Текст книги "Открытие мира"
Автор книги: Борис Ляпунов
сообщить о нарушении
Текущая страница: 11 (всего у книги 12 страниц)
ОТКРЫТИЕ МИРА
В ясную ночь, когда небо усеяно миллионами звезд, мысль невольно устремляется туда, в бесконечные просторы вселенной. Кажется, что там царствует извечное спокойствие и так же, как сейчас, светили звезды миллионы лет назад, таким же манящим, как сейчас, было бездонное небо. Похожие узоры созвездий видели и первобытные люди, видим и мы сейчас. Звезды указывали путь караванам древних, везшим товары через пустыни, каравеллам, шедшим на поиски неведомых земель. И теперь звезды помогают человеку, побеждающему морскую и воздушную стихии. На эти маяки неба смотрели путешественники всех времен и народов. Ведь не зря же говорится – путеводная звезда!
Но за кажущимся спокойствием небесной бездны скрыта бурная жизнь – движение, которое никогда не начиналось и никогда не кончится, вечное изменение, становление, развитие.
А сколько звезд рассеяно во вселенной! Только видимых с помощью телескопа их около двух миллиардов.
Звезды – это островки раскаленной материи в межзвездном океане космической пыли и разреженного газа. Есть заезды, светящие в миллион раз слабее нашего Солнца, и почти в полмиллиона раз ярче его. Звезды «холодные», с температурой всего лишь две-три тысячи градусов, и пышущие стотысячеградусным жаром. Звезды-карлики, размером меньше Земли, в гиганты в тысячу раз больше солнечной системы. Звездное вещество более разреженное, чем воздух, и в десятки и сотни тысяч раз более плотное, чем вода. Звезды переменные, меняющие блеск, и удивительные «новые», внезапно вспыхивающие ярким светом, иногда так ярко, как миллионы слитых воедино солнц…
Удивительные чудеса неба открыла наука.
Успех астрономии – открытие мира в подлинном смысле слова, мира, имя которому – вселенная. Открыты скопления звезд, галактики, удаленные более чем на полмиллиона световых лет. Но и это не границы мира. Границы нет, как нет пределов человеческому познанию. Есть границы того, что мы уже узнали, и нет тому, что предстоит узнать.
Свои особые мерки для космоса, своя особая техника наблюдений у астронома, позволяющая открыть много чудесного и поведать людям о планетах и звездах.
Нельзя не восхищаться изумительными достижениями астрономической техники. Нет приборов более чувствительных, более точных, чем те, которыми располагают астрономы. Стало нарицательным выражение «астрономическая точность». Оптика, фотография, спектральный анализ, тончайшие методы исследований поставлены на службу астрономам. Им на помощь пришла теперь электроника, невиданно обостряющая наши чувства.
Самые большие современные телескопы улавливают свет в миллион раз слабее солнечного.
Не только свет, но и тепло излучают небесные светила. Прибор астронома заметит тепло спички на расстоянии в триста километров, тепло человеческого тела – на расстоянии в полкилометра.
На астрономических фотоснимках приборы улавливают ничтожное смещение звезды, зафиксированное пластинкой.
Точность измерений здесь очень высока, и это немудрено. Например, за малейшим смещением спектральных линий скрывается движение звезды со скоростью в десятки километров в секунду. Поэтому астроном, имеющий дело с огромными расстояниями в космосе, на фотопластинках охотится за микронами – тысячными долями миллиметра.
Все, что мы знаем о небесных телах, рассказано нам светом. Недаром его называют вестником далеких миров. Он рассказывает о Солнце – ближайшей к нам звезде, и звездах, удаленных на сотни миллионов световых лет – так далеко, что воображение отказывается представить дорогу к ним.
Основное оружие астронома – собиратель света, увеличитель изображений, глаз-великан – телескоп.
В гигантский телескоп – самый большой из построенных до сих пор – можно было бы увидеть трещину на Луне шириной меньше метра и марсианский канал шириной около ста метров!
Но тут мы встречаемся с самым опасным врагом астронома – атмосферой Земли. Из-за нее обсерватории взбираются на высокие горы. Из-за нее приходится ловить редкие часы, когда воздух спокоен, когда капризы погоды не мешают (вернее – меньше мешают) свету из космоса добраться до телескопа.
Невидимая, но ощутимая преграда стоит между сверхточным, сверхчувствительным астрономическим прибором и звездным небом. Она крадет яркость у звезд, искажает их свет и цвет. И так ничтожно мало приходит его от светил. С трудом урываются немногие часы, когда атмосфера спокойна. Все же и в самую тихую погоду изображения дрожат, размываются, потому что незаметные струйки воздуха, воздушные течения, преломляют свет. Насколько затрудняется работа астрофизика из-за капризов атмосферы!
Изучая Луну, приходится пользоваться увеличением всего в несколько сот раз, хотя современные телескопы могут дать гораздо больше. Где уж тут рассмотреть трещину меньше метра шириной! Где уж тут увидеть во всех подробностях марсианские каналы!
Даже тепло, идущее от нашего тела и нагревающее воздух, даже дыхание человека может помешать. Не зря думают о своеобразных скафандрах для астронома, не пропускающих тепла и воздуха.
Техника борется – и успешно – с несовершенством инструментов, которые служат астрономам.
Строятся телескопы с гигантским «зрачком» – диаметром в несколько метров. Добиваются того, чтобы стекла как можно меньше искажали изображение. Их изготовляют с величайшей тщательностью – контролер на оптическом заводе проверяет форму стеклянной поверхности с точностью до десятимиллионных долей миллиметра.
Советским ученым лауреатом Сталинской премии Д. Д. Максутовым изобретен новый менисковый телескоп с улучшенными оптическими свойствами и более компактный.
И все же атмосфера – враг наблюдателя – не побеждена! Она постоянно мешает астрономам.
Где же выход? Надо подняться за атмосферу – туда, где нет воздуха, а следовательно, воздушных течений и облаков, туманов и пыли, где нет погоды. Туда, где мир виден не со дна воздушного океана, а таким, какой он есть. Туда, где ничто не мешает использовать всю мощь астрономической техники.
Наука находит все новые и новые средства изучения окружающего мира. Новые средства – новые результаты. Яркий пример достижений науки – электронный микроскоп. Там, где оказался бессилен свет, поток электронов позволил преодолеть преграду, поставленную самой природой. Мы проникли далеко вглубь сверхмикроскопического, невидимого раньше мира.
Но так же, как электронный микроскоп не исключает применение микроскопа оптического, так и «внеземная» астрономия не исключает астрономии «земной». И не сомнение в достоверности полученных ныне данных, а стремление расширить границы знания является целью создания астрономических обсерваторий за атмосферой.
Астрономы сейчас мечтают о приборах, основанных на совершенно неизвестных нам принципах. Эти приборы помогут раскрыть неизведанное еще до осуществления космических полетов. Одно не мешает другому. Наоборот, ракета, подняв обсерваторию в межпланетное пространство, окажет неоценимую услугу технике астрономических исследований – услугу, не менее важную, чем вновь изобретенный, неведомый прибор.
Как бы точно ни был изготовлен гигантский телескоп, тяжесть нескольких тонн стекла со временем его несколько испортит. Гигант если и не раздавит сам себя, то не сможет долго сохранить ту сверхвысокую точность формы, какую ему придало искусство оптика. Так, кстати, и случилось с самым большим в мире телескопом – американским пятиметровым рефлектором. Этого не произошло бы, если бы телескоп – любых размеров – находился на заатмосферной обсерватории, в мире, где тяжести нет.
Когда гигантские приборы появятся у астрономов на обсерватории вне Земли, – много дальше устремится взор человека во вселенную.
Трудно представить себе волнение астронома, который в просторах вселенной увидит в телескоп новое искусственное небесное тело, творение человеческих рук. Таких незабываемых минут будет много впереди: в поле зрения телескопа появится корабль, мчащийся к Луне; черная точка пронесется по лику Марса или Венеры, на спутнике нашей планеты – Луне – сигнальная вспышка возвестит о победе над тысячами километров пустоты, переставшими быть препятствием для полета к другим мирам. Как на хорошем снимке, исчезнут темные места, далекие детали станут ясными, прояснится неразличимая даль. За ничтожное – в мерках космоса – время человек шагнет вперед так далеко, как еще не шагал он до тех пор за всю свою жизнь. И, быть может, то, что ныне добыто трудом многих поколений астрономов, окажется лишь крупицей знаний в сравнении с успехами астрономии завтра, в которой ракета откроет, как говорил Циолковский, эпоху более пристального изучения неба.
ДОРОГА К ЗВЁЗДАМ
ЗВЕЗДНЫЕ КОРАБЛИ
Еще не отправилась в космический рейс первая межпланетная ракета. Еще не состоялся первый полет человека на ракете за атмосферу, а люди уже мечтают о межзвездных перелетах, путешествиях в соседние миры солнц, отдаленные от нас чудовищными просторами космоса.
Но можно ли думать о полетах в миры других солнц, если мир нашего Солнца пока не завоеван нами? Быть может, это беспочвенная фантастика, выдумка писателя, плод воображения чудака-ученого?
Допустить возможность полета к звездам отказывались многие исследователи. И лишь те из них, кто имел смелость отрешиться от старого, по традиции установленного и как будто бы незыблемого, отвечали: да!
Немного времени прошло с тех пор, как знаменитый русский ученый напечатал первую в мире работу, ставшую теоретическим фундаментом межпланетных путешествий. В новой его статье в 1911 году уже появились строки о полете к ближайшей после Солнца звезде.
Сорок биллионов километров отделяет нас от ближайшей звезды – Проксимы Центавра. Кажется, никаких запасов топлива и никакой, даже самой длинной человеческой жизни не хватит для перелета к этой звезде. Но так кажется лишь на первый взгляд.
Только скоростью можно победить расстояние. Звездный корабль прежде всего должен развивать огромную, сверхвысокую космическую скорость, чтобы как можно быстрее пролететь триллионы километров своего пути.
Мы уже говорили о том, что в атомных ракетных двигателях скорость истечения, возможно, будет достигать двенадцати и более километров в секунду. Тогда и ракета сможет развить наибольшую скорость, более чем достаточную для перелетов в солнечной системе, даже с высадкой на самые отдаленные планеты. Но это совершенно недостаточно для полета к звездам.
Перелет до Проксимы Центавра занял бы десятки лет только в один конец. «Никто не странствовал бы по свету, если не надеялся бы когда-нибудь рассказать о том, что видел», – гласит старинное изречение. Отправляться в полет, не имея никакой надежды достигнуть цели и вернуться на Землю, – бессмысленно.
И французский инженер Эсно-Пельтри пессимистически заключает:
«…Исследование других звездных систем, даже наиболее близких, вероятно, навсегда закрыто для человека».
Физика атомного ядра открывает перед техникой такие возможности, значение которых трудно сразу оценить.
Со скоростью двадцати тысяч километров в секунду двигаются частицы при атомном распаде. Правда, осколки взорванного атома несутся беспорядочно во все стороны.
Но ведь научились же мы управлять потоком электронов, скорость которого доходит до многих тысяч километров в секунду. В электронных приборах, таких, как электронно-лучевая трубка (вспомним, например, телевизор), мы собираем электроны в пучок, ускоряем их движение, уменьшаем или увеличиваем плотность потока, поворачиваем его. В нашей власти повелевать быстрыми частицами, соперничающими в скорости со светом.
Мы можем управлять потоком газовых частиц при взрыве. Обычно они разлетаются в стороны, но если в заряде взрывчатого вещества сделана выемка определенной формы, то струя газа вылетит в одну сторону, да при этом вдвое быстрее, чем обычно. Направленный взрыв позволяет перебрасывать грунт в точно назначенное место, помогая строить водохранилища и плотины, обнажать пласты руды под землей.
И если со временем в нашей власти окажется и управление взрывом атома и получение направленного потока частиц при атомном распаде, то, избавившись от посредника – жидкости, пары которой уносят с собой теплоту атомного распада, мы добились бы чрезвычайно высоких скоростей истечения, а с ними и гигантских скоростей самой ракеты.
Сто, сто пятьдесят, двести тысяч километров в секунду для такого звездного корабля были бы крейсерской скоростью на пути к звездам. Разгон до этой скорости таким образом, чтобы ускорение не было чрезмерным, затем – основная часть пути, когда корабль несется «вдогонку» за светом, и торможение, нужное, чтобы пристать к другому космическому острову. Три этапа. В одном миллионы, в другом триллионы и в третьем – снова миллионы километров полета.
Корабль в мире другой звезды.
Конечно, звездные корабли и межзвездные перелеты – чрезвычайно отдаленное будущее. Конструкцию ракеты, где движущей силой служит «направленный взрыв» атома, пока трудно ясно представить. Но это не значит, что ее вообще нельзя создать.
Если можно покорить электрон, если можно получить искусственно скорость, почти равную скорости света, а мы достигли этого в наших ускорителях заряженных частиц, то можно будет когда-нибудь и путешествовать с быстротой, за какой сейчас не угонится наше воображение.
– Позвольте, – скажет скептик, – но как же человек перенесет такую чудовищную скорость?
Ответ прост. Страшна не скорость сама по себе, которой мы не замечаем, а изменение ее, или, что то же, ускорение. Мы ведь все межпланетные и межзвездные путешественники. Вместе с Землей мы пролетаем каждую секунду тридцать километров вокруг Солнца. Наше Солнце вместе с окрестными звездами обращается вокруг центра Галактики, перемещаясь ежесекундно на двести сорок километров. Однако мы превосходно переносим эту невероятную скорость! Пассажиров межзвездной ракеты скорость в сто тысяч километров в секунду будет беспокоить столь же мало, сколь мало нас беспокоит движение нашего небесного корабля – Земли.
Однако межзвездное путешествие даже по сравнению с межпланетным будет необычным. Полет, длящийся не дни и месяцы, а долгие годы… Мне довелось как-то читать рукопись фантастического романа, о полете к созвездию Центавра, В первой части его все благополучно: группа людей летит в огромном космическом корабле. А вторую писатель назвал «Бунт на космическом». Нашлись среди экипажа те, кто не выдержал однообразия полета в небесной бездне, кто захотел привычного, земного, а не «межзвездного» уюта.
Вряд ли, впрочем, «небесные робинзоны» сойдут с ума от скуки. Полет к звездам не увеселительная прогулка, а экспедиция, равной которой – по смелости замысла, по величию цели – не было в истории человечества. Межзвездных путешественников не устрашит полет в неизведанное!
Необычное поджидает их на каждом шагу.
Межзвездная ракета.
Физика учит, что при больших, сравнимых со световой, скоростях начинают действовать особые законы. Существует предел скорости, никакое тело не может двигаться быстрее, чем свет в пустоте С приближением к пределу, к тремстам тысячам километров в секунду, масса движущегося тела возрастает. На примере электрона практика подтверждает справедливость этого вывода, кажущегося непосвященному парадоксальным. Разогнав электрон до чудовищной скорости в электромагнитном поле, убедились, что он «отяжелел», увеличил свою массу в соответствии с теорией относительности, которая предсказала и объяснила эти «чудеса» движения, времени и пространства.
Приземление ракеты.
На корабле вселенной, мчащемся со скоростью, близкой к световой, и на Земле время будет течь различно. По «земному» времени проходит, например, сто лет, по корабельному, «звездному», – десять.
Перенестись, как на уэллсовской машине времени, на сто лет вперед – что, кажется, может быть невероятнее? Ракета отдаленного будущего открывает перспективы поистине фантастические! Замедлить бег времени, перепрыгнуть через столетие! Трудно поверить в реальность подобного. Но в этом нет никакого «чуда», как нет чуда и во всяком другом явлении, которым управляют пока еще непривычные нам законы.
На примере элементарной частицы – мезона – подтверждается справедливость парадокса времени. Продолжительность жизни мезона возрастает, если скорость его становится сравнимой со световой. Мы наблюдаем это явление лишь потому, что время для быстродвижущейся частицы и неподвижного наблюдателя течет различно.
Нужно учесть, что понятие времени относительно. Ведь речь идет о скоростях космических масштабов, о сотнях тысяч километров в секунду, о скоростях, близких к предельной скорости света. Не произойдет ничего невероятного со временем в солнечной системе, если путешественники не полетят со сверхвысокими скоростями. Необычайное начнется, когда мы выйдем на просторы космоса и помчимся на межзвездном корабле.
Относительность времени основана на твердо установленном факте – постоянстве скорости света в пустоте. Свет распространяется прямолинейно. Но путь его покажется не одним и тем же человеку, находящемуся на Земле, и человеку, двигающемуся с огромной скоростью вместе с источником света. Подобно этому летчик, бросивший бомбу с самолета, увидит ее падающей прямо вниз, а для наблюдателя с Земли она опишет кривую – параболу.
Космический рейс окончен.
Если скорость постоянна, а пути различны, то и время пройдет неодинаковое. Для неподвижного наблюдателя оно будет большим, а для быстролетящего – меньшим. Вот почему путешественники на ракетном космическом корабле, настоящей машине времени, и перенесутся в будущее. Вернувшись из межзвездного перелета и проведя в нем несколько лет по своим часам, они застанут на Земле другой век по часам земным.
Путешествия к звездам сулят, как видим, необычайные возможности. И они не только в особенностях самого полета, а и в тех перспективах, которые откроются перед наукой, когда помчатся вдогонку за светом межзвездные корабли.
В ГЛУБИНЫ КОСМОСА
«Существуют бесчисленные солнца, бесчисленные земли… разумному и живому уму невозможно вообразить себе, чтобы все эти бесчисленные миры, которые столь же великолепны, как наш, или даже лучше его, были лишены обитателей, подобных нашим, или даже лучших».
Так писал Джордано Бруно. Три с половиной века прошло с тех пор, на костре инквизиции погиб тот, кто первым осмелился сказать вопреки церкви: мы не одиноки во вселенной!
Бруно погиб, но идеи его живы. Звезды – такие же солнца, как наше, только очень далекие от нас, говорил Бруно. Его спутники – земли, подчеркивал он, планеты. Современная наука доказала, что вокруг некоторых звезд обращаются планетоподобные спутники.
От ближайших к нам звезд – Альфы Центавра и Проксимы Центавра – свет идет четыре с лишним года. Триста тысяч километров в секунду, миллиард восемьдесят миллионов километров в час, в год… нет, слишком велики астрономические цифры расстояний во вселенной. Четыре световых года – это звучит короче и проще.
Если бы мы могли отправиться в путешествие в космос со скоростью света, то через четыре года наше Солнце превратилось бы для нас в маленькую звездочку. Увидели ли бы мы тогда семью его планет, эти темные тела, светящие лишь отраженным солнечным светом?
Да, они дадут нам знать о себе. Если бы засняли положение Солнца на небосводе, – не раз и не два, а много раз за много лет, – то заметили бы удивительную вещь: оно сбивается то в одну, то в другую сторону с пути, назначенного ему законом всемирного тяготения. Так повторялось бы каждые несколько лет. Это влияют на движение Солнца его спутники-планеты, в частности самая крупная из них – Юпитер.
О невидимых спутниках звезды, оказывается, можно узнать так же достоверно, как если бы мы слетали на Альфу Центавра и убедились в их существовании собственными глазами.
И, еще не совершая межзвездных перелетов, мы знаем, что планеты не одиноки во вселенной. Они имеются также у других звезд.
Почти полвека пулковские астрономы фотографировали звезду «61» в созвездии Лебедя. Оказалось, что за пять лет она смещается на угол в три сотых секунды дуги. На снимке это всего пять десятитысячных миллиметра! В этом, может быть, виноват невидимый спутник, который делает полный оборот вокруг своего солнца за пять лет. В самой удаленной точке своего пути он примерно в три раза дальше от звезды, чем наша Земля, уходит от Солнца. Масса его в двадцать раз больше, чем у Юпитера – самой крупной планеты солнечной системы. Возможно, что мы наблюдаем совместное возмущающее влияние нескольких планетоподобных спутников.
Вот что рассказали астрономам ничтожные отклонения крохотных точек на фотографиях звездного неба. Можно себе представить точность измерений на таких снимках!
Последние годы принесли новые открытия. Невидимый спутник оказался у Проксимы Центавра. Астрономы изучили движение двухсот сорока ближайших к нам звезд. Примерно шестьдесят из них имеют спутников. А между тем, говорит пулковский астроном профессор А. Дейч, «мы сейчас находимся лишь в самом начале многообещающего пути, и нет сомнений в том, что ближайшие годы принесут нам полное подтверждение того, что многие звезды имеют свои планеты».
Как разнообразны звезды, так разнообразны их планеты. Бесспорно, что среди них встретятся планеты, похожие на нашу родную Землю. О землях говорил Бруно три с половиной столетия назад. О землях говорят и современные астрономы.
Факты – упрямая вещь. И даже идеалист Джинс – английский астроном, противник множественности обитаемых миров – под давлением фактов в конце концов признает: «На многих планетах могут быть физические условия, не очень отличающиеся от наших земных и, таким образом, способные поддерживать жизнь, подобную нашей земной жизни. Вполне возможно, что жизнь гораздо более распространена во вселенной, чем мы думали».
Жизнь во вселённой… Значит, планеты других звездных систем могут быть обитаемы?
Труды советских ученых нанесли сокрушительный удар тем, кто пытался представить возникновение нашей планеты как счастливый случай, исключительный и неповторимый.
То, что произошло в одном уголке вселенной, могло или может произойти и в другом.
В беспредельных просторах вселенной, разделенные огромными пространствами, рождаются, живут, умирают миры и «материя в своем вечном круговороте движется согласно законам, которые на определенной ступени то тут, то там с необходимостью порождают в органических существах мыслящий дух».
Новейшие достижения науки укрепляют веру в справедливость этих замечательных слов Энгельса.
Жизнь не есть привилегия только нашей планеты. Лишь идеалисты, отрицающие материалистическую диалектику природы, не в состоянии этого понять. Только те, кто цепляется за выдуманные религией представления о божественном сотворении мира, боятся допустить возможность существования другой земли, кроме нашей, возможность другой жизни, кроме земной.
Трудно представить себе, каковы именно формы жизни в мирах далеких солнц. Несомненно одно: в ходе развития от низшего к высшему неизбежно возникает «высший цвет материи» – мыслящее существо. «…Раз дана органическая жизнь, то она должна развиться путем развития поколений до породы мыслящих существ». В этом утверждении Энгельса – ключ к материалистическому пониманию вопроса о жизни во вселенной.
Каким может быть облик мыслящих существ других планет, если они существуют? Одни ученые отвечают: всякое другое мыслящее существо должно обязательно походить на человека. Это наиболее удобная форма для «высшего цвета материи».
Нет, возражают другие. Почему обязательно человек? Место этой маленькой ветви класса млекопитающих, отряда обезьян на других планетах, в других условиях может занять другая группа животных. И, возможно, там возникли существа, не похожие на человека.
Не будем решать, кто из них прав. Для нас сейчас важно другое – вопрос о возможности полета к звездам.
В свое время произошла целая дискуссия на страницах журнала «Вестник знания».
Один читатель рассуждал так. Жители других миров не посещали Землю. Земля же не единственный культурный центр вселенной. На других планетах могут существовать более высокие культуры. И раз до сих пор из других миров к нам никто не прилетал, то и вообще межпланетные путешествия – неосуществимая мечта.
Но такая постановка вопроса неверна. В самом деле: если где-то во вселенной, кроме Земли, есть еще жизнь, и притом высокоразвитая, что же мешает нашим соседям посетить нас?
Если машины разумных существ иных миров не посетили Землю, то из этого еще не вытекает, что они не посетили другие планеты, говорил Циолковский. Да и в далеком прошлом, как и в далеком будущем, могло или может состояться посещение нашей планеты.
Космические скорости в десятки и сотни километров в секунду пока что недостижимы для современной техники. С трудом укладываются в воображении световые годы, разделяющие миры солнц.
Однако, если допустить, что у наших небесных соседей есть весьма совершенная техника, мощные источники энергии, надо допустить и возможность посещения ими Земли в прошлом, настоящем или будущем.
Разумеется, прилет корабля из глубины вселенной – явление чрезвычайное, исключительное.
Наше Солнце – обыкновенная, рядовая звезда, а вселенная бесконечна и в пространстве и во времени. Поэтому, говоря о возможности посещения Земли пришельцами из других звездных систем, нельзя забывать, что это может происходить крайне редко. Такое событие гораздо менее вероятно, чем, например, падение крупного метеорита.
Велики еще трудности победы над расстоянием, которое даже самый быстрый гонец – свет – проходит годы. И пока мы можем только фантазировать о посещении нашей планеты жителями других звезд или о полете к звездам.
Звездоплаванием назвали полеты в мировое пространство. В слове этом – доля истины и одновременно явное преувеличение. Да, можно говорить о плавании между звездами, но только в окрестностях самой близкой звезды – Солнца. Дорога к другим звездам – дело очень отдаленного времени.
Уносясь мыслью далеко вперед, можно предвидеть, что будущее принесет подтверждение – неопровержимое, наглядное, зримое – идеи множественности обитаемых миров среди звезд.
Это подтверждение дадут межзвездные корабли, путешествующие к другим солнцам, к другим планетным семьям. И тогда звездоплавание обретет свой подлинный смысл.
…Уже много времени прошло с тех пор, как корабль покинул родную планету и взял курс на далекую звезду.
Обычные понятия «день» и «ночь» давно потеряли для путешественников свой смысл. «Ночь» – когда закрыты иллюминаторы или выключено освещение. «День» – все остальное время. К этому привыкаешь, и кажется, что всегда так было, словно долгие годы прошли в маленьком мире, ограниченном стенками корабля.
Звездное небо, непривычный узор звезд… Корабль постепенно набрал чудовищную скорость, чтобы перенестись к звезде, до которой луч света путешествует годы.
Несколько суток – и корабль покинул пределы солнечной системы. Солнце превратилось в яркую звездочку, а корабль понесся с быстротою, уже сравнимой со скоростью света. И тогда путешественники увидели звезды – не мерцающие серебряные точки, какие видны с Земли, и не разноцветные гвоздики, усеявшие небосвод, какими они кажутся за атмосферой. Звезды, к которым летел навстречу и от которых удалялся небесный корабль, меняли цвет, переливаясь разными огнями, как сказочный фейерверк Их сияние изменяло окраску, подобно тому как меняется тон гудка несущегося навстречу нам с большой скоростью паровоза.
Проходят недели, месяцы…
В телескоп уже виден хоровод светлых точек вокруг маленькой звездочки. И вот уже это не далекая звездочка, а яркий диск, подобный нашему Солнцу, на свет которого больно смотреть.
Впереди еще миллионы километров, но пора начинать торможение. Включены двигатели. Как хвостатая комета, несется в небесных просторах межзвездный корабль. Острова вселенной, семья другой звезды, другого солнца уже близко.
Перед путешественниками открываются все новые чудеса. У планеты, к которой сейчас приближается корабль, оказалась атмосфера, она вся в белой пелене облаков. Есть, по-видимому, атмосфера и у другой «встречной» планеты – она покрыта голубоватой дымкой, как вуалью скрывающей ее поверхность.
Трудно разглядеть, что за этой вуалью – по ней плывут облака. Вот в просвете мелькнуло что-то ослепительно яркое. Что это? Море, отражающее лучи Солнца? Или, быть может, снежные вершины гор?
…Корабль облетел планету, постепенно, круг за кругом, все более снижаясь. Она видна теперь совсем хорошо – огромная тарелка, прикрытая облаками.
Приборы показывают, что в атмосфере планеты есть кислород. Путешественники заметили блестки водной глади. Кислород и вода? Значит, возможна даже жизнь на этой неведомой планете!
С огромной скоростью корабль врезался в атмосферу планеты. Обшивка корабля начала нагреваться. Даже охлаждающие установки не в состоянии были бороться с нагревом, и в пассажирской кабине стало нестерпимо жарко. Пришлось пустить тормозные двигатели на полную мощность, чтобы несколько уменьшить скорость.
Уже многое можно было увидеть на поверхности планеты простым глазом. Вдоль края большого материка – длинная горная цепь. Дальше – огромные водные просторы, льды и снова вода…
Вглядываясь в рельефную карту, расстилающуюся внизу, звездоплаватели увидели за горным хребтом желтое пятно. Пустыня! Песок! Это отличная посадочная площадка.
Корабль повернул к поверхности планеты и начал быстро снижаться. Полет подходил к концу. Снова душно стало в кабине. Сквозь стенки слышен был гул урагана – корабль, как метеор, прорезал воздух чужой планеты.
Желтое пятно приближалось. Пора! Глухие взрывы, потом еще и еще… Это работает двигатель, судорожно захлебываясь короткими очередями, опаляя жарким дыханием «землю» под кораблем.
Корабль боролся с притяжением планеты. С ревом вырывались огненные струи из двигателей. Последний прыжок вверх – и гигантский корабль начал медленно опускаться, как будто на огненном столбе. Столб все меньше, и все ближе место посадки. Еще мгновение – и спуск окончен. Корабль лежит на поверхности планеты.
Непривычно странной кажется тишина. Открыты снова шторки иллюминаторов, и пейзаж иного мира, на небе которого восходят разноцветные светила, предстает перед глазами путешественников.
Неутомимая жажда знаний привела их сюда, под чужое небо, на чужую планету. С волнением смотрят они на чужие небеса, на мир чужого Солнца.
Позади остались триллионы километров пути на звездном корабле, соперничающем в скорости со светом. Где-то в бездонных небесных просторах осталась звезда, имя которой Солнце, планета, имя которой Земля…
Открывается люк.