355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Ляпунов » Открытие мира » Текст книги (страница 4)
Открытие мира
  • Текст добавлен: 4 октября 2016, 01:19

Текст книги "Открытие мира"


Автор книги: Борис Ляпунов



сообщить о нарушении

Текущая страница: 4 (всего у книги 12 страниц)

НА ПУТИ К КОСМИЧЕСКОМУ КОРАБЛЮ

Самолет на старте. Заняли места пассажиры. В окна видно уходящее вдаль летное поле, крыло и пока неподвижные воздушные винты. И вдруг они оживают. Тишина сразу обрывается ревом моторов, переходящим в ровный гул. Лопасти винтов сливаются в блестящие круги.

Машина еще некоторое время стоит на месте, как будто набирает силы, готовясь к прыжку. Старт дан, и самолет медленно начинает двигаться. Побежало в окнах поле аэродрома, быстрее, быстрее… Момента взлета ждешь – и все равно пропустишь. Только что колеса прикасались к земле, и вот она уже отдаляется, незаметно опускается вниз. Легкий толчок, самолет еще ступенькой выше, потом еще и еще. Наконец закончено восхождение по невидимой воздушной лестнице и набрана высота. Машина ложится на курс.

Тень самолета бежит по земле – ложится на зеленые пятна лесных массивов, пересекает полоски рек, ленты дорог. Скорость почти неощутима, а ведь воздушный корабль пролетает сейчас больше трехсот километров в час – восемьдесят метров в секунду!

За несколько десятков часов он может перелететь из одного конца страны в другой. Но это не предел, ибо сбылось предвидение Циолковского: за эрой аэропланов винтовых наступает эра аэропланов реактивных.

Советская ракетная техника давно уже работает над воплощением в жизнь идей Циолковского.

В 1932 году Цандер построил первый в стране ракетный двигатель на жидком топливе.

В 1933 году поднялась в воздух первая советская ракета на жидком топливе конструкции М. К. Тихонравова.

Инженеры, объединенные в группы изучения реактивного движения, вели работы по всем ведущим направлениям современного ракетостроения.

В 1940 году состоялись летные испытания планера конструкции С. П. Королева с жидкостным ракетным двигателем. Их проводил летчик-испытатель В. П. Федоров.

Достоянием истории стало и другое событие – первый в мире полет человека на ракетном самолете. Его совершил в 1942 году советский летчик Г. Я. Бахчиванджи, возвестивший этим открытие эпохи авиации будущего, эпохи больших скоростей.

Ракетный самолет стал действительностью.

Мы уже начинаем привыкать к стремительному полету новых самолетов, к их необычным формам. Когда смотришь, как мчатся стальные ласточки с отогнутыми крыльями, олицетворяя собой радостное чувство скорости, мысленно переносишься туда, в машину, которая догоняет звук. Пилот смотрит, как проносится, а не плывет земля под самолетом, и испытывает это ощущение громадной скорости, подвластной человеку.

Наступает время больших скоростей в авиации не только военной, но и транспортной. Уже сейчас появляются многомоторные реактивные воздушные корабли. Не триста, а восемьсот-девятьсот километров в час станут крейсерской скоростью гражданского самолета.

В немногих словах трудно описать то, с чем пришлось бороться создателям скоростных машин, В первую очередь надо указать на сопротивление воздушной стихии – воздух мешает движению, и тем сильнее, чем быстрее полет. Недаром появилось название «звуковой барьер» – воздух, сжимаясь, уплотняется, образуя своеобразную преграду, которую надо преодолеть.

Для этого ищут такие формы крыльев, фюзеляжа, оперения, при которых меньше сказывается вредное влияние сжимаемости воздуха. Самолету дают более мощный – реактивный – двигатель. Он помогает справиться с возросшим сопротивлением среды, штурмовать звуковой барьер.

Как нередко бывает, нашлись маловеры, заявлявшие при встрече с трудностями: звуковой барьер непреодолим. Смотрите, самолеты рассыпаются в куски, едва начинают подходить к опасной зоне скоростей. Не выдержат машины – не хватит мощности мотора, не вынесет пилот сверхчеловеческих нагрузок, предупреждали они.

Однако современные самолеты вошли в опасную зону, почти вплотную подошли к скорости звука, и появилась не только околозвуковая авиация. В последние годы состоялись первые испытательные полеты самолетов сверхзвуковых скоростей.


Самолет больших скоростей.

Но мы будем говорить не о том, что существует сейчас, сегодня, а о завтрашнем дне, когда самолет и ракета сольются воедино, дав новую машину – крылатую управляемую ракету, прообраз межпланетного корабля.

Над проектами и опытными сверхзвуковыми самолетами работают конструкторы разных стран. Нет еще сведений о результатах, достигнутых ими. Прежде чем человек полетит на крылатой ракете, необходимо всесторонне исследовать, что творится за звуковым барьером.

Строятся модели машин. В аэродинамических трубах их продувают потоком большой скорости, изыскивая наилучшие формы, с наименьшим сопротивлением. Полетные испытания управляемых по радио моделей, броски через звуковую скорость помогают накопить материал, который использует инженер, производственник, технолог.

Уже вырисовываются контуры самолета будущего – с длинным заостренным фюзеляжем, тонкими стреловидными крыльями и оперением.

Обыкновенно идут от известного к неизвестному. «Так и мы думаем перейти от аэроплана к реактивному прибору – для завоевания солнечной системы», – говорил Циолковский. И он набрасывает план завоевания межпланетных пространств.

Безвинтовой ракетный самолет с герметической кабиной покорит стратосферу. Высота и скорость его полета ограничены только запасом топлива. Постепенно поднимаясь все выше и выше, туда, куда ранее проникали одни стратостаты да шары-зонды, человек совершит первые робкие взлеты в область больших высот. Пополнится драгоценная сокровищница опыта, окрепнут крылья ракеты, из воздушного корабля она начнет превращаться в корабль заатмосферный.

Разбежавшись по земле с помощью ускорителей, разогнавшись в разреженном воздухе больших высот, крылатая ракета совершит чудовищный прыжок в тысячи километров длиной.

Начало и конец ее пути будут лежать в атмосфере. Середина – главная, неизмеримо более длинная часть путешествия – пройдет в межпланетном пространстве.

Почта, грузы, пассажиры за час перенесутся от Балтики к берегам Тихого океана, за несколько минут – из Москвы в Ленинград.

Такие корабли будут совершать короткие визиты в межпланетную бездну – миниатюрные космические рейсы, с переходом из обычного состояния к усиленной тяжести, затем к полной ее потере и, наконец, к возвращению в привычный мир.

Корабль может двигаться с той же скоростью, с какой вращается Земля. Тогда Солнце для него станет неподвижным и наступит вечный день. Свершится и другое «чудо»: для экипажа крылатой ракеты, обогнавшей Землю, дневное светило двинется назад, восходя на западе и заходя на востоке.

Кстати, уже теперь летчику реактивного самолета, летящего со скоростью одной тысячи километров в час по параллели Москвы, покажется, что Солнце движется по небу не так, как обычно, а наоборот, с запада на восток. Он перегонит Землю, полетит «быстрее Солнца».

Когда скорости достаточно возрастут и полеты за атмосферу будут так же обычны, как теперь дальние перелеты самолетов, люди смогут начать реальную борьбу за достижение космических скоростей.

У ракетного самолета и межпланетной ракеты много общего: и самолету и ракете лететь в пустоте, где гибнет все живое. Поэтому и у самолета и у небесного корабля должна быть герметическая кабина с искусственной атмосферой, подобной той, что создается в гондолах стратостатов и кабинах высотных самолетов.

Двадцать лет назад на советских заводах построили стальной шар – гондолу стратостата, который поднялся на громадную высоту. В нем наши инженеры и техники, мастера и рабочие сумели создать стратонавтам все необходимые для работы условия.

Ради нескольких часов, которые нужно было провести в поднебесье, многие месяцы шла напряженная работа.

В историю авиации навсегда вошли стратосферные полеты советских летчиков и воздухоплавателей как непревзойденный образец мужества, героизма, настойчивости в достижении поставленной цели. Трудно в кратких словах передать эпопею этих полетов в неизведанное. Многие помнят те дни, когда весь мир ждал вестей из стратосферы, когда слово «стратостат» было у всех на устах. Успех в воздухе готовился еще на земле. Была создана специально сконструированная гондола, оборудованная всем необходимым для плавания в заоблачных высотах.

Не только стратонавтам, но и подводникам и летчикам-высотникам приходится работать в изолированных от внешнего мира помещениях. У нас уже есть опыт создания нормальных условий для жизни человека там, где жизнь невозможна, – в глубинах океана и в разреженном воздухе больших высот.

Только зная историю героических полетов в стратосферу, можно оценить сложность предстоящих работ. Нужно предусмотреть все мелочи, от которых зависит жизнь экипажа. Представьте, насколько возрастут трудности, когда речь пойдет не о часах, а о днях, проведенных за атмосферой, не о десятках, а о сотнях тысяч и миллионах километров пути, не о плавании в воздушном океане, а о полете в неведомый мир.

Надо полагать, что техника справится с такой сложной работой.

Ракетному самолету предстоит подняться выше озонового слоя, навстречу потокам ничем не ослабленных ультрафиолетовых лучей. С ними же встретится и межпланетная ракета. Поэтому иллюминаторы у них должны быть закрыты специальным стеклом. Подобно слою озона, оно защитит пассажиров от палящих лучей солнца.

На большой высоте нет воздушной брони – атмосферы, и самолету, как и ракете, грозит случайная встреча с метеором. Поэтому обоим нужна броня, о которой придется позаботиться конструкторам стратосферных и межпланетных кораблей.

Ракетный двигатель, топливо, материалы, управление, приборы, средства связи с Землей у самолета и ракеты будут во многом схожи.

О сверхзвуковых самолетах говорится уже в учебниках как о ближайшей перспективе авиационной техники. Думают, что составной самолет-ракета осуществит мечту о беспосадочном кругосветном перелете за несколько часов.

Разрабатывался проект перелета на расстояние в пять тысяч километров за три четверти часа на основе уже существующих конструкций далеко летающих ракет. Наибольшая скорость была бы три с половиной километра в секунду – почти половина первой космической скорости!

Авиация стремится выйти еще выше в стратосферу, потому что там мало сопротивление воздуха, доставляющее так много неприятностей при полете у земли.

Самолет, летающий на огромных высотах с огромными скоростями, и ракета, прорезающая верхние слои атмосферы, отчасти будут напоминать метеор. Их движение станет изучать одна и та же наука – космическая аэродинамика, в ведении которой – сверхбыстрое движение в сильно разреженном газе.

На больших скоростях происходит усиленный нагрев от трения о воздух. Чем быстрее полет, тем сильнее нагревается обшивка. У ракеты, развивавшей скорость полтора километра в секунду, она раскалялась до девятисот градусов. Здесь, пожалуй, никакая теплоизоляция не поможет. Если лететь еще быстрее, самолет сгорит. Поэтому и ищут спасения на больших высотах, где плотность воздуха ничтожно мала.

А как же быть с чудовищной, почти тысячеградусной жарой, которая, как предполагают, царит там? Как это ни странно звучит, мы не почувствовали бы эту жару, так как плотность воздуха там мала. Хотя частицы его движутся с огромными скоростями, но самих частиц значительно меньше чем у земли. Поэтому и тепло неощутимо. Лишь с помощью приборов можно измерить температуру в очень разреженном воздухе.

Передача тепла произойдет так медленно, что самолет не успеет нагреться сколько-нибудь заметно. Только прямые солнечные лучи сыграют свою роль, но они не страшны, – от такого нагрева защититься всегда можно.

Однако надо кратко сказать и об отличии ракеты-межпланетного корабля от ракеты-самолета, вернее о том, что предстоит сделать для перехода от одного к другому.

Для топливного запаса, определяющего достижение космической скорости надо создавать составную ракету – пока нет еще в нашем распоряжении более мощных источников энергии. Лишь ракета-одиночка с атомным двигателем сможет вылететь в мировое пространство.

Межпланетный полет продолжителен, и нужно обеспечить экипаж всем необходимым для жизни в пустоте не на часы, а на дни и недели. Понадобится усовершенствовать герметическую кабину, приборы, радиоаппаратуру, позаботиться о питании, о костюмах, в которых можно выйти из ракеты, о приспособлениях для спуска на Землю и другие планеты.

Так смыкаются авиация и ракетная техника, так воздушный транспорт станет транспортом заатмосферным и воздушные дороги – небесными дорогами.


НА РАКЕТЕ ВО ВСЕЛЕННУЮ
ВЕРНЫЕ ПОМОЩНИКИ ПИЛОТА

С земли уже давно не видно взлетевшей ракеты – она скрылась из виду, растворилась в ночной темноте. В почти космической пустоте, глотая пространство, с огромной скоростью несется стальная сигара. Теперь о ней говорит только зубчик на экране локатора да светящаяся линия на темном фоне неба, словно прочерченная невидимой рукой. Яркий след упрямо тянется кверху, но вдруг изгибается, поворачиваясь все круче и круче. Это рули, обжигаемые огненным дыханием двигателя, послушные чьему-то приказу, повернули снаряд на новый курс. Даже когда исчезла горячая газовая струя, рули не успели остыть и тоненькой черточкой светятся во мраке ночи.

Кто же повернул рули? Ведь в ракете нет пилота!

Нелегко сохранить взятый курс, когда ракета предоставлена самой себе. Всего нельзя предусмотреть – легкие колебания тяги, сильные порывы ветра в атмосфере и другие случайные причины могут столкнуть ее с намеченного пути. Надо все время поправлять ракету, не допускать уклонений с намеченной дороги. За этим следит автопилот, заменивший человека. Важнейшая часть автопилота – быстро вращающийся волчок.

Волчок не зря называют упрямым. Когда он вертится, то ось его всегда сохраняет определенное положение в пространстве. Более бдительного, более верного стража трудно найти. Стоит, например, самолету чуть качнуться, уступая силе ветра, волчок тут как тут. Его ось невозмутимо остается на месте, но рамка прибора, соединенная с корпусом самолета, сдвигается. Этого достаточно, чтобы появился тревожный сигнал. И вот уже идет приказ моторчикам рулей: повернуть их так, чтобы машина вернулась обратно, на прежний курс! Так автопилот ведет машину вместо летчика.

Два волчка кружатся в приборном отсеке ракеты. Их обязанность наблюдать за отклонением ее корпуса в ту или другую сторону, и то, что не замечает один, заметит сразу же другой. Заметил – и рамкой замкнул контакты в электрической цепи. Возник ток, слабый, почти незаметный, бессильный что-нибудь сделать.

Тогда на помощь приходит электронная лампа-усилитель. Сигнал усиливается во много раз. Теперь у него хватает силы включить моторчик, отклоняющий руль. Руль делает свое дело – ракета возвращается на правильный путь, и тревожный сигнал замирает до следующего опасного случая. Все это совершается очень быстро, чтобы не дать ракете сильно уклониться от верного курса.

Когда же курс надо не сохранить, а изменить, используют опять все тот же волчок. Он поворачивается специальным механизмом, также включенным в электрическую цепь. Механизм этот работает точно по установленной программе, поворачивая ось волчка в заданное время на заданный угол. Эти повороты вызывают в конце концов сигналы-команды рулям, и, повинуясь автомату, ракета меняет курс.

Устройство автоматического пилота весьма сложно. Описанное – лишь простейшая схема, объясняющая, как без вмешательства человека управляют многотонной ракетой. Гироскоп-волчок, электронные, электрические и гидравлические приборы, точные, надежные устройства подчиняют движение расчету, заранее определяющему, как будет происходить полет.

Так воплотились в жизнь слова Циолковского, предвидевшего автоматическую ракету. Да и могло ли быть иначе? В век больших скоростей, огромных мощностей, высокой точности обойтись без множества автоматов невозможно. И невозможно представить себе без них стратосферные и космические рейсы. Современные высотные ракеты, как мы уже знаем, несут с собой целую автоматическую лабораторию для взятия проб воздуха, фотографирования солнечного спектра, регистрации космических частиц.

Чтобы исследовать солнечное излучение на больших высотах, нужно поднять на ракете прибор – спектрограф и направить его на Солнце.

Но тут-то и возникает неожиданное препятствие. Ракета не летит прямо. Поднимаясь вверх, она в то же время быстро вращается вокруг своей оси, да еще медленно поворачивается, наклоняясь вбок. Эти замысловатые «пируэты» мешают спектрографу уследить за Солнцем. Что же делать? Призвали на помощь автоматику. Автоматы заставили прибор все время «смотреть» на Солнце, какие бы фигуры ни выделывала в полете сама ракета.

Вот она пролетела атмосферу. В головке ракеты автоматически открывается маленькое окошечко, против которого помещается «искатель Солнца» с фотоэлементом. Солнечные лучи, собранные линзой, направляются на чувствительную к свету поверхность фотоэлемента. Эта поверхность имеет форму диска. Когда спектрограф направлен на Солнце, световое пятно попадает в центр диска фотоэлемента, и тока нет.

Но стоит только прибору хотя бы немного уклониться, смещается и световое пятно. Возникает ток. Усиленный усилителем, он заставляет электромоторчики поворачивать спектрограф до тех пор, пока пятнышко вновь не окажется в центре искателя.

Все это совершается так быстро, что следящее устройство успевает направлять щель прибора постоянно на Солнце, несмотря на вращение самой ракеты.

Если же искатель совсем потеряет Солнце, то автомат заставит его вращаться с очень большим числом оборотов до тех пор, пока световое пятнышко не будет поймано вновь.

Прибор для слежения за Солнцем автоматически отделяется от ракеты и спускается на парашюте. И другие приборы тоже помещают в специальную камеру, которая выбрасывается в полете автоматическим устройством.

Автоматически управляемые самолеты существуют уже сейчас. В течение всего полета от взлета до приземления пилот не вмешивается в поведение машины. Пусть пока еще только зарождается беспилотная авиация, но мы вступили на путь, ведущий к транспорту будущего, где будет максимально облегчен человеческий труд.

Автоматы понадобятся для регулирования тяги, чтобы ускорение не превзошло опасного предела – вспомним о перегрузке. Они нужны для контроля исправности механизмов двигателя и работы всех его частей. Но этим не исчерпывается их роль.

Ракетный двигатель развивает огромную мощность – у стратосферной ракеты, например, на максимальной скорости – до полумиллиона лошадиных сил. Значит, еще больше – миллионы сил – потребуется для заброски корабля в космос. Управление таким двигателем на летящем с большой скоростью космическом корабле требует быстроты и точности действий. Помочь пилотировать корабль должны будут автоматы.

Приведем один лишь пример. Авиационная турбина, установленная на современном скоростном реактивном самолете, работает на грани возможного. Материал двигателя выдерживает предельные нагрузки. Стоит только летчику, управляя двигателем, сделать слишком резкое движение, и он рискует сжечь лопатки турбины, хотя они и сделаны из очень жаростойкого сплава. С потоком сильно нагретых газов, бушующих в турбине, шутить опасно. Поэтому здесь «на часах» поставлен автомат, который не позволяет перегреть турбину и вывести ее из строя. Автоматически включаются также противоперегрузочные устройства, когда ускорение при маневрах реактивного самолета превосходит допустимый предел.

Итак, автоматы безопасности нужны ракете, чтобы стрелка прибора не перешла аварийной красной черты, за которой чрезмерная перегрузка грозит гибелью.

Для точного выполнения программы полета понадобится другой автомат. Ведь наперед будет известно, как станет ракета выбираться за атмосферу, какую надлежит держать скорость и направление. Программный регулятор поведет корабль по курсу взлета.

И другие автоматы будут на ракете. В их обязанность входит следить за составом и давлением воздуха в кабине, предупреждать о его утечке, если случайная встреча с метеором повредит обшивку, наблюдать за температурой и вовремя включать отопление или охлаждение – словом, оберегать жизнь путешественников.

То, что здесь рассказано об автоматике ракеты, лишний раз убеждает нас: решение проблемы межпланетных путешествий возможно только в содружестве многих отраслей науки и техники наших дней.

Роль автоматики в управлении ракетным кораблем трудно переоценить. Но иногда можно встретить и такие романы о межпланетных полетах, в которых кнопки решают все. Пилоту остается только их нажимать. Нажал раз – ракета трогается, нажал два – взлетает, нажал три – набирает скорость… А если вдобавок связать друг с другом автоматы так, что они будут включаться по очереди, то и вообще можно обойтись одной-единственной «генеральной» кнопкой. Ведь существуют же, скажем, автоматические станки и линии станков, где рука рабочего не прикасается к изделию при обработке. Наконец построены целые заводы-автоматы. Что же говорить о самолетах и ракетах!

Нет, не заменят автоматы человека. Верно, что исправный автомат никогда не ошибается. Но чтобы он был исправным, за ним надо следить, его надо регулировать, его работу проверять. И на «безлюдном» автоматическом заводе для этого есть люди. С автоматикой легче трудиться, и в ней видим мы основу техники коммунизма. Но техника без людей мертва. Человек – «надзиратель» и «регулятор», как говорил Маркс, человек – командир машин остается. От него требуется больше знаний, смекалки, уменья, больше творчества, ибо автоматическая техника сложна.

В нашей стране новая техника непрерывно заменяется новейшей. В совершенстве владея ею, поведут межпланетные корабли капитаны космических рейсов, которым будут помогать автоматы – верные помощники пилота.


    Ваша оценка произведения:

Популярные книги за неделю