямых. На этом все и основано!
Разумеется, я не стал выказывать признаков недовольства, ибо меня очень обрадовало, что мой внук изъявил желание помочь мне. И хотя его «необычный треугольник» не позволил мне продвинуться ни на шаг дальше, он все же отвлек меня от безрадостных мыслей, от безнадежно запутанных рассуждений, в которых я беспомощно блуждал по замкнутому кругу, не видя выхода. Вечером придет мой друг. Мы обсудим с ним загадочную проблему, к которой я по-прежнему не знаю, как подступиться. Может быть, ему удалось придумать нечто новое?
19. НЕОБЫЧНЫЕ ТРЕУГОЛЬНИКИ
Мои надежды на то, что господину Пункто удалось набрести на какую-нибудь удачную идею, оказались напрасными. По его словам, он все три дня провел в размышлениях над проблемой, но, насколько я понял из его объяснений, во всем, что касалось поиска решения, всецело положился на меня. Доктор Пункто считал, что я, внук знаменитого Квадрата, должен обладать незаурядными способностями и уметь решать самые необычные проблемы, в особенности те, перед которыми бессильна традиционная геометрия. Хотя столь высокое мнение о моих способностях не могло не польстить мне, я все же был несколько раздосадован тем, что доктор Пункто занимался проблемой, если можно так выразиться, «не в полную силу». Я высказал ему свое недовольство, но он со смехом упрекнул меня в том же, и мне не оставалось ничего другого, как признать, что не имею ни малейшего представления, в каком направлении надлежит продолжать поиски решения. Я не мог похвастаться ни тем, что мне известен правильный подход к решению проблемы, ни даже тем, что знаю, как хотя бы немного продвинуться к цели.
– О решении говорить преждевременно, – сказал мой гость. – Пути к нему мы выясним позже. Пока же нам требуются самые необычные идеи, которые позволят построить треугольники со свойствами, отличными от привычных нам свойств треугольников. В построении таких треугольников – один из возможных шагов на пути к решению интересующей нас проблемы. Если бы мне удалось придумать такую фигуру, что ее хотя бы с известной натяжкой можно было назвать треугольником и сумма ее углов при этом была бы больше 180°, то я считал бы выход из тупика, в котором мы находимся, найденным. Однако, как я ни старался, мне так и не удалось придумать фигуру, обладающую нужными, свойствами.
– Да, – вынужден был признать я, – ваша точка зрения вполне приемлема. Но коль скоро все упирается в построение «треугольника» с нужными свойствами, то у меня для вас кое-что есть.
С этими словами я предъявил доктору Пункто треугольник с изогнутыми сторонами, который нарисовал мне мой внук.
Пункто внимательно выслушал меня, тщательно осмотрел треугольник с криволинейными сторонами и… не засмеялся! После длительного молчания он произнес:
– Может быть, это первый шаг к решению. Сумма углов данного треугольника действительно больше 180°. В этом смысле задача решена. Вопрос лишь в том, допустимо ли рассматривать треугольники с изогнутыми сторонами.
– Разумеется, недопустимо, – заметил я несколько раздраженно. – Ведь если я не ошибаюсь, свет распространяется вдоль прямых.
– Вы совершенно нравы, – невозмутимо ответил Пункто. – Найдено решение лишь частичной проблемы, по оно может оказаться ложным.
Мы еще долго, на протяжении нескольких часов, обсуждали проблему, но безрезультатно. Прощаясь со мной, доктор Пункто сказал:
– Попробуем кратко сформулировать, как нам представляется положение вещей в данный момент. Из наблюдений нам известно, что сумма углов треугольников, измеренных на местности, не равна 180°, а больше 180°, причем невязка возрастает с увеличением размеров треугольника. У треугольников больших размеров она больше, чем у треугольников меньших размеров. Это во-первых. Во-вторых, можно предполагать, причем без особой уверенности, что подобная невязка встречается у треугольников, стороны которых не прямолинейны.
– Таков печальный итог наших размышлений, – подтвердил я.
– Итог не окончательный, – оптимистически заметил доктор Пункто.
– Что нам делать дальше? – спросил я. – Снова три дня предаваться размышлениям в ожидании, что кому-нибудь из нас придет в голову еще одна удачная идея? Окажется ли она удачнее первой?
– Да, такая перспектива не слишком привлекательна, – согласился доктор Пункто. – По-видимому, нам лучше поговорить с другими людьми и посмотреть, как они будут реагировать на идею о криволинейных треугольниках.
– Не обратиться ли за советом к моему внуку? – саркастически произнес я. – Мне кажется, что это лучший способ беспредельно раздуть тщеславие мальчишки.
– Я с большей охотой послушал бы, – сказал мой друг, – как реагируют на интересующую нас проблему ученые мужи, в особенности математики. Нельзя ли заинтересовать их? Мы располагаем фактами, требуется найти их научное объяснение.
– Или опровергнуть эти факты, – добавил я.
– Думаю, что опровергнуть их невозможно, – возразил доктор Пункто, и я не мог с ним не согласиться, поскольку результаты измерений действительно были безупречны.
Нам казалось, что лучше всего привлечь к интересующей нас проблеме внимание членов физико-математического факультета нашего университета. Я вызвался разыскать математиков и физиков, которые бы выразили готовность ознакомиться с проблемой.
20. НА ФАКУЛЬТЕТЕ
Вопреки ожиданиям я без труда справился со своей задачей. Я думал, что факультет поручит кому-нибудь из специалистов выслушать наши «свидетельские показания» по поводу необычайных событий, но все вышло иначе. Доктора Пункто и меня пригласили на собрание всего факультета, с тем чтобы мы могли изложить там свои взгляды.
В назначенное время мы в отличном расположении духа отправились на высокоторжественный форум, но, войдя в зал, почувствовали себя, как подсудимые перед началом разбирательства. Мы не могли отделаться от ощущения, что пригласили нас лишь для того, чтобы, пользуясь удобным случаем, пресечь распространяемую нами ересь, осудив ее в официальном решении общего собрания факультета. Это ощущение не покидало нас на протяжении всего заседания.
Сначала председатель предоставил слово доктору Пункто, назвав его «бывшим землемером». Доктор Пункто не без сарказма исправил ошибку председателя, сказав, что в настоящее время он имеет честь носить звание «бывшего главного землемера, эксдиректора Центральной Тригонометрической службы». Председательствующий реагировал на это замечание лишь краткой фразой «Вам слово», после чего доктор Пункто спокойно, строго придерживаясь фактов, рассказал обо всем, что произошло. Он сообщил собравшимся, что, согласно проведенным под его руководством измерениям, сумма углов треугольника оказалась больше 180°, причем отклонение от 180° тем больше, чем крупнее размеры треугольника. Никогда ранее, подчеркнул он, такое отклонение не наблюдалось, поскольку в прежние времена измерения производились на маленьких треугольниках и упомянутое выше отклонение превышало ошибки измерений. Доктор Пункто заявил, что отбрасывать серию произведенных под его руководством измерений на том лишь основании, что они приводят к парадоксальному выводу, не следует, ибо, по его мнению, необходимо попытаться найти научное объяснение столь странному явлению.
После того как доктор Пункто ясно и понятно изложил все имевшиеся в нашем распоряжении факты, слово попросил ученый-математик по имени Эрго. Путем весьма длинных и сложных рассуждений он доказал, причем вполне правильно, что наука, вообще говоря, призвана заниматься поиском объяснений экспериментально наблюдаемых фактов, а факты, о которых упоминал в своем выступлении доктор Пункто, такого рода, что науке следует незамедлительно отказаться от их рассмотрения. Сумма углов любого треугольника равна 180°, или двум прямым углам. Это доказали еще в глубокой древности, поэтому каждому ясно, что сумма углов треугольника не может принимать другое значение. А коль скоро некая серия измерений приводит к противоречию с одним из основных принципов науки, то эта серия измерений ошибочна. Ученые не обязаны заниматься поиском ошибок. Это должны сделать сами наблюдатели, допустившие вопиющую небрежность! Факультет не должен заниматься столь недостойным делом. Принять участие в подобной затее означало бы нанести ущерб престижу факультета.
Затем слово взял ученый-физик профессор Суппосо. Мы сразу же почувствовали, что выступает человек совсем другого склада. Профессор Суппосо все свое выступление построил на том, что в естественных науках, и в частности в физике, нередко приходится иметь дело со странными на первый взгляд результатами, которые при ближайшем рассмотрении оказываются верными. По его мнению, задача физики в том и состоит, чтобы отыскивать факты, кажущиеся невероятными, и затем пытаться найти им объяснение. Факты, приведенные доктором Пункто, весьма необычны, продолжал свои рассуждения профессор Суппосо, ибо они затрагивают основы основ математики, но тем не менее мы должны отнестись к ним с величайшей благосклонностью. Нам следует задать себе вопрос: можем ли мы представить себе треугольник, у которого сумма углов была бы больше 180°? Никогда еще нам не доводилось видеть такой треугольник ни в действительности, ни в воображении. Следовательно, чтобы обладать столь необычайными свойствами, сами треугольники должны быть весьма необычными. Может ли кто-нибудь из присутствующих опрокинуть существующие многократно проверенные научные представления и указать нам или начертить такой треугольник? Если никто не в состоянии сделать это, то я считаю вопрос исчерпанным. Однако если кому-нибудь все же удастся построить такой треугольник, то я с радостью приму участие в дальнейшем обсуждении.
Ободренный выступлением профессора Суппосо, я попросил слово и, когда мне его предоставили, произнес следующую речь:
– Уважаемые господа, высокоученые члены прославленного факультета! Позвольте мне высказать одно-единственное замечание по поводу выступления предыдущего оратора. Я в состоянии начертить треугольник, обладающий требуемым свойством. Предыдущий оратор уже отметил, что этот треугольник должен быть странным, необычным. Вот я и намереваюсь продемонстрировать вам треугольник не с прямолинейными, а с криволинейными сторонами, у которого сумма углов больше 180°.
На какое-то мгновение в зале воцарилась тишина. Пользуясь паузой, я начертил криволинейный треугольник.
– Позволю себе заметить, – возразил господин Эрго, – что свет в нашем мире распространяется вдоль прямых и поэтому стороны треугольников, используемых при триангуляции, не могут быть искривленными.
Шум в зале мгновенно стих, когда слово вновь попросил Суппосо.
– Господин председатель, – сказал он, – я решительно не согласен с тем, что здесь только что утверждалось. Мы могли бы принять гипотезу о том, что свет распространяется не прямолинейно, а криволинейно, но, прежде чем совершить такой шаг, необходимо выяснить, не противоречит ли такая гипотеза другим явлениям. У меня подобная гипотеза вызывает возражение по совершенно иной причине. Рассмотрим любые два треугольника в триангуляционной сети, имеющие общую сторону, например треугольники ABC и BCD. Для того чтобы сумма углов треугольника ABC была больше 180°, сторона ВС должна быть изогнута наружу, то есть вправо. Но треугольник BCD должен обладать тем же свойством, что и треугольник ABC. Сумма углов этого треугольника также должна быть больше 180°, то есть сторона ВС должна быть изогнута влево. Ясно, что сторона ВС в одно и то же время не может быть изогнута и вправо, и влево. Следовательно, объяснение, предложенное нашим гостем, несостоятельно.

Сторона ВС не может в одно и то же время быть изогнутой вправо и влево.
В ответ на это замечание я не мог возразить решительно ничего. Рассуждения Суппосо казались мне столь обоснованными, что я готов был отказаться от своей гипотезы. Больше сказать нам было нечего, ибо у моего друга Пункто также не осталось в запасе ни одного аргумента.
С притворным сочувствием и скрытой издевкой председательствующий подвел итог дискуссии:
– Вы видели, господа, что факультет не жалел ни сил, ни времени для рассмотрения вашей проблемы, но безрезультатно. Вам не остается ничего другого, как попытаться самим найти ошибки в произведенных вами измерениях. Ученые не могут тратить время на решение подобных вопросов. Факультет требует лишь, чтобы вы осознали свои заблуждения, не пытались за нашей спиной упрекать ученых в недостаточно доброжелательном отношении к вам и не выставляли нас в ложном свете. Если же вы не внемлете нашему дружескому предостережению, мы незамедлительно примем меры, дабы восстановить справедливость, и привлечем клеветников к ответу. Не смею вас больше задерживать, господа!
Ни один из нас не нашел, что ответить. Мы покинули зал и побрели к дому. На душе было скверно. Мы проиграли сражение. И все же нашим противникам не удалось убедить нас в том, что мы неправы. Наоборот, все факты были в нашу пользу, и науке рано или поздно придется найти им объяснение. Я пригласил доктора Пункто зайти ко мне, чтобы обсудить дальнейшие планы.
Войдя в мой кабинет, мы вновь почувствовали себя легко и непринужденно. Враждебный мир был где-то далеко за его стенами. Мы долго сидели, погруженные в свои мысли, пока доктор Пункто не нарушил молчания. В его словах снова прозвучал присущий ему неисчерпаемый оптимизм.
– Встреча с учеными, – заметил он, – оказалась все же небесполезной. Эрго, человек старой закалки, просто отбрасывает все, что ему непонятно, но Суппосо сказал гораздо больше, и кое над чем из его рассуждений нам следовало бы подумать. Суппосо хотел бы увидеть треугольник, обладающий необычными свойствами. В случае необходимости он готов даже довольствоваться треугольником с изогнутыми сторонами. Его не устраивает лишь направление, в котором изогнуты стороны треугольника, ибо оно приводит к противоречию. Я не знаю, каким образом мы сможем преодолеть эту трудность, поскольку рассуждения Суппосо мне кажутся безупречными. Если какая-то линия не может быть изогнута ни влево, ни вправо, то она вообще не может быть изогнута, поскольку другого направления, в котором она могла бы изогнуться, не существует.
– Ни влево, ни вправо, а другого направления не существует, – повторил я вслед за доктором Пункто. – Другого направления не существует… Впрочем постойте! Мы просто привыкли думать, что другого направления не существует. Его лишь нельзя наглядно представить себе, но оно существует. Это недоступное непосредственному созерцанию направление перпендикулярно нашему миру. Линии могут казаться нам прямыми, но в действительности быть незаметно для нашего глаза изогнутыми в третьем направлении! Так вполне может быть! А в нашем случае просто не может быть иначе!
– Я не вполне понял то, что вы сейчас сказали, – произнес доктор Пункто, – но если интуиция меня не обманывает, вы видите некое решение проблемы.
– «Вижу» – не то слово, – поправил я своего друга. – К сожалению, я не вижу решения, ибо мне не дано его видеть, но разумом понимаю, каким оно должно быть. Позвольте мне еще немного поразмыслить, а завтра мы продолжим разговор.
На этом мы расстались. Настроение у нас обоих было отличное.







