Текст книги "Открытие мира"
Автор книги: Борис Ляпунов
сообщить о нарушении
Текущая страница: 5 (всего у книги 12 страниц)
ТЯЖЕСТЬ УГРОЖАЕТ
Голос в наушниках произносит:
– Внимание! Петля Нестерова!
Летчик берет ручку на себя, и горизонт встает дыбом. Земля, обычно неподвижная, вдруг сдвигается с места и всей своей громадой ползет вверх.
Поблескивая крыльями, самолет, похожий издали на игрушку, взмывает в небо, делает полукруг, растворяется в безбрежной синеве, а затем, сверкнув на солнце, устремляется вниз.
В это время в какие-то доли секунды, пока длится фигура высшего пилотажа, пилот, сидящий в кабине скоростного реактивного самолета, переживает необычайные ощущения.
Ускорение – это невидимое чудовище, как назвал его один летчик-испытатель, – прижимает пилота к сиденью. Тело тяжелеет. Кровь отливает от головы, нельзя поднять веки, они опускаются сами собою. Каждое движение дается с трудом. Туман застилает глаза. Нарушается деятельность сердца. Дыхание затрудняется. Мозг перестает четко работать, сознание притупляется, быстрота реакций – так врачи называют ответ на внешние раздражения – падает. Слабеют мускулы.
Вот что делает чрезмерное ускорение! Даже когда оно уменьшается, летчик не сразу приходит в себя: примерно минуту он еще чувствует последствия перегрузки.
Следует оговориться: не всегда, не при всяком фигурном полете так бывает. То, что описано здесь, – результат действия кратковременных больших ускорений. Но сейчас, когда реактивные самолеты летают почти со скоростью звука, когда высший пилотаж связан с многократной перегрузкой, с этим нельзя не считаться.
Во время второй мировой войны в авиации одной из воюющих стран фашистской оси испытывался новый ракетный – самолет-перехватчик. Молнией взлетев с пусковой башни, он должен был внезапно настигнуть самолет и выпустить залпом ракетные снаряды. Такой сверхскоростной истребитель, по замыслу его создателей, решил бы судьбу воздушного боя одним ударом.
При первом же испытании самолет разбился, летчик погиб. Слишком большое ускорение сломало позвоночник человеку, смяло и расплющило его, словно каким-то прессом.
Как видим, чрезмерно большая перегрузка убивает, и от нее, казалось бы, нет спасения. А между тем наступает эра больших скоростей и вместе с ними – больших ускорений.
При скоростях быстрее звука, при перелетах крылатых ракет еще чаще будет встречаться необходимость быстрого набора скорости, быстрого уменьшения ее, а значит, и значительного роста ускорения. Этот опасный враг будет проявлять себя уже не долю секунды, как при высшем пилотаже, а значительно дольше, что, конечно, неизмеримо опаснее.
Вот как описывает свои переживания герой одного научно-фантастического рассказа, совершивший стратосферный рейс на ракете. Испытывал «адскую» тяжесть он всего минуту, за которую его корабль успел набрать скорость, достаточную для гигантского прыжка через атмосферу.
«…Я внезапно был придавлен со страшной силой к своему ложу. Мне едва не сделалось дурно от этого усиленного движения. Кровь стучала в ушах; казалось, меня поборол какой-то великан. Сила, с которой напирала на мою грудь сетка, мешала мне свободно дышать, пот выступил на лбу, а связка ключей в кармане чувствительно вдавливалась в бедро. Костюм сразу стал чересчур тесен, рубашка стягивала туловище. Я сделал попытку двигать членами: рука, протянутая к карманным часам, – потому что протекшие секунды казались мне чересчур долгими, – сразу отяжелела; казалось, она весила центнер. Потея и кряхтя, я едва мог достать свои часы. Но, не привыкший к усиленной тяжести, я захватил их слишком слабо: с силою вырвались они из моей руки, проскользнули через ячейки сетки и со звоном ударились о противоположную стену. Обескураженный, я отказался от дальнейших попыток к движению и предоставил себя на волю судьбы».
Учтите, что ускорение, которое испытывал рассказчик, было не слишком велико – лишь в пять-шесть раз больше земного.
Теперь посмотрим, что произойдет во время межпланетного полета.
«Подан знак; началось взрывание, сопровождаемое оглушительным шумом. Ракета дрогнула и двинулась в путь. Мы чувствуем, что страшно отяжелели. Четыре пуда моего веса превратились в 40 пудов. Я повалился на пол, расшибся вдребезги, может быть, даже умер; тут уже не до наблюдений!» Так описывает Циолковский переживания пассажира космической ракеты, перенесшего в течение двух минут тяжесть в десять раз более земной. Десять раз! Уже при шести-восьми у летчика наступает временное расстройство центральной нервной системы, хотя действие перегрузки продолжается всего считанные секунды. Пожалуй, прав Циолковский, считая межпланетного путешественника едва ли не смертником.
Но предположим, что взлет, описанный ученым, произошел все-таки благополучно, и подумаем над тем, как облегчить тяжелую участь пассажира ракеты.
Весь опыт скоростной авиации говорит о том, что это сделать можно. Авиационные врачи наблюдали воздействие больших ускорений на летчика при разном положении тела – стоя, сидя, лежа. Оказалось, что, откинувшись в кресле, пилот гораздо легче переносит болезненные явления, описанные нами, и быстрее приходит в себя после них. Вот почему конструкторы предусматривают для скоростных самолетов сиденье со спинкой, наклон которой можно изменять. Специальные противоперегрузочные устройства помогают в борьбе с перегрузкой.
Если к этому добавить еще систематическую тренировку и спортивную подготовку пилотов, станет ясно, что ускорение не такой страшный враг, как могло показаться с первого взгляда.
Советские авиаторы отлично владеют техникой больших скоростей. Они первыми в мире совершили высший пилотаж на реактивных самолетах.
Не оправдались пессимистические предсказания некоторых ученых, говоривших когда-то, на заре эпохи скоростной авиации, что человек не перенесет больших ускорений, с которыми неизбежно придется столкнуться.
Взгляните в небо! Ослепительный каскад фигур делает истребитель, ведомый закаленным, тренированным советским летчиком. За самолетом трудно уследить – так быстро совершается воздушный «танец». Перегрузка велика, но пилоту она не опасна. Конструктор и врач позаботились об этом. Когда на экране мы следим за воздушным парадом, кинооператор показывает нам летчика во время выполнения фигур высшего пилотажа. Что же? Лицо его сосредоточенно, спокойно и совсем не напоминает страшную маску человека, придавленного тяжестью. Значит, можно без вреда для организма летать быстрее звука, – не только машина, но и человек к этому готовы.
Однако не надо и преуменьшать трудности. С ними еще придется серьезно бороться. Межпланетным полетам, да и ракетным перелетам в стратосфере – космическим рейсам в миниатюре – должна предшествовать большая исследовательская работа.
Пилот полулежит в откидном кресле.
Многое зависит от авиационной медицины. Центробежная сила создаст искусственную тяжесть любой нужной нам величины. Камера, укрепленная на длинном стержне и вращающаяся подобно карусели, заменит в опытах кабину ракеты во время подъема. Как некогда первые стратонавты в высотной камере репетировали полет, переживая то, что им предстояло перенести в отрезанной от мира гондоле стратостата, так и будущие межпланетные путешественники еще на земле создают все ощущения предстоящего перелета. Им тяжелее, чем стратонавтам: те не страдали от ускорения и не знали, что такое потеря веса, невесомость. Но от этих неприятностей пассажиров ракеты сумеют защитить.
Их поместят в специально оборудованные кресла с откидными спинками. Автоматические устройства ракетных двигателей ограничат наибольшее ускорение ракеты пределом, безопасным для человека. В случае же возможной потери сознания пилотом ракета будет управляться автоматически.
Весьма вероятно, что путешественников оденут и в особые костюмы: футляры по форме тела, погруженные в жидкость с приспособлениями для свободного дыхания. Идею такого костюма впервые высказал Циолковский. «Природа… – говорил он, – не пренебрегает свойством жидкости уничтожать разрушительное действие относительной тяжести и потому заботливо погружает все нежные органы животного в особые жидкости, налитые в крепкие естественные сосуды». Таковы мозг в черепе или зародыш в яйце.
Циолковский думал, что можно будет, например, поместить пассажиров в предохранительные масляные ванны.
Однако плотность разных органов человеческого тела неодинакова, плотность же жидкости одна и та же. Только жидкость той же плотности, что и тело, обладает свойством предохранять от вредного действия увеличенной тяжести.
Идея в таком виде непригодна. Современная техника предлагает другой ее вариант.
В наклонном положении летчику легче потому, что тяжесть распределяется более равномерно, на большую площадь. Если поместить его в костюм из прорезиненной ткани, надутый воздухом, площадь соприкосновения тела с опорой сильно увеличится. Действие ускорения будет ослаблено и принесет меньший вред. Подобные костюмы разрабатывались, и если они успешно выполнят свою задачу, их будут применять и в авиации и в заатмосферном транспорте.
Остается сказать несколько слов о действии ускорения на приборы и механизмы, среди которых есть и хрупкие радиолампы. Здесь дело состоит проще. Радиолокационный взрыватель артиллерийского снаряда выдерживает при выстреле ускорение, в двадцать тысяч раз превышающее земное. Большие ускорения для приборов не угроза. Они «выносливее» человека. Со временем, вероятно, научатся отправлять грузы в межпланетное пространство в снарядах, выстреливаемых из электромагнитных соленоидных пушек. Так можно будет наладить «грузовое» движение между Землей и ракетой-спутником, искусственной луной. Уже опыт современной техники показывает, что можно изыскать защиту от перегрузки. Усиленная тяжесть не будет служить препятствием на пути в космос.
ТЯЖЕСТЬ ИСЧЕЗЛА
Может ли человек плавать в воздухе, нестись в беспредельных просторах, чувствовать себя свободным от невидимых оков, которые держат нас с неумолимой силой? Оказывается, такие чудеса, как это ни удивительно, возможны.
Ракета – в полете. Двигатель ракеты кончил работать – и тяжесть исчезла. Дальше начинается сон, сказка. Достаточно слегка оттолкнуться, чтобы полететь к потолку каюты. Потолок, впрочем, перестал быть потолком: теперь, в мире без тяжести, нет «верха» и «низа». Оттолкнувшись (по привычке скажем все-таки от потолка), вы устремляетесь вниз, к бывшему полу. Вы летаете в любом направлении – здесь действительно царство трех измерений, и нет никаких преград вашему полету.
Трудно передать словами то, что будет твориться в кабине космического корабля. Ведь этого еще никто не испытал! Правда, советские кинематографисты в научно-фантастическом фильме «Космический рейс» показали мир без тяжести.
На экране видно, как отправляется в лунный перелет первая ракета с людьми. Вот она уже за атмосферой. Поднялись шторы иллюминаторов, открыв звездное небо. Переглядываются первые межпланетные путешественники, жмутся к стенкам каюты. Вдруг один, решившись, прыгает… и плавно взлетает в воздух. Вот он уже у другой стены, смеясь, зовет к себе остальных.
Беседуя однажды с режиссером фильма, я узнал, каких трудов стоило все это показать на экране. Артисты «летали», привязанные ремнями к тросам. Сложные кинотрюки создавали впечатление настоящего полета.
Надо думать, что скоро люди познакомятся с невесомостью уже не в кино, а в жизни. Скоро – потому что наше поколение, очевидно, будет свидетелем заатмосферных путешествий.
Тяжесть исчезла.
Повредит ли человеку длительное отсутствие тяжести? Одни отвечали, что невесомость страшна не столько физиологически, сколько психологически: неизвестное всегда пугает! Другие возражали: многие жизненно важные функции организма от тяжести не зависят, а остальное – дело привычки. Ни у тех, ни у других нет доказательств, есть только предположения. Их нужно и можно проверить, тем более, что сейчас существует возможность решить спор самым простым и верным путем – опытом.
Еще Циолковский предложил «падающую лабораторию», где можно изучать невесомость. По рельсам, изогнутым в форме подковы, скользит тележка. На одной стороне она падает, на другой – поднимается. При почти свободном падении вес пропадает – правда, на очень короткое время.
Возникает естественный вопрос: почему так происходит, чем объяснить потерю веса падающими телами? Падающие тела двигаются одинаково – с одной скоростью и в одном направлении, не приближаясь и не удаляясь друг от друга. Попробуйте упасть на пол, если сам он все время удаляется от вас!
То же самое, но не доли секунды, а дни и недели происходит с ракетой, а вместе с нею с пассажирами и всеми вещами внутри каюты. Космический корабль по инерции несется в мировом пространстве. Путь его определен законами механики, одинаковыми для всех тел вселенной – от гигантской планеты до карлика-астероида.
Двигатель ракеты не работает, корабль предоставлен самому себе. Если корабль не смог победить земное притяжение, то неминуемо вернется обратно. Если же скорость его достаточно велика, он освободится от власти Земли и помчится дальше. Начнется свободный полет, и в тот же момент, как по мановению волшебного жезла, в ракете исчезнет ощущение тяжести.
Люди смогут плавать в воздухе.
Вода не льется из стакана, а когда тряхнут им, вылетает водяной шарик. Суп нельзя налить в тарелку, нельзя поджарить котлету на сковородке – она подпрыгнет к потолку. Словом, жизнь, полная неожиданностей и неудобств.
В среде без тяжести пассажиры ракеты должны жить и работать. Пилот или штурман не в состоянии вычислять курс ракеты, вися между полом и потолком, и не могут постоянно пользоваться справочником, карандашом и бумагой, которые, как живые, бродят по каюте. Нужно производить наблюдения, держать связь с Землей, да мало ли дел у экипажа во время самой необыкновенной в истории человечества экспедиции! Питаться тоже необходимо – хотя бы и в такой необычайной обстановке.
Ручки на стенах, полу, потолке, чтобы было удобно передвигаться в каюте; ящики, куда убираются вещи; кресла, прикрепленные к своему месту, и люди, привязанные к креслам; взамен тарелок и ложек – закрытые эластичные сосуды для «выдавливания» из них жидкой пищи; специальная электроплитка, наглухо закрытая посуда – вот черточки быта в условиях невесомости.
Что же, все это не страшно. Конечно, на первых порах человека, буквально потерявшего почву под ногами, утратившего чувство равновесия, ждут переживания скорее комические, чем трагические. Но они пройдут со временем, особенно если еще задолго до первого космического рейса тренировать будущих межпланетных путешественников.
Полеты ракет на большие высоты, за атмосферу, с последующим спуском, значительная часть которого явится свободным падением в безвоздушном пространстве, предоставят нам такую возможность. В кабине, которая отделится от ракеты в высшей точке подъема и ринется затем вниз, пилот переживет то, что впоследствии ждет его в межпланетной ракете. Правда, там – дни и недели, здесь – минуты; там – удаление от Земли, здесь – падение на нее, но разница невелика. И здесь и там – одинакова потеря веса. Она произойдет и тогда, когда ракета полетит в пустоте с выключенным двигателем.
Постепенно вылеты в межпланетное пространство, короткие броски в небо, репетиции космического путешествия приучат его участников переносить состояние кажущейся потери веса. Конечно, на всякий случай и здесь предусмотрят создание искусственной тяжести вращением ракеты, если тяжесть будет нужна.
Есть основание полагать, что авиационная техника и медицина обеспечат экипажу ракетного корабля условия для нормальной жизни и работы.
Циолковский мечтал о «свободном» пространстве, в котором люди, если они того захотят, будут избавлены от цепей тяготения. Там тяжестью они будут управлять сами, создавая ее по своему желанию, в своих интересах. Когда это осуществится, человечество еще раз блестяще подтвердит замечательные слова Энгельса о том, что лишь на практике, вызывая природные явления своими силами и управляя ими, человек в состоянии доказать в полной мере правильность и силу научного мышления.
ТРИ ОПАСНОСТИ
Часто люди, глядя на небо, видят, как срывается светящаяся точка и стремительно несется вниз, чертя яркий след. Обычно говорят, что это «звезда упала». На самом деле не звезда, а крошечный кусочек вещества, маленький небесный камешек – метеор – со скоростью в несколько десятков километров в секунду влетел в атмосферу Земли, вспыхнул и мгновенно сгорел. Светится же раскаленный воздух, который метеор сжимает на своем пути. Под стремительным ударом этого пришельца из космоса разбиваются молекулы газа. Столб накаленного и ионизированного воздуха тянется за метеорной частичкой. Ее вторжение и гибель наблюдаем мы, глядя на «падающую звезду».
Днем, при ярком солнце, падение метеора незаметно. Но от волшебного глаза современной техники – радиолокации – ему не скрыться. Радиоволны отмечают прилет метеора, отражаясь от шлейфа из наэлектризованных частичек воздуха, сопровождающих его полет. Удалось наблюдать гораздо больше гостей из межпланетного пространства – и днем и ночью, при свете луны и в облачную погоду, – чем раньше, когда располагали только оптическими приборами.
Огромное число ежесуточно падающих метеоров – несколько тонн метеорного вещества, – видимо, грозит неизбежной гибелью ракете, покинувшей планету. Ведь и крупинка весом в доли грамма, летя с колоссальной скоростью, без труда пробьет корпус даже из самой прочной стали. А вокруг – пустота, воздух из кабины улетучится – произойдет катастрофа! Более крупная частичка или камешек выведет из строя приборы, двигатель, баки. Слепой – без приборов, лишенный сердца – мотора и пищи – топлива, корабль обречен на гибель. Столкновение же ракеты с небесной глыбой равносильно взрыву.
Выходит, полет за атмосферу – самоубийство.
Здесь несколько сгущены краски. Однако нередко приходится слышать мнение, что метеорная угроза слишком сильна, чтобы надеяться на благополучный исход межпланетного полета. Поэтому необходимо трезво оценить величину опасности.
Площадь поверхности Земли огромна. Поэтому Земля встречает множество метеоров. В такую мишень попадают без промаха, будто притягиваемые магнитом, тысячи и миллионы небесных странников, блуждающих в солнечной системе.
Ракета по сравнению с Землей невообразимо мала. Площадь поверхности, подвергаемой обстрелу, у нее ничтожна. И во столько же раз, во сколько она меньше земной, уменьшается вероятность столкновения. Не надо забывать: метеоры рассеяны в гигантском пространстве, друг от друга их отделяют сотни километров. Вот почему профессор Оберт, например, считал, что ракета должна пропутешествовать пятьсот лет, прежде чем встретит небесного странника. Такова оценка тридцатилетней давности. Современные данные гораздо менее оптимистичны: они намного увеличивают вероятность встречи с метеорами.
Вероятность – лишь отвлеченное понятие, показывающее только, как часто может произойти столкновение. Но когда именно это случится – неизвестно. И как бы мала ни была вероятность, случай есть случай, и не считаться с ним нельзя.
Надо учесть и то, что радиолокатор не может обнаружить в мировом пространстве, лишенном воздуха, мелкие крупинки – слишком маленькую цель они собою представляют. Крупинку-метеор, влетевшую в земную атмосферу, локатор обнаруживает потому, что радиоволны отражаются от столба ионизированного воздуха, который тянется за метеором. Иное – за атмосферой. И столкновение, если оно произойдет, будет внезапным.
Поэтому обязательно надо бронировать жизненно важные части корабля: пилотскую кабину, баки, двигатель. Прочная двойная обшивка с легкой прослойкой, вероятно, представит достаточную защиту.
Опыт бронирования боевых кораблей подсказывает такое решение. Броня из тонких стальных листов, разделенных воздушной прослойкой или слоями заполнителя, защищает от взрыва мины или торпеды. Воздух и прослойки ослабляют взрывную волну, и она уже бессильна разрушить внутреннюю обшивку. Кроме того, броню располагают так, что она встречает удар под углом и защитное ее действие значительно усиливается. Можно думать, что и для будущих заатмосферных кораблей сумеют сконструировать надежную броневую защиту. Впрочем, окончательное суждение о том, каким должен быть бронированный панцирь межпланетной ракеты, принадлежит будущему.
Заделка пробоины гелиосваркой.
Можно предполагать, что через пробоины, сделанные метеоритами, воздух не улетучится мгновенно. Будет время заметить утечку, заделать пробоину.
Но время это невелико, от быстрой ликвидации последствий аварии зависит успех дела и, в конечном счете, жизнь экипажа. Обеспечить доступ ко всем ответственным частям корабля, предусмотреть все для скорейшей заделки пробоин – такова обязанность конструкторов и инженеров.
Тщательная предварительная разведка условий полета ракетами без людей, надо думать, поможет уменьшить метеорную опасность.
Но как быть с другой грозной опасностью?
Прежде чем выбраться в межпланетные просторы, где ничто не мешает космическому полету, кораблю предстоят пролететь атмосферу. Эта часть путешествия самая короткая, но не самая легкая. В самом деле, как мы уже знаем, атмосфера гасит космическую скорость метеоров, тормозит их полет, не допуская до поверхности Земли. Лишь очень крупным удается прорваться сквозь воздушную броню. Но в каком виде долетают они к нам – оплавленными, словно побывавшими в доменной печи, глыбами камня или железа! Трение о воздух – причина столь сильного нагрева.
Итак, атмосфера упорно сопротивляется вторжению извне. Того же следует ожидать и в другом случае – когда ракета устремится за атмосферу.
Известно, что докрасна раскалялась обшивка далеко летающей ракеты всего за пятиминутный полет.
При возвращении на Землю космический корабль, имеющий огромную скорость, может сгореть в земной атмосфере. Невеселая перспектива – побывать в неведомых мирах, чтобы, возвращаясь, сгореть заживо в стальной коробке, изобразив собою искусственный метеорит.
Однако нельзя упускать из виду, что в высоких слоях атмосферы, где воздух чрезвычайно разрежен, произойдет и торможение. Таким образом, космическая скорость будет гаситься, – конечно, не полностью, но, во всяком случае, основная доля ее. Поэтому уменьшается опасность перегрева.
Все же в нижних слоях атмосферы нагрев будет значительным, и над системой охлаждения придется потрудиться инженерам.
Страстный энтузиаст космических перелетов Юрий Васильевич Кондратюк предложил интересную идею: превратить кабину ракеты при подходе к Земле в несгораемый посадочный планер. Для этого все лишнее сбрасывается и к кабине присоединяются взятые с собой крыло, хвостовище, заменяющее фюзеляж, и рули из огнеупорного материала с двойными стенками, охлаждаемыми изнутри.
Пейзаж Марса.
Кроме метеоров и нагрева, путешественников подстерегает еще опасность – короткие ультрафиолетовые лучи Солнца. Природа защищает нас на Земле от них слоем озона.
Можно создать и искусственную защиту от губительных ультрафиолетовых лучей. Специально подобранный сорт стекла в иллюминаторах ракеты устранит опасность. Стекло с примесью редкоземельных элементов, оказывается, совсем не пропускает ультрафиолетовых лучей.
Иногда высказывается опасение, что космические лучи могут повредить людям. Нет недостатка в мрачных предсказаниях. Один пророчит вредное действие на психику, говоря: межпланетные путешественники постепенно сойдут с ума. Другие пугают тем, что «с ума» якобы «сойдет» сама ракета: лучи будто бы вызовут быстрое разложение топлива, двигатель самопроизвольно начнет работать сильнее, ракета, не слушаясь пилота, станет совершать сумасшедшие прыжки.
Справедливы ли подобные опасения? Казалось бы, в них есть доля истины. Интенсивность космических лучей с высотой возрастает. Подъемы шаров-зондов и первые полеты ракет в стратосферу убеждают в этом. А космическая частица несет с собой такую энергию, что может даже разрушать ядра атомов. Кто знает, какие превращения произойдут в живых клетках и, в частности, в нервных, а также в молекулах химических соединений при встрече с частичкой, которая, даже пройдя всю земную атмосферу, способна на поверхности Земли проникнуть через толстый слой свинца?
Однако нельзя забывать, что хотя энергия каждой отдельной частицы велика, они не наделают бед, так как их общее суммарное воздействие в целом мало. Для физиологических или химических процессов его совершенно недостаточно.
Итак, три опасности для межпланетных путешественников – метеоры, короткие ультрафиолетовые лучи, перегрев от трения в атмосфере – существуют. Их значение не нужно ни преувеличивать, ни преуменьшать.
Нет ли в космосе еще чего-нибудь неизвестного, таинственного, опасного, о чем сейчас на Земле мы не знаем? Например, каких-нибудь излучений, пронизывающих мировое пространство и не проникающих сквозь атмосферу. Даже если такая опасность и существует, то предварительные исследования помогут изыскать от нее защиту. Ведь научились же мы защищаться и от ультрафиолетового, и от рентгеновского, и от радиоактивного излучений.
Некоторые зарубежные ученые спекулируют на страхе перед неизвестностью. Вот что говорит один из них:
«Человеческая нервная система была бы далека от способности совладать с напряжением, таинственностью и странностью такого рискованного предприятия, и те, которые подвержены этому, могли бы сойти с ума и погибнуть».
Так могут говорить только те, кто забыл или не хочет вспоминать, как советские люди штурмовали стратосферу, завоевывали Арктику, совершали беспримерные героические перелеты. Бессмертный героизм, мужество и отвага советских воинов и тружеников в годы Великой Отечественной войны доказали всему миру, на что способен наш народ.
Когда придет время осуществления заветной мечты человечества – первого космического рейса – и нужны будут смелые люди, нет сомнения, что они найдутся в нашей стране и сумеют прославить Родину новыми подвигами.