412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Борис Пшеничнер » Космос. Все о звёздах, планетах, космических странниках » Текст книги (страница 2)
Космос. Все о звёздах, планетах, космических странниках
  • Текст добавлен: 1 июля 2025, 09:07

Текст книги "Космос. Все о звёздах, планетах, космических странниках"


Автор книги: Борис Пшеничнер


Соавторы: Оксана Абрамова
сообщить о нарушении

Текущая страница: 2 (всего у книги 23 страниц)

Как Солнце влияет на Землю?

Солнце посылает на Землю электромагнитные волны всевозможной длины – от многокилометровых радиоволн до чрезвычайно коротковолновых гамма-лучей. Окрестностей Земли достигают также заряженные частицы разной энергии – как высокой (солнечные космические лучи), так и низкой и средней (потоки солнечного ветра, выбросы от вспышек), называемые солнечным ветром. Только очень малая часть заряженных частиц из межпланетного пространства попадает в атмосферу Земли (остальные отклоняет или задерживает геомагнитное поле).

Быстрые частицы вызывают сильные токи в земной атмосфере, приводят к возмущению магнитного поля нашей планеты и даже влияют на циркуляцию воздуха в атмосфере. Наиболее ярким и впечатляющим проявлением бомбардировки атмосферы солнечными частицами являются полярные сияния. Это свечение в верхних слоях атмосферы, имеющее либо размытые (диффузные) формы, либо вид корон или занавесей (драпри), состоящих из многочисленных отдельных лучей. Сияния обычно бывают красного или зелёного цвета

Ионизацию земной атмосферы и нарушение связи на коротких волнах вызывают рентгеновские кванты, проникающие до высот 80–100 км от поверхности Земли. Они образуются при сильных всплесках солнечного рентгеновского излучения от хромосферных вспышек.

Часть наиболее длинноволнового ультрафиолетового излучения, которая доходит до земной поверхности, вызывает у людей загар и даже ожоги кожи при длительном пребывании на солнце. Основной же поток приходящих от Солнца губительных для всего живого ультрафиолетовых лучей задерживает «озонный экран», формирующийся на высоте 30–35 км над поверхностью Земли.

Магнитосфера Земли отклоняет солнечный ветер

Излучение в видимом диапазоне поглощается 3 слабо. Однако оно рассеивается атмосферой даже в отсутствие облаков, и часть его возвращается в межпланетное пространство. Облака, состоящие из капелек воды и твёрдых частиц, значительно усиливают отражение солнечного излучения. В результате до поверхности планеты доходит в среднем около половины света, падающего на границу земной атмосферы.

На Земле излучение поглощается сушей и океаном. Нагретая земная поверхность излучает в длинноволновой инфракрасной области. Это излучение жадно поглощается водяным паром и углекислым газом, благодаря чему воздушная оболочка удерживает тепло. В этом и заключается парниковый эффект атмосферы.

Встречая на своём пути Землю, солнечный ветер сильно деформирует её магнитосферу, в результате чего наша планета обладает длинным магнитным «хвостом», также направленным от Солнца. Магнитное поле Земли чутко отзывается на обдувающие её потоки солнечного вещества.

Время от времени на Солнце происходят вспышки – внезапное выделение энергии, накопленной в магнитном поле. При этом происходит выброс частиц высокой энергии в межпланетное пространство и наблюдается мощное излучение в радиодиапазоне. Такие взрывоподобные процессы могут продолжаться всего несколько минут, но за это время выделяется примерно такое же количество тепла, которое приходит от Солнца на всю поверхность нашей планеты за целый год. Потоки жёсткого рентгеновского излучения и солнечных космических лучей, рождающиеся при вспышках, оказывают сильное влияние на физические процессы в верхней атмосфере Земли и околоземном пространстве. Если не принять специальных мер, могут выйти из строя сложные космические приборы и солнечные батареи. Появляется даже серьёзная опасность облучения космонавтов, находящихся на орбите. Поэтому в разных странах проводятся работы по прогнозированию солнечных вспышек на основании измерений солнечных магнитных полей.


ГЛАВА II.
СОЛНЕЧНАЯ СИСТЕМА

Солнечная система – это система космических небесных тел, связанных друг с другом силами тяготения. В неё входят центральное светило Солнце, в котором заключено около 99,87% всей массы Солнечной системы, обращающиеся вокруг него планеты, карликовые планеты и малые тела, а также все естественные спутники. Новейшие астрономические открытия привели к тому, что последняя классификация тел, входящих в Солнечную систему, была проведена совсем недавно – в 2006 г.

На сегодняшний день к планетам относят восемь крупных небесных тел, которые под действием собственной гравитации приняли форму шара: Меркурий, Венеру, Землю, Марс, Юпитер, Сатурн, Уран и Нептун. Их масса достаточна для поддержания гидростатического равновесия, при котором давление недр уравновешивается силами гравитации, и настолько велика, что в окрестностях орбиты имеется пространство, практически свободное от других тел.

Все планеты расположены почти в одной плоскости и обращаются вокруг Солнца по круговым орбитам в одном направлении.

Карликовые планеты тоже обращаются вокруг Солнца. Они находятся в гидростатическом равновесии и имеют форму шара, однако их масса недостаточна для того, чтобы освободить окрестности орбиты от других тел. Например, отношение массы Плутона, второй по размеру карликовой планеты, к массе других тел в окрестностях его орбиты равно всего лишь 0,07. Ещё для одной карликовой планеты, Цереры, оно составляет 0,33, в то время как для Юпитера это отношение равно 318, а для Земли – 1,7 млн. В настоящее время официально признано пять карликовых планет, хотя предполагается, что их в Солнечной системе может быть гораздо больше: это Церера, Плутон, Хаумеа, Макемаке и Эрида – самая большая из карликовых планет, расположенная в наиболее удалённых областях Солнечной системы. До 2006 г. Плутон считался планетой, но открытие на рубеже XX и XXI вв. объектов, сравнимых по размерам с Плутоном, в частности Эриды, потребовало более чёткой формулировки понятия «планета».

Объекты небольших масс, обращающиеся вокруг Солнца и слишком маленькие для того, чтобы под действием сил собственной гравитации поддерживать сферическую форму, называют малыми телами Солнечной системы. К ним относят большинство астероидов, кометы, кентавры (ледяные кометоподобные объекты, движущиеся между орбитами Юпитера и Нептуна), метеороиды (тела размером от 0,1 мм до 10 м), а также межпланетная пыль, частицы солнечного ветра (потока плазмы от Солнца) и свободные атомы водорода.

Спутниками называют тела, обращающиеся вокруг планеты, карликовой планеты или астероида. Большинство спутников планет обращается вокруг них в ту же сторону, что и планеты вокруг Солнца. У планет на сегодняшний день известно 168 естественных спутников, а у карликовых планет их шесть (три у Плутона, два у Хаумеа и одна у Эриды).


Разновеликие соседи

Солнце – центральный объект Солнечной системы, которую условно делят на две области – внутреннюю и внешнюю. Во внутренней области расположены ближайшие к Солнцу планеты Меркурий, Венера, Земля и Марс, которые называют планетами земной группы. Они обладают высокой плотностью и образованы преимущественно тяжёлыми элементами, такими как кислород, кремний, железо, никель и др. Все планеты земной группы имеют железное ядро, мантию, состоящую из силикатов, и кору, образовавшуюся в результате выплавления из мантии лёгких элементов. У планет земной группы мало спутников (от 0 до 2), нет колец и есть атмосфера – газовая оболочка, которая удерживается гравитацией планеты и вращается вместе с ней как единое целое.

Планеты земной группы, слева направо: Меркурий, Венера, Земля, Марс 

Говоря о Солнечной системе, мы будем использовать понятия астрономической единицы (1 а. е. = 149 597 870,610 км) – среднего расстояния от Земли до Солнца и эклиптики – плоскости, в которой расположена орбита Земли.


Пояс астероидов

Во внутренней области Солнечной системы, между 2,3 и 3,3 а. е. от Солнца, расположен Главный пояс астероидов – большая концентрация астероидов в сравнительно узком пространстве межпланетной среды между орбитами Марса и Юпитера. Скорее всего, пояс астероидов – это несформировавшаяся планета, образованию которой помешало гравитационное влияние Юпитера и (в меньшей степени) других планет-гигантов.

За Главным поясом астероидов начинается внешняя область Солнечной системы. Там царствуют планеты-гиганты Юпитер, Сатурн, Уран и Нептун, на которые приходится 99% всей массы вещества, обращающегося вокруг Солнца. Они заметно отличаются от планет земной группы по составу и физическим условиям. Эти планеты гораздо больше и массивнее, они менее плотные и состоят из лёгких элементов (преимущественно водорода и гелия), имеют мощные атмосферы, множество спутников (от 13 до 63) и системы колец из пыли и льда. Самое крупное из колец у Сатурна – его легко можно увидеть с Земли.

За орбитой Нептуна, на расстоянии порядка 35–50 а. е. от Солнца, расположен пояс Койпера (или Эджворта-Койпера) – большое скопление малых тел. Он превышает пояс астероидов в 20 раз по протяжённости и в 20–200 раз по массе, его объекты движутся приблизительно в плоскости орбит планет. Возможно, это остаток протопланетной туманности, из которой образовалась Солнечная система.

Космический аппарат «Dawn» на орбите астероида Веста
Планеты Солнечной системы и их положение относительно Солнца 

За поясом Койпера, частично перекрываясь с ним, располагается рассеянный диск – удалённый регион Солнечной системы, слабо заселённый малыми телами. Объекты рассеянного диска имеют сильно вытянутые, наклонённые к эклиптике и даже перпендикулярные ей орбиты, которые могут простираться до 150 а. е. от Солнца. Предположительно в рассеянном диске формируются короткопериодические кометы.

Многие косвенные факторы указывают на то, что за рассеянным диском находится сферическая область Солнечной системы, из которой к нам прилетают долгопериодические кометы. Инструментально существование этой области, которую называют облаком Оорта, не подтверждено, поэтому оценки её размеров очень приблизительны: от 2000–5000 а. е. до 50 000 или даже 100 000 а. е. Считается, что облако Оорта является остатком исходного протопланетного диска. На расстоянии около 120 а. е. от Солнца (в четыре раза дальше Плутона) расположена гелиопауза – область, в которой солнечный ветер смешивается с межзвёздным веществом; она считается началом межзвёздной среды. Но гравитационное влияние Солнца простирается гораздо дальше. Оно преобладает над гравитацией соседних звёзд на расстояниях порядка 125 000 а. е.

Большая часть Солнечной системы до сих пор не исследована. Предполагается, что до 2020 г. космические аппараты «Вояджер» пересекут гелиопаузу и мы сможем расширить свои знания о внешних областях Солнечной системы и свои представления о межзвёздной среде.

Судя по оценкам, в поясе Койпера около 450 000 объектов диаметром более 50 км, в поясе астероидов – порядка 400 000 небесных тел, а в облаке Оорта содержатся несколько триллионов ядер комет, размеры которых превышают 1,3 км.


Меркурий
Снимок участка поверхности Меркурия, полученный АМС «Мессенджер» 14 января 2008 г. 

Ближайшая к Солнцу планета земной группы, Меркурий, – самая маленькая из восьми больших планет Солнечной системы и самая быстрая планета в Солнечной системе. Он движется по орбите вокруг Солнца со средней скоростью около 48 км/с. Из-за того, что орбита Меркурия сильно вытянута, разность расстояний в самой близкой и далёкой от Солнца точках равна 23,8 млн. км. Из-за близости к Солнцу Меркурий получает на квадратный метр поверхности в среднем в 6,7 раз больше солнечного света, чем Земля. Естественных спутников у планеты нет.

За один оборот вокруг Солнца Меркурий успевает совершить 1,5 оборота вокруг своей оси, и поэтому на поверхности планеты существует два меридиана, которые попеременно обращены к Солнцу во время прохождения перигелия – ближайшей к светилу точки орбиты планеты. На этих «горячих долготах» даже по меркам Меркурия весьма жарко: температура в экваториальных областях достигает 427 °С.

Скорость вращения планеты вокруг своей оси приблизительно постоянна, а скорость орбитального движения заметно меняется из-за сильной вытянутости орбиты. В результате при прохождении планетой перигелия в течение примерно восьми суток скорость орбитального движения превышает скорость вращения планеты вокруг своей оси и Солнце в меркурианском небе сначала останавливается, а потом начинает двигаться в обратном направлении – с запада на восток.

Современные радарные исследования приполярных областей планеты показали наличие вещества, сильно отражающего радиоволны. Это может быть водяной лёд, ведь молекулы воды попадают в атмосферу Меркурия при ударах комет. Солнце поочерёдно освещает оба полушария планеты, но в глубокие долины вблизи полюсов его лучи не проникают никогда, и в этих тёмных холодных зонах могут существовать ледники толщиной до двух метров.

В 2008 г. американские астрономы сообщили об открытии у Меркурия «хвоста» длиной более 2,5 млн. км. Он состоит из атомов натрия, кальция и магния, выбитых с поверхности планеты в результате столкновения с тяжёлыми частицами солнечного ветра и метеороидами.

Меркурий
Внутреннее строение Меркурия 

Одной из особенностей Меркурия является очень разреженная атмосфера, состоящая из атомов гелия, водорода, аргона, неона и др. Она образовалась из захваченных планетой частиц солнечного ветра, а также из частиц, которые были выбиты солнечным ветром с её поверхности. В среднем каждый атом гелия находится в атмосфере Меркурия порядка 200 дней, а затем покидает планету. Отсутствие плотной атмосферы в сочетании с близостью к Солнцу и достаточно медленным вращением приводит к самым резким в Солнечной системе перепадам температур. Средняя температура дневной поверхности Меркурия столь высока (350 °С), что на ней могли бы образоваться свинцовые реки (температура плавления свинца 327 °С), в то время как средняя температура ночной поверхности планеты опускается до значений -1 70 °С.

Форма Меркурия близка к сферической. Эта необычная «железная» планета с гигантским железоникелевым ядром, предположительно жидким, обладает магнитным полем, происхождение которого пока не имеет однозначного объяснения. Его форма симметрична и похожа на форму магнитного поля Земли, но напряжённость в 300 раз меньше земного.

Большую часть времени Меркурий расположен к Земле ближе, чем Венера и Марс. В первое десятилетие XXI в. наземные и космические наблюдения планеты позволили учёным сделать много интересных открытий. Но несмотря на это, Меркурий на сегодняшний день всё ещё остаётся наименее изученной планетой земной группы.


Венера

Только две из восьми больших планет Солнечной системы носят женские имена – это Земля и Венера. Отличительным признаком Венеры на звёздном небе является её ровный белый цвет, причём из всех небесных светил ярче Венеры сияют только Луна и Солнце. Своей высокой яркостью планета обязана окружающим её плотным облакам, которые прекрасно отражают солнечный свет.

Венера, как и Меркурий, относится к внутренним планетам, так как её орбита расположена к Солнцу ближе, чем орбита Земли, естественных спутников у неё нет. Она движется практически по круговой орбите в ту же сторону, что и другие планеты, причём орбита у неё самая «круглая» из всех планет Солнечной системы.

Вращается Венера с востока на запад, т. е. в направлении, противоположном направлению вращения Земли и большинства других планет, поэтому Солнце на Венере восходит на западе.

Располагаясь на 41,4 млн. км ближе к светилу, чем Земля, Венера получает тепла и света в два раза больше нашей планеты. Средняя температура венерианской поверхности 460 °С. Это существенно превышает температуру поверхности Меркурия, находящегося вдвое ближе к Солнцу! Причиной столь высокой температуры на Венере является парниковый эффект, создаваемый плотной атмосферой.

Поверхность Венеры скрывается под мощным слоем облаков
Кратеры на поверхности Венеры 

Из всех планет земной группы Венера обладает самой массивной газовой оболочкой: её атмосфера почти в 100 раз массивнее земной. Венерианский воздух на 95% состоит из углекислого газа (СO2) и на 3,5% – из азота, а небо на Венере имеет яркий жёлто-зелёный оттенок. Такое большое количество СO2 объясняется тем, что (в отличие от нашей планеты) на Венере нет растений или какой-нибудь другой органической жизни, которая могла бы его перерабатывать.

Древние извержения вулканов на Венере привели к тому, что в её атмосфере содержится большое количество серы, и венерианские облака в основном состоят из капелек концентрированной серной кислоты (H2SO4).

Из-за того что поверхность планеты скрывается под толстым слоем очень густых облаков серной кислоты, которые хорошо отражают видимый свет, в видимом диапазоне её нельзя рассмотреть даже с орбиты искусственного спутника. Однако эти облака пропускают радиоволны, поэтому исследование поверхности Венеры стало возможным с развитием радиолокационных методов.

Глубина облачного покрова в некоторых местах достигает 50 км, и поскольку венерианская атмосфера намного мощнее нашей, то азота в ней, например, по массе в 5 раз больше, чем в атмосфере Земли.

У самой поверхности атмосфера Венеры практически неподвижна, но на высотах порядка 60 км дуют постоянные ураганные ветры, скорость которых достигает 100 м/с и быстро уменьшается с увеличением высоты. Вращение облачного слоя происходит в туже сторону, что и вращение планеты (с востока на запад), и ветер огибает её за 4–5 земных суток.

Давление у поверхности планеты превышает 90 атм (как в толще моря на глубине около 1 км). Сочетание сверхвысоких давления и температуры приводит к тому, что основные компоненты венерианской атмосферы – углекислый газ и азот – пребывают в таком плотном состоянии, что почти не отличаются от жидкости.


Земля

Земля как одна из планет Солнечной системы на первый взгляд ничем не примечательна. Это не самая большая, но и не самая малая из планет. Она не ближе других к Солнцу, но и не обитает на периферии планетной системы. И всё же Земля обладает одной уникальной особенностью – на ней есть жизнь. Однако при взгляде на Землю из космоса это незаметно. Хорошо видны облака, плавающие в атмосфере. Сквозь просветы в них различимы материки. Большая же часть Земли покрыта океанами.

Появление живого вещества на нашей планете – следствие её эволюции. В свою очередь биосфера оказала значительное влияние на весь дальнейший ход природных процессов. Так, не будь жизни на Земле, химический состав её атмосферы был бы совершенно иным.

Непросто «заглянуть» в недра Земли. Даже самые глубокие скважины на суше едва преодолевают 10-километровый рубеж, а под водой удаётся, пройдя осадочный чехол, проникнуть в базальтовый фундамент не более чем на 1,5 км. Однако нашёлся другой способ. Как в медицине ультразвуковое исследование (УЗИ) позволяет увидеть внутренние органы человека, так при исследовании недр планеты на помощь приходят сейсмические волны. Скорость сейсмических волн зависит от плотности и упругих свойств горных пород, через которые они проходят. Более того, они отражаются от границ между пластами пород разного типа и преломляются на этих границах.

Земля – единственная планета Солнечной системы, на которой существует жизнь
Внутреннее строение Земли

По записям колебаний земной поверхности при землетрясениях – сейсмограммам – было установлено, что недра Земли состоят из трёх основных частей: коры, оболочки (мантии) и ядра. Кора отделяется от оболочки отчётливой границей, на которой скачкообразно возрастают скорости сейсмических волн, что вызвано резким повышением плотности вещества. Толщина коры непостоянна, она изменяется от нескольких километров в океанических областях до нескольких десятков километров в горных районах материков. Мантия, расположенная под земной корой, простирается до глубины примерно 2900 км и имеет сложное строение.

Ещё в XIX столетии стало ясно, что у Земли должно быть плотное ядро, а в начале XX в. были получены первые сейсмологические свидетельства его существования. Если плотность наружных пород земной коры составляет около 2,8 г/м3 для гранитов и примерно 3 г/м3 для базальтов, то средняя плотность нашей планеты – 5,51 г/м3.

В то же время существуют железные метеориты со средней плотностью 7,85 г/м3 и возможна ещё более значительная концентрация железа. Это послужило основанием для гипотезы о железном ядре Земли. Ядро состоит из двух частей – внешней жидкой и внутренней твёрдой. Переходная зона между жидким и твёрдым ядрами довольно тонкая – около 5 км. Чем глубже мы будем проникать в недра Земли, тем выше будут давление и температура. В ядре Земли давление превышает 3600 кбар, а температура – 6000 °С.

О высокой температуре земных недр учёные догадывались давно. Об этом свидетельствовали и вулканические извержения, и рост температуры при погружении в глубокие шахты.

* * *

Луна

Луна – самый яркий объект на небе после Солнца, а ночью ей и вовсе нет равных среди светил. Это единственный естественный спутник Земли, а также первое и единственное в настоящий момент внеземное небесное тело, на котором побывал человек. Пара Земля – Луна в Солнечной системе смотрится довольно странно. Луна – пятый по величине естественный спутник в Солнечной системе, её масса всего в 81,3 раза меньше земной. Это необычайно высокое соотношение масс для спутника и планеты в Солнечной системе, выше только у пары Плутон-Харон, но Плутон – карликовая планета.

Путь Луны вокруг Земли – не эллипс, а медленно раскручивающаяся спираль, о чем говорил ещё в начале XIX в. один из авторов «небулярной гипотезы» происхождения Солнечной системы великий французский ученый Пьер Симон Лаплас. Луна удаляется от Земли со скоростью около 4 см в год, и в далеком прошлом она была гораздо ближе к нам, чем сейчас. Объясняется этот эффект взаимным притяжением Луны и Земли, которое тормозит вращение Земли, вызывает приливы и отливы и синхронизирует вращение Луны вокруг своей оси с её обращением вокруг Земли, так что Луна всегда обращена к Земле одним своим полушарием.

Лунная поверхность состоит из относительно ровных тёмных участков – «морей» и более светлых гористых участков – «материков» (или «земель»). Моря представляют собой гигантскиеударные кратеры, заполненные застывшей базальтовой лавой.

Французские астрономы изучили сравнительный возраст и распределение 48 лунных кратеров, образованных ударами астероидов. Они пришли к заключению, что миллиарды лет назад Луна была повёрнута к Земле стороной, которая сейчас является «обратной», и в то время она была лучше защищена от ударов метеоритов. А в нынешнее положение Луну развернул произошедший 3,9 млрд. лет назад удар крупного астероида, после которого на поверхности спутника осталось самое глубокое лунное море – Море Смита.

Почти вся поверхность Луны покрыта толстым слоем спёкшегося вещества – реголита, который представляет собой мелко раздробленные лунные породы, образующие как бы слежавшуюся губчатую массу. Лунные породы дробились в основном за счёт резких перепадов температуры при смене дня и ночи, а также в результате множества ударов небольших метеоритов. Средний диаметр зёрен реголита менее 1 мм, но встречается и значительное количество обломков более крупного размера. Лунный грунт поглощает больше 90% солнечного света и сильно рассеивает всё, что не удалось поглотить. Рассеянный реголитом солнечный свет и образует характерное для Луны серебристое сияние.

Из-за малой массы Луна не может удержать своим притяжением мощную атмосферу. Днём концентрация свободных частиц у поверхности несколько возрастает, так как лунный грунт при нагревании выделяет газ, но всё равно и дневная, и ночная концентрации соответствуют вакууму. Как следствие лунная поверхность не защищена от непосредственного воздействия солнечного электромагнитного излучения, ударов частиц солнечного ветра и метеоритов, а также от резких перепадов температуры: днём она в среднем разогревается до 107 ºС, а ночью охлаждается до -153 ºС.

Видимая поверхность Луны

    Ваша оценка произведения:

Популярные книги за неделю