Текст книги "Жар холодных числ и пафос бесстрастной логики"
Автор книги: Борис Бирюков
Соавторы: В. Тростников
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 2 (всего у книги 14 страниц)
– Так.– ответил Зенон.
– Значит, если невозможно неподобному быть подобным и подобному – неподобным, то невозможно и существование многого» ибо если бы многое существовало, то оно испытывало бы нечто невозможное? Это хочешь ты сказать своими рассуждениями? Хочешь утверждать, вопреки общему мнению, что многое не существует? И каждое из своих рассуждений ты считаешь доказательством этого, так что сколько ты написал рассуждений» столько, по-твоему, представляешь и доказательств того, что многое не существует? »[6].
Нам сейчас нелегко сразу сообразить, о чем идет здесь речь. Но для Парменида и Зенона такого типа рассуждения – родная стихия. Они понимают Сократа с полуслова, сразу признают в нем «своего человека», понимающе переглядываются между собой и улыбаются в знак восхищения способным юношей. Дискуссия разгорается всерьез, и начинает обсуждаться основной для философской системы Платона вопрос об идеях (эйдосах), будто бы являющихся образцами и целью всех существующих вещей, и об их свойствах.
Эти страницы сочинений Платона представляют собой, выражаясь современным языком, его главную научную публикацию, оказавшую очень большое влияние на дальнейшее развитие философской мысли. Но неужели философскую теорию такого ранга можно было изложить простым языком, без всяких формул, без специальной символики? Неужели совершенно неправ был Кант, когда сказал, что всякая наука настолько наука, насколько в ней заключено математики?[7]
К словам Канта мы еще вернемся. Здесь же постараемся разобраться в том, какие средства использует Платон в «Пармениде» для формулировки своей теории идей, и являются ли эти средства теми же самыми, которые «работают» в обыденном мышлении и естественно сложившемся разговорном языке. Впрочем, ответ на второй вопрос вряд ли может вызвать затруднения. В повседневной речи не часто услышишь «подобное не может быть неподобным» или «если бы многое существовало, то оно испытывало бы невозможное». Мы не хотим сказать, что люди не употребляют в обиходе ничего, кроме конкретностей, совсем нет, все и повсюду широко прибегают к отвлеченным понятиям, таким, как «необходимость» или «кривизна», но сравнительно недалеко за ними обязательно стоит некоторая совокупность конкретных объектов или ситуаций реального мира.
В цитированном же отрывке из Платона (как и на протяжении всего «Парменида») фигурируют абстракции столь высокого уровня, что они не могут быть пригодными для обычной коммуникативной или информативной речи. Тем не менее Сократ уверенно оперирует этими абстракциями, а Парменид и Зенон большей частью одобрительно кивают головами, но иногда без особых церемоний прерывают его рассуждение и указывают, как нужно его исправить. В этих случаях они замечают в рассуждении Сократа какую-то ошибку, улавливают промах. Вот это-то и может показаться самым поразительным: ведь разговор идет о настолько непонятных и туманных объектах, что, казалось бы, им можно приписать какие угодно свойства и какое угодно поведение.
Сократ же, Зенон и Парменид так не считают – они уверены, что поведение их объектов предопределено единственным образом, как поведение сталкивающихся материальных шаров, и что философ не изобретает это поведение, произвольно приписывая его объектам, а лишь познает его. Следовательно, они убеждены, что поведением объектов, о которых они рассуждают, управляет не человек, а что-то внешнее, не зависящее от человека. Но что?
Тут мы и подошли к главному пункту. Поведение таких абстракций, как «подобное», «многое» и т. д., становится предопределенным с того момента, когда их впервые вплетают в речевую ткань, вставляют в определенный контекст рассуждения, поскольку дальше вступают в действие формальные законы построения суждений и умозаключений, то есть формальная логика, заданная в человеческой мысли и «материализованная» в языке. Логика (запомним это особо!), хотя и принадлежит людям и создана ими (вместе с языком), является объективной данностью.
Во-первых, логика формировалась очень медленно и постепенно, ее создавали тысячи поколений людей, и никто из живущих, как и все живущие совместно, изменить ее не могут.
Во-вторых, логика утвердилась в мышлении независимо от языковой деятельности людей и даже замечена-то была сравнительно поздно, поэтому субъективным образованием считать ее никак нельзя.
В-третьих, были веские объективные причины для появления логики – это необходимость фиксации наиболее общих свойств и отношений между предметами и явлениями реальности – свойств и отношений, подобных тем, что если какой-то (любой) объект есть часть какого-то другого объекта, а этот объект, в свою очередь, есть часть какого-то третьего объекта, то первый объект есть часть третьего объекта; что ни один предмет не может одновременно обладать каким-то признаком и не обладать им, и т. п.
В конце разбираемого нами разговора великий Парменид поучает неопытного еще в философии Сократа. Он говорит юноше: «Твое рвение к рассуждениям, будь уверен, прекрасно и божественно, но, пока ты еще молод, постарайся поупражняться побольше в том, что большинство считает и называет пустословием; в противном случае истина будет от тебя ускользать»[8]. Эти слова дают исчерпывающий ответ на наш вопрос о средствах, с помощью которых Платон формулирует свою теорию. «Пустословие» – это, конечно, рассуждения об абстрактных понятиях. Упражняться в нем следует для того, чтобы не делать в рассуждениях формальных ошибок. А если этих ошибок не будет, то рассуждение приведет тебя к истине. Таким образом, у Платона и его школу, как и у многочисленных его предшественников (в частности, у элеатов), логика выступает как главный инструмент познания.
Сравним эту научную методику с современной. Ее идеал хорошо передан упоминавшимися выше словами Канта; во всяком случае для переработки, сохранения и передачи научной информации мы считаем теперь чрезвычайно полезной если не математическую, то уж во вся ком случае четко разработанную символику. Употребляя принятые в наше время обороты, можно сказать, что наука все более обрастает формализованными языками, источником которых большей частью является математика. Иногда такие языки, в отличие от обычных разговорных, «естественных» языков, называют «искусственными», однако такое противопоставление не очень убедительно. Иллюзия «искусственности» языка математики возникает из-за того, что, как мы хорошо знаем, некоторые великие ученые (например, Лейбниц) вносили определенные усовершенствования в математический язык, иногда очень существенные. Но ведь великие поэты тоже совершенствовали родной язык, изобретали новые слова, речевые обороты, а в отдельных случаях оказывали огромное влияние на процесс преобразования всего языкового стиля. Можем ли мы на этом основании назвать русский, или английский, или немецкий, или китайский язык «сделанным»? Конечно, нет, и здесь можно повторить все то, что мы говорили о «стихийном» создании формальных логических правил. Язык математики создавался на протяжении тысяч лет. Его формирование подчинялось не капризам или фантазиям отдельных математиков. а не зависящим от отдельных людей факторам. Если бы Франсуа Виет не ввел буквенные обозначения для величин в уравнениях алгебры, их ввел бы кто-то другой. Если бы не было Ньютона, дифференциальное и интегральное исчисление все равно бы возникло и при этом примерно в то же самое время; здесь мы даже можем сказать, кто был бы тогда его единоличным создателем – Лейбниц. И так обстоит дело в любой отрасли математики – как в области ее идей. так и в ее языке. Новое достижение появляется (и даже облачается во вполне определенную форму) тогда, когда приходит для этого время, когда перед этим оно «носится в воздухе».
Язык математики ценен для науки не потому, что он изобретен искусственно, а потому, что он не обладает теми свойствами обычного языка, которые делают его мало приспособленным для научного использования, и обладает такими свойствами, которые очень ценны для развития науки. Естественный язык, сложившийся в историческом процессе как коммуникативное и информативное средство, сугубо модален и эмоционален. Он великолепно приспособлен для передачи внутреннего состояния человека, для воздействия на других людей путем возбуждения в них соответствующих чувств, но мало пригоден для точного, бесстрастного научного анализа, поскольку его элементы не обладают однозначностью смысла, имеют массу трудноуловимых оттенков, поскольку в нем имеются омонимичные выражения, а его слова меняют свое значение со временем, иногда приобретая прямо противоположный смысл. Короче, естественный язык не подходит для точных и аналитических наук как средство исследования из-за его слабой формализованности.
Так что же оставалось делать Платону или элеатам? Использовать тот примитивный математический язык, который существовал в их время? Он был слишком маломощен для тех серьезных целей, которые ставили перед собой эти философы: они ведь стремились исследовать основные проблемы бытия и духа. И они нашли выход: в обычном человеческом мышлении и его выражении – естественном языке (в целом неподходящем для их серьезных задач) они отыскали такую часть, бесстрастную и однозначно действующую, которая нужна для их целей, логику. Эта часть мышления и языка, хотя она и не была формализован а, то есть представлена с помощью какой-либо символики, тем не менее была достаточно надежна, поскольку состояла из правил – схем, форм рассуждений, фактически всегда присутствующих в мышлении и языке (отсюда прилагательное «формальная» в термине «формальная логика»). Учитывая это, можно сказать, что работы Платона (и других эллинских мыслителей того же ранга) удовлетворяют «критерию научности» Канта в том смысле, что проведены они с помощью схематизма (формализма) логики, употребляемого как инструмент научного исследования. Для строгого согласия с Кантом, правда, нужно признать этот формализм принадлежащим математике. Допущение, что в логических (то есть мыслительных, относящихся к рассуждениям) формах обычного языка с древнейших времен был заложен математический аппарат, ещё недавно показалось бы странным. Однако сейчас, в эпоху великого соединения математики и логики, это уже не удивляет.
Здесь мы должны, наконец, сказать об Аристотеле. В чем состоял его вклад, если логические схемы – правила рассуждений (во многом, во всяком случае) – были выделены до него? Прежде всего в том, что он их систематически описал в серии трудов, составляющих знаменитый «Органон»[9]. В важнейшем из этих трудов – «Первой аналитике» – была изложена силлогистика (система силлогистических умозаключений, или силлогизмов) – главное достижение Аристотеля в логике, от которого идет теория логики, то есть логика как наука.
Приведем один из аристотелевских силлогизмов: «если А приписывается всем Б, а Б – всем В, то А необходимо приписывается всем В», например, если свойство быть живым существом (А) приписывается всем двуногим существам (Б), а свойство двуногости (Б) приписывается всем людям (В), то свойство быть живым существом (А) необходимо приписывается всем людям (В)[10]. Это силлогистическое умозаключение – самая знаменитая форма (модус) силлогизмов: Barbara (латинские названия модусов были придуманы в средние века). Следует обратить внимание на то, что Аристотель выделяет именно форму: силлогизм Barbara – то, что нами выделено разрядкой, это схема умозаключения (дедуктивного вывода, дедукции), а рассуждение, приведенное вслед за этой схемой, есть только пример ее применения.
Здесь мы ясно видим тот гигантский шаг вперед, который делает Аристотель по сравнению с Платоном: у Платона логические правила функционируют только в конкретных рассуждениях, Аристотель же отделяет их от содержания и делает предметом специального исследования. Именно, Аристотель, используя специальную терминологию, создает систему силлогизмов, охватывающую все правильные силлогистические умозаключения, то есть правила силлогистического вывода, позволяющие получать из верных посылок с необходимостью из них вытекающие верные заключения.
Силлогистика была главным достижением Аристотеля в логике, достижением, принадлежавшим, как можно полагать, ему лично. Она развертывается как аксиоматическая система – о такого рода построении мы будем подробно говорить в последующих главах – и (что самое поразительное!) удовлетворяет, по существу, критериям математической строгости, предъявляемым к современным формализованным системам. Она, таким образом, была более строгой, чем все математические теории античности, например, строже, чем знаменитые «Начала» Эвклида. Известный польский логик XX века Ян Лукасевич говорил по этому поводу: «Силлогистика Аристотеля является системой, точность которой превосходит даже точность математической теории, и в этом ее непреходящее значение»[11]. Удивительно, что этой точности Аристотель достиг, не используя специальную символику, а прибегая лишь к стандартизации обычного (греческого) языка, то есть опираясь в изложении системы на термины с четким смыслом да оперируя буквами греческого алфавита в качестве переменных для тех понятий («живое существо», «двуногое» и т. п.), которые появляются при применениях силлогистических форм.
Следует, правда, отдавать себе отчет в том, что построить такую строгую логическую систему – первую формальную систему в истории наук и, не прибегая к специальному языку знаков, Аристотель смог потому, что его силлогистика описывает лишь часть, причем очень простую, тех логических закономерностей, которым подчиняется мышление и язык. Тем не менее Аристотелева логика[12], как теперь все более начинают осознавать историки математики, оказала большое влияние на древнегреческую математическую мысль. Есть указания на то, что дедуктивный способ построения эллинской геометрии, знаменовавший собой один из важнейших ранних этапов развития математики и оказавший неизмеримое влияние на всю последующую науку (Декарт считал математику образцом для всех наук, Спиноза построил свой знаменитый философский тракт «Этика» по типу «Начал» Эвклида и пр.), не породил аристотелеву логику, как об этом часто писали, а был порожден развитием логики, в одном из своих фрагментов получившей столь завершенную трактовку у Аристотеля. Много раньше, чем цепочки безукоризненных по форме силлогизмов, начинающихся на недоказываемых положениях и кончающихся на утверждениях доказываемых, стали относиться к линиям и фигурам, они широко использовались в применении к самым различным объектам в бесчисленных словесных «упражнениях», подобных тем, к которым призывал Сократа Парменид. Вот что говорит об этом наш современник венгерский математик и логик Ласло Кальмар: «Большинство математиков, включая некоторых историков математики, считают, что дедуктивный способ вывода фактически был изобретен математиками. Однако А. Сабо установил факт сильнейшего влияния элейской диалектической философии на древнегреческую математику, показав, что многие математические понятия, особенно те, которые относятся к дедуктивному методу, берут свое начало в диалектике элеатов... Таким образом, дедуктивный вывод, по-видимому, до математики изобрела философия»[13].
Нет сомнений относительно влияния, которое оказала логика – и особенно логика Аристотеля, создавшего не только силлогистику, но и заложившего основы общей теории аксиоматического (дедуктивного) метода (он изложил их во «Второй аналитике»), – на математику[14]. Таким образом, современный синтез математики и логики начал подготовляться еще в античную пору.
Рис. 1. Историческое развитие языково-мыслительных и математико-формализованных средств познания.
Подводя итог сказанному в этой главе, приведем схему подготовки и развития формализованных средств научного исследования, сделавших возможными современные достижения кибернетики и логики (рис. 1).
Как мы видим, все и в самом деле началось с обычного слова, с обиходного языка – необходимого условия мышления. В языке, этом драгоценнейшем из богатств человечества, образовались зародыши формализованного аппарата: с одной стороны, формальная логика, с другой стороны, арифметика (выразительные средства для описания чисел и их отношений) и доэллинская геометрия (средства для описания линий и фигур и их свойств). На определенной стадии культурного развития эти механизмы были экстрагированы из языка и стали развиваться самостоятельно, Эвклидову геометрию можно считать первым важным результатом их взаимодействия. Но в дальнейшем пути математики и логики сильно разошлись, и в течение многих столетий их считали совсем разными областями знания (настолько разными, что логику, как правило, причисляли к «гуманитарным» наукам, то есть к чему-то прямо противоположному наукам «точным», ядром которых является математика). Это произошло главным образом потому, что математика рано обрела формальные выразительные средства (символика алгебры, аналитической геометрии, а затем анализа), заговорила «на своем языке» и стала расти с исключительной интенсивностью. Логика же как бы временно зашла в тупик: ее изучение проводилось в основном на естественном языке, а это не давало больших результатов, ибо возникал своего рода порочный круг. Вспомним, что специфическая ценность логики заключается именно в тех особенностях, которые отличают ее от общеязыковых средств (это поняли еще древние), а исследовать и развивать ее пришлось этими же общеязыковыми средствами. Правда, уже Аристотель применял буквы для выражения структуры суждений и умозаключений, причем применял точно так же, как они ныне употребляются в математике (то есть как символы, на место которых можно подставлять объекты различного конкретного содержания). Но это был лишь первый шаг по направлению к «внеязыковой» формализации логики. Некоторые дальнейшие шаги (использование диаграмм) были сделаны средневековыми схоластическими логиками, развивавшими античную логическую традицию. Но далеко логика все же не могла уйти – у нее не было своей символики, ее душила немота.
Почему бы логике не прибегнуть к помощи своей родной сестры, так ее обогнавшей, математики? В конце концов логика именно это и сделала, но лишь в XIX веке, когда математика стала достаточно мощной и смогла разработать особый символический алфавит и правила обращения с его знаками, удовлетворяющие высоким требованиям исследования высказываний и рассуждений. С этого момента логика как бы родилась вторично и стремительна двинулась к воссоединению с математикой.
Итак, заминка была в выразительных средствах. Но не могла ли логика поискать их где-то вне математики?
Да, такой путь существовал, и опробован он был очень давно.
2. МЕХАНИЧЕСКОЕ РАССУЖДЕНИЕ
Вспомним еще раз, какие черты характеризуют логику как специфический элемент мышления и языка.
Прежде всего, логика, то есть логические правила рассуждений, относится не к конкретным языково-мыслительным образованиям (и этим наука логика отличается от таких наук, как ботаника или минералогия), а к их форме (структуре), и потому для логики безразлично, что эти образования означают (выражают), с какими объектами связываются в нашем сознании. Схемы логики реализуются в языке – в его словах, выражениях, предложениях, «блоках» предложений – текстах и т. п., неважно, произносятся ли они вслух или пишутся на бумаге. Если выражения языка шифруются определенными знаками (символами), то и в этой символической записи присутствует логика.
Далее, схемы (формы, правила) логики имеют отношение не ко всяким выражениям языка (и этим логика отличается от грамматики, орфографии или синтаксиса), а только к тем, которые представляют собой особые языково-мыслительные конструкции – такие, как описательные выражения (дескрипции), обозначающие индивидуальные предметы (примером может служить выражение «Воспитатель Александра Великого и ученик Платона», обозначающее Аристотеля); понятия, задающие классы предметов; суждения (высказывания), могущие содержать истинное знание либо неверно информировать о чем-то (ложь); умозаключения, представляющие собой правила логического перехода от одних (верных) суждений к другим; доказательства – более сложные конструкции, состоящие из суждений и умозаключений и нацеленные на обоснование истинности суждений, и ряд других. Для связи между этими конструкциями используются специальные «логические» слова типа «или», «и», «не» («неверно, что»), «если ..., то», «все», «некоторые», «следовательно» и многие другие. Центр тяжести при этом лежит в выведении одних (истинных) суждений, называемых заключениями (следствиями) из других, называемых посылками.
В силу сказанного логика – и это сейчас для нас основное – есть прежде всего совокупность правил и процедур, по которым следствия могут быть получаемы из посылок, причем эти правила и процедуры не зависят от содержания посылок и следствий, а также ни от каких субъективных (настроение, эмоции, отношение к упоминаемым в высказываниях ситуациям и т. д) или внешних (погода либо время года, когда производится рассуждение, конкретные условия, в которых находится рассуждающий, и т. п.) факторов, а зависят только от формы выражений и являются общими для всех выражений одной и той же формы, о чем бы в них ни говорилось. Это значит, что логика, будучи средством представления содержания, тем не менее слепа к содержанию в том смысле, что если имеются посылки определенной формы, то законы логики автоматически влекут следствия определенной формы, в которых участвуют элементы (термины, понятия, логические связки типа союзов «если..., то», «или» и т. п.), фигурирующие в посылках.
Слепота и автоматизм логики с древнейших времен и до наших дней вызывали у некоторых людей недоумение, а иногда и раздражение. Это прекрасно изображено Платоном: почти во всех диалогах противники Сократа, безукоризненно строящего формальные выводы, проявляют различные эмоции такого рода – от легкой досады до вспышек ярости.
В истории человеческой мысли было немало попыток умалить значение логики. Да и в XX столетии бушуют споры вокруг вопроса о значении логических принципов. В начале нашего века выдающиеся математики Л. Брауэр и Г. Вейль открыто выступили против классической – восходящей к Аристотелю – логики как базы математики (об этом подробнее мы скажем дальше); в наши дни имеется немало представителей точных наук (в основном физиков), которые требуют коренной переделки классической логики и ждут от этого революционных достижений в естествознании. Нет единой оценки основного свойства логики – ее формальности; нет и единого мнения относительно происхождения этого свойства; но текут века, кипят споры и страсти, а слепой механизм логики «существует, и ни зуб ногой».
Перечисленные выше свойства логики подсказывают тот самый «внематематический», но многообещающий путь развития этой науки, о котором было сказано в конце первой главы. Если логика слепа и бесстрастна, если ее законы обладают автоматизмом и если она может применяться к любым языково-мыслительным образованиям определенной структуры, то нельзя ли создать механическое устройство, которое по раз навсегда заданному шаблону перерабатывало бы определенные сочетания выражений языка (быть может, закодированные с помощью символов определенного рода) в другие сочетания языковых выражений (или их закодированных отображений)? Если бы это удалось сделать, получилась бы своего рода «логическая мясорубка»: стоит заложить в нее посылки, покрутить ручку – и выводятся следствия. Насколько это облегчило бы логические исследования, анализ различных вариантов научных теорий, построение цепочек умозаключений, громадных по длине высказываний, недоступных обычному рассмотрению!
В «Путешествиях Гулливера» Дж. Свифт повествует о Великой академии в Лагадо, ученые которой работали над самыми фантастическими проектами. Напомним об одном из таких мудрецов, встреченных Гулливером при осмотре лапутянской академии.
«Первый профессор, которого я здесь увидел, помещался в огромной комнате, окруженный сорока учениками. После взаимных приветствий, заметив, что я внимательно рассматриваю раму, занимавшую большую часть комнаты, он сказал, что меня, быть может, удивит его работа над проектом усовершенствования умозрительного знания при помощи технических и механических операций. Но мир вскоре оценит всю полезность этого проекта; и он льстил себя уверенностью, что более возвышенная идея никогда еще не зарождалась ни в чьей голове. Каждому известно, как трудно изучать науки и искусства по общепринятой методе; между тем благодаря его изобретению самый невежественный человек с помощью умеренных затрат и небольших физический усилий может писать книги по философии, поэзии, политике, праву, математике и богословию при полном отсутствии эрудиции и таланта. Затем он подвел меня к раме. По бокам которой рядами стояли все его ученики. Рама эта имела двадцать квадратных футов и помещалась посредине комнаты.
Поверхность ее состояла из множества деревянных дощечек, каждая величиною в игральную кость одни побольше, другие поменьше. Все они были сцеплены между собой тонкими проволоками. Со всех сторон каждой дощечки приклеено было по кусочку бумаги» и на этих бумажках были написаны все слова их языка в различных наклонениях, временах и падежах, но без всякого порядка. Профессор попросил меня быть внимательнее, так как он собирался пустить в ход свою машину. По его команде каждый ученик взялся за железную рукоятку, которые в числе сорока были вставлены по краям рамы, и быстро повернул ее, после чего расположение слов совершенно изменилось. Тогда профессор приказал тридцати шести ученикам медленно читать образовавшиеся строки в том порядке, в каком они разместились в раме; если случалось, что три или четыре слова составляли часть фразы, ее диктовали остальным четырем ученикам, исполнявшим роль писцов. Это упражнение было повторено три или четыре раза, и машина была так устроена, что после каждого оборота слова принимали все новое расположение, по мере того как квадратики переворачивались с одной стороны на другую.
Ученики занимались этими упражнениями по шести часов в день, и профессор показал мне множество фолиантов, составленных из подобных отрывочных фраз; он намеревался связать их вместе и от этого богатого материала дать миру полный компедий всех искусств и наук»[1].
Эта злая сатира имеет определенный адрес – знаменитого испанского ученого раннего средневековья Раймунда Луллия (1234/35—1315), изобретателя первой логической машины, о котором стоит рассказать поподробнее.
Свифтом в его сатире руководило презрение к схоластике, на которую вел в то время активное наступление новый уклад жизни. Даже среди карикатурных профессоров бесплодной академии в Лагадо профессор, изображенный в приведенном выше отрывке, выглядит отнюдь не заурядным идиотом. Здесь Свифт так ярок в своем гротеске, что миллионы читателей «Гулливера» с чувством превосходства смотрят на этого несчастного ограниченного формалиста, которому, как это совершенно ясно, от природы недоступны живые человеческие переживания и эмоции, который абсолютно не способен понять, что творческий полет фантазии поэта или благородное вдохновение ученого, делающего открытие, не могут быть заменены дурацкими дощечками. Идея такой «машины» могла прийти в голову только совершенно бездушному жалкому сухарю...
К удивлению многих, можно сообщить, что реальный изобретатель подобной машины – Раймунд Луллий – был человеком больших страстей, что он прослыл в молодости поэтом, был придворным, что о нем ходили легенды как о герое романтической и жуткой любовной истории, что он участвовал в битвах, был миссионером, исколесил полмира, фанатически боролся против «неверных», презирая при этом опасности и не зная страха; что даже само его знаменитое изобретение явилось результатом не холодного расчета или рассудочно поставленной задачи, а «озарения», посетившего его, когда он однажды поднялся на гору Ранда на острове Майорка и увидел, как на листьях кустарника проступают буквы...
Но оставим в стороне личность Луллия. Мы заговорили о ней только для того, чтобы подчеркнуть, что этот дальний провозвестник «кибернетического мозга» отнюдь не был гомункулюсом или чапековской саламандрой, что его чисто «человеческих» проявлений хватило бы на пятерых. Когда мы будем говорить о Лейбнице, мы убедимся, что и этот великий пропагандист «искусственного интеллекта» был наполнен страстями и эмоциями намного выше средней людской меры. Случайна ли такая «обратная корреляция» или нет – не будем об этом судить. Посмотрим, что же сделал Луллий и какое это имело значение для развития логики.
Свой метод Луллий без ложной скромности назвал «Великим Искусством» (Ars Magna). Впрочем, извиняющим его обстоятельством здесь является то, что, по его утверждению, метод был подсказан свыше... Прибор, изобретенный Луллием и осуществлявший действие метода, был похож на известный всем фотолюбителям картонный экспонометр с крутящимся диском, который показывает для любой данной погоды и времени суток величину выдержки и диафрагмы фотоаппарата.
Для нас несущественны детали, относящиеся к устройству прибора, тем более, что Луллий разработал много вариантов своей «машины» и не ко всем из них оставил инструкции, так что не раз выражалось сомнение, умел ли он сам ими пользоваться. Однако все они основаны на одной несложной идее. Луллий исходил из принятого тогда убеждения, что в каждой области науки имеется небольшое число исходных понятий, с помощью которых выражаются бесспорные, самоочевидные положения, не нуждающиеся в аргументации и доказательствах. Из сочетания этих понятий и сформулированных с их помощью истин и возникает знание. В овладении этими сочетаниями и тем, что из них вытекает, и состоит истинная мудрость.
Поясним смысл идеи Луллия. Что бог бесконечно милостив, это для христианина бесспорная истина. Другая столь же несомненная для него истина заключается в том, что бог бесконечно справедлив. Взятые порознь эти два «факта» дают, как бы мы сейчас сказали, очень мало информации. Но если религиозный человек сопоставит их, он придет к заключению, что предопределение человеческой судьбы не противоречит свободе решений, поскольку бог (будучи бесконечно справедливым) назначает кару или вознаграждение за человеческие поступки, но в то же время (будучи бесконечно милостивым) дает человеку шанс самому определить свою будущую судьбу благочестием или греховным поведением. Следовательно, если снова прибегнуть к современной терминологии, на стыке элементарных понятий рождается новая информация. Как же осуществить все возможные сочетания понятий, с помощью которых можно овладеть всем доступным для смертного (умещающимся в конечном мозге) знанием? С помощью системы тонких концентрических дисков, каждый из которых способен вращаться независимо от остальных. Если по краю каждого диска нанести, скажем, девять обозначений элементарных понятий (понятий о свойствах объектов, их отношениях и др.) и вращать диски, то на радиусах будут получаться самые разнообразные сочетания данных понятий, которые затем можно подвергать анализу.