355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Иванов » Астероидно-кометная опасность: вчера, сегодня, завтра » Текст книги (страница 8)
Астероидно-кометная опасность: вчера, сегодня, завтра
  • Текст добавлен: 9 октября 2016, 05:05

Текст книги "Астероидно-кометная опасность: вчера, сегодня, завтра"


Автор книги: Борис Иванов


Соавторы: Юрий Медведев,Леонид Соколов,Владимир Светцов,Андрей Витязев,Вадим Поль,Лидия Рыхлова,Нелли Куликова,Виктор Шор,Дмитрий Глазачев,Сергей Барабанов
сообщить о нарушении

Текущая страница: 8 (всего у книги 35 страниц) [доступный отрывок для чтения: 13 страниц]

3.11. Показатели цвета астероидов

Различные приемники излучения, в том числе человеческий глаз, обладают различной чувствительностью к лучам различных длин волн. Человеческий глаз наиболее чувствителен к желтым и зеленым лучам, в то время как несенсибилизированная фотопластинка наиболее чувствительна к лучам синей и фиолетовой части спектра. Поэтому одно и то же светило в зависимости от цвета по-разному воспринимается глазом и фотопластинкой. Два светила различного цвета, воспринимаемые глазом как имеющие одинаковый блеск, на фотопластинке оставляют различные изображения. Чтобы иметь возможность сравнивать между собой оценки блеска светил, получаемые с помощью разных приемников излучений, в астрономии строятся фотометрические системы, характеризующиеся набором спектральных полос и их шириной. Единственной употребляемой в настоящее время для астероидов фотометрической системой является система UBV, разработанная Х. Джонсоном и У. Морганом [Johnson, 1955]. Эта система включает три основные полосы спектра: полосу U (ультрафиолетовая, эффективная длина волны 0,365 мкм, ширина 0,068 мкм), B (синяя, эффективная длина волны 0,440 мкм, ширина 0,098 мкм) и V (визуальная, эффективная длина волны 0,550 мкм, ширина полосы 0,089 мкм). Иногда их дополняют полосами в красной R и инфракрасной IR областях спектра. Напомним, что человеческий глаз воспринимает свет в интервале длин волн приблизительно от 0,4 до 0,7 мкм при максимуме чувствительности около 0,550 мкм. Отметим также, что звездные величины светил в различных полосах системы UBV принято обозначать теми же буквами, которые используются для обозначения полосы.

На практике фотометрическая шкала UBV может быть достаточно просто реализована с помощью системы фильтров, имеющих соответствующие полосы пропускания света.

Показателями цвета (колор-индексами) светил называют величины B-V и U-B, т. е. разности между звездными величинами светила в разных участках спектра. Показатели цвета могут служить характеристикой распределения энергии в спектре светила. Нуль-пункт фотометрической шкалы UBV подобран таким образом, чтобы для звезд спектрального класса A0 значения колор-индексов U-B и B-V были равны нулю. Для бело-голубых звезд спектральных классов O и B колор-индексы отрицательны, так как максимум излучения этих звезд смещен к ультрафиолетовому участку спектра и их звездные величины в лучах U меньше, чем в лучах B, а в лучах B меньше, чем в лучах V. Колор-индексы звезд спектральных классов F, G, K, M, более холодных, чем звезды класса A, положительны. Солнце (спекральный класс G2) имеет колор-индексы U-B = +0,10 и B-V = +0,63 [Герелс, 1974].

Если бы поверхности астероидов были абсолютно белыми, то их колор-индексы не отличались бы от солнечных. На самом деле это не так. Тщательное определение колор-индексов астероидов показывает, что значения B-V лежат в пределах приблизительно от +0,6 до +0,95 звездной величины, а значения U-V лежат в пределах от +0,7 до +1,5 звездной величины (для Солнца U-V = +0,73). Таким образом, поверхности астероидов отличаются по своему цвету. Сопоставление колор-индексов астероидов с альбедо их поверхностей показывает, что между теми и другими существует определенная корреляция, которая может быть использована для их классификации.

На рис. 3.25 и 3.26 хорошо заметно, что распределение колор-индексов, как и распределение альбедо, имеет бимодальный характер. Одна группа «красноватых» астероидов, концентрирующаяся вверху справа, имеет большие значения колор-индексов и сравнительно большие альбедо. Другая группа астероидов внизу слева имеет существенно меньшие значения колор-индексов и небольшие по величине альбедо. Эта корреляция позволяет путем достаточно легко выполняемого определения колор-индекса астероида получить некоторое представление о его альбедо и, следовательно, о его фотометрическом диаметре (если определены элементы орбиты и произведена оценка абсолютной звездной величины астероида). Кроме того, знание колор-индекса, как это будет видно в дальнейшем, позволяет сделать предварительное заключение о вероятном минералогическом и композиционном составе астероида.


Рис. 3.25. Зависимость альбедо от показателя цвета B-V [Veeder and Tedesco, 1992]


Рис. 3.26. Зависимость альбедо от показателя цвета U-V [Veeder and Tedesco, 1992]

Добавим, что колор-индексы АСЗ в среднем весьма близки к их значениям для астероидов Главного пояса. Так, среднее значение U-B для АСЗ равно 0,445 ± 0,013, а B-V = 0,856 ± 0,013, тогда как для астероидов Главного пояса соответствующие значения равны 0,453 ± 0,008 и 0,859 ± 0,006 [Binzel et al., 2002].

3.12. Физическая классификация астероидов

До 70-х годов XX в. мало что было известно о физических свойствах и минералогическом составе астероидов. Предположение о том, что метеориты являются осколками астероидов, не было в достаточной мере подкреплено наблюдательными данными. Положение стало меняться, когда в конце 60-х годов были разработаны и стали применяться на практике поляриметрический и радиометрический методы определения альбедо астероидов. Очень скоро выяснилось, что альбедо различных астероидов варьируется в широких пределах – от нескольких до многих десятков процентов, и потому может являться важным индикатором различий между объектами. Кроме того, когда были сопоставлены альбедо десятков астероидов, стало ясно, что распределение астероидов по величине альбедо имеет бимодальный характер: достаточно четко просматривалось наличие двух групп астероидов – темных, со значениями альбедо, группирующимися около 0,03–0,05, и светлых, с средним значением альбедо около 0,15, при явном недостатке или, как сначала казалось, полном отсутствии значений альбедо около 0,1 (рис. 3.17). Имеющиеся для многих астероидов значения колор-индексов также указывали на наличие двух групп астероидов.

Первая физическая классификация (таксономия) астероидов отражала эту бимодальность распределения. Как уже указывалось в разделе 3.8, астероиды с низкими альбедо были отнесены к классу углистых, или С-астероидов, поскольку наиболее вероятным веществом, обеспечивающим их низкое альбедо, является углерод, обильно представленный в метеоритах – углистых хондритах. Астероиды с высоким альбедо были отнесены к широкому классу каменных астероидов, получивших обозначение S (от «stony» – каменный). Объекты, которые не вписывались в эту классификацию, первоначально получили обозначение U (от «unclassified» – неклассифицируемые).

Большую роль в дальнейшей классификации астероидов сыграло изучение их спектральной отражательной способности, т. е. изменения альбедо в зависимости от длины волны света. Альбедо различных веществ, в том числе альбедо поверхностных слоев астероидов, зависит от длины волны света. Сравнивая лучистую энергию, падающую на поверхность в определенном диапазоне длин волн, с отраженной энергией в данном диапазоне (фактически, с блеском), можно определить альбедо как функцию длины волны. Практически измерение альбедо в различных участках спектра до середины 80-х годов XX в. проводилось с помощью системы более или менее узкополосных фильтров (в настоящее время с этой целью используется комбинация спектрографа и ПЗС-приемника излучения; см. ниже). Плавная кривая, соединяющая найденные значения альбедо в различных участках спектра, представляет собой кривую спектральной отражательной способности.

Теоретические соображения и эксперименты с различными образцами метеоритного вещества, чистыми минералами и их смесями показывают, что форма кривой и величина альбедо в различных участках спектра могут характеризовать состав и состояние поверхностных слоев астероидов. Для ряда распространенных в метеоритах минералов, таких как пироксен и оливин, характерные особенности кривых (полосы поглощения) лежат близко к красному концу видимого спектра или в ближней инфракрасной области. Поэтому важно было распространить исследование отражательной способности астероидов на красную и инфракрасную области, которые не охватывались стандартной UBV – фотометрией. В работе [Chapman and Gaffey, 1979] были изучены спектры почти трехсот астероидов, полученные с помощью большого числа (до 25) светофильтров, покрывающих диапазон длин волн от 0,3 до 1,1 мкм. В дальнейшем спектральные кривые были получены для почти шестисот астероидов с помощью восьми более широкополосных фильтров, покрывающих тот же диапазон длин волн [Zellner et al., 1985]. Эти работы послужили основой для разработки наиболее употребительной таксономии астероидов по Толену [Tholen, 1984].

Толен подразделил совокупность исследованных астероидов на 14 классов (некоторые из них появились ранее в работах других исследователей) в соответствии с характерными особенностями кривых спектральной отражательной способности и значением визуального альбедо. Возможная интерпретация спектров при этом не учитывалась. Принадлежность астероидов к одному классу не предполагает обязательного сходства их минералогического состава. Вместе с тем, как оказалось, классификация по Толену отражает некоторые важные минералогические особенности астероидов и их термическую историю.

На рис. 3.27 приведены усредненные отражательные спектры астероидов 14 классов, каждый из которых обозначен одной буквой. Спектральная кривая, обозначенная как ЕМР, является общей для трех классов Е, М и Р. Эти три класса различаются характерными для них значениями альбедо. В тех случаях, когда информация о величине альбедо отсутствует, все три класса объединяются в таксономии по Толену в один класс X. В некоторых случаях, когда тот или иной астероид бывает затруднительно отнести к определенному классу, допускается использование для его характеристики нескольких букв, чтобы указать наличие черт, характерных для соответствующих классов.

Еще с 70-х годов XX в. известно, что вид астероидных спектров в видимой области определяется тремя основными чертами: 1) наличием более или менее глубокой полосы поглощения в области, близкой к ультрафиолетовому концу спектра, обусловленной взаимодействием фотонов с ионами железа Fe2+ в кристаллической решетке вещества поверхностных слоев астероидов; 2) общим наклоном спектральной кривой в области 0,55 мкм и далее с увеличением длины волны света; наклон (подъем к красному концу спектра) или его отсутствие обусловлены наличием или отсутствием вещества, вызывающего покраснение спектра; в качестве такого вещества могут выступать металлы (Fе, Ni) или органические соединения; 3) присутствием или отсутствием полосы поглощения, обусловленной силикатами, в области от 0,7 мкм и более с минимумом обычно около 1 мкм. Все три характерные особенности спектров легко просматриваются на рис. 3.28 а. Более детальное описание таксономии по Толену содержится в табл. 3.7, заимствованной из работы [Lupishko and Di Martino, 1998]. В последней графе таблицы указываются возможные метеоритные аналоги для астероидов каждого класса. Заметим, что класс К, отсутствовавший в оригинальной работе Толена, был введен Беллом [Bell, 1988] специально для описания астероидов семейства Эос.


Рис. 3.27. Усредненные отражательные cпектры астероидов различных классов [Tholen and Barucci, 1989]


Рис. 3.28. Относительное обилие астероидов различных классов (а) и суперклассов (б) в зависимости от большой полуоси орбиты a [Bell et al., 1989]


Таблица 3.7. Классификация (таксономические классы) астероидов и метеоритные аналоги

В числе метеоритных аналогов различных классов астероидов в табл. 3.7 встречаются представители всех трех типов метеоритов: железных, состоящих в основном из железоникелевого сплава с небольшой примесью иного вещества, железокаменных, состоящих в среднем на 50 % из никелистого железа и на 50 % из силикатных минералов, и каменных, состоящих в основном из силикатных минералов с примесью никелистого железа. Минералы оливин (Mg,Fe)2SiO4 и ортопироксен (Mg,Fe)SiO3 – наиболее распространенные в метеоритах силикатные минералы, присутствующие в различных пропорциях в метеоритах почти всех типов.

Обыкновенные хондриты, углистые хондриты, базальтовые и энстатитовые ахондриты, обриты – это различные типы каменных метеоритов. Хондриты отличаются от ахондритов составом и структурой. Характерной особенностью структуры хондритов являются содержащиеся в них округлые зерна вещества – хондры, размером от долей миллиметра до долей сантиметра. По своему химическому составу хондриты гораздо ближе к химическому составу Солнца по сравнению с земной корой. Вероятно, хондриты не прошли через стадию химической дифференциации вещества, которая на Земле обеспечивалась процессами плавления, выветривания, отложения осадков и т. п.

Углистые хондриты отличаются малым удельным весом, рыхлостью, присутствием в них гидратированных минералов и органических соединений. Состав углистых хондритов близок к тому, который можно ожидать у продукта конденсации первичного околосолнечного вещества.

Ахондриты – это каменные метеориты, не содержащие в своей структуре хондр. По своему составу они сходны с земными изверженными породами, не содержащими никелистого железа.

Минералогический состав большинства выпадающих на Землю метеоритов свидетельствует о том, что они сформировались в недрах достаточно крупных тел, с характерными размерами от нескольких десятков до сотен километров. Вещество различных типов метеоритов может быть подразделено на три широких класса:

• примитивное вещество, наиболее близкое по составу к предполагаемому составу протопланетного вещества, не претерпевшее высокотемпературной диссоциации;

• вещество, подвергшееся нагреву до нескольких сотен градусов и претерпевшее при этом метаморфизм;

• вещество, подвергшееся полному или частичному плавлению, которое привело к разделению его на фракции.

Астероиды, принадлежащие к различным классам, также могут быть подразделены на три большие группы (суперклассы) [Bell et al., 1989], которые соответствуют указанному выше подразделению метеоритного вещества по степени его температурного метаморфизма. При этом астероиды, принадлежащие классам D, Р и С, состоят из наиболее примитивного вещества. Астероиды, входящие в классы Т, В, G и F, образуют группу тел, подвергшихся умеренному нагреванию. Наконец, астероиды, классифицируемые как V, R, S, А, М и Е, образуют группу с наиболее дифференцированным веществом, претерпевшим ту или иную степень расплавления. В частности, астероиды, относящиеся к классу V (один из крупнейших астероидов – Веста, и ряд небольших по размеру АСЗ), имеют состав поверхностных слоев, идентичный составу базальтовых ахондритов, являющихся продуктом высокотемпературного плавления.

В табл. 3.7 указанное подразделение астероидов на суперклассы с некоторыми вариациями соответствует переходу от верхней части таблицы к ее середине и затем к нижней части.

Наличие аналогии между различными классами астероидов и классами/типами метеоритов не означает, что эта аналогия не имеет противоречий. Достаточно сказать, что наиболее распространенный тип метеоритов – обыкновенные хондриты – являются аналогом редкого класса астероидов Q, который встречается только среди АСЗ. Некоторые классы астероидов, такие как примитивные классы P и D, вообще не имеют аналогов среди метеоритов. Дело, очевидно, в том, что падающие на Землю метеориты не являются «репрезентативной выборкой» вещества астероидов. Как будет отмечено чуть позже, АСЗ также обнаруживают специфические особенности классификации по сравнению с астероидами Главного пояса.

Пожалуй, наиболее замечательным результатом классификации астероидов является обнаружение зависимости частоты встречаемости различных классов от большой полуоси орбиты, или среднего расстояния астероида от Солнца. Так, астероиды класса Е во много раз чаще встречаются вблизи внутреннего края Главного пояса, на расстояниях около 1,9 а.е. от Солнца, чем в районе внешнего края пояса, на расстояниях около 3 а.е. Пик встречаемости астероидов класса S приходится на 2,2–2,3 а.е., класс С многочисленнее всего на внешнем краю Главного пояса, а примитивные классы P и D обильнее всего представлены соответственно астероидами группы Гильды и троянцами (рис. 3.28 а).

На рис. 3.28 б отчетливо видно, что распределение астероидов между суперклассами примитивных, метаморфных и вулканических четко коррелирует со значением большой полуоси орбиты a (некоторой характеристикой расстояния от Солнца): вулканические преобладают на внутреннем краю пояса, в то время как примитивные – на внешнем, а метаморфные представлены в зоне от 2,0 до 4,0 а.е. Это наводит на мысль, что разогрев вещества астероидов, который обеспечил выплавку железоникелевой фракции и ахондритного вещества, быстро убывал с расстоянием от Солнца. Известно два сценария для обеспечения эффективного разогрева планетезималей на ранней стадии формирования Солнечной системы. Первый из них – это радиоактивный распад короткоживущего изотопа алюминия 26Al. Этот сценарий может обеспечить наблюдаемое соотношение астероидов различных классов, если процесс формирования планетезималей начался вблизи Солнца и быстро распространился до орбиты Юпитера за время, сравнимое с периодом полураспада 26Al (720 000 лет). Правда, для этого требуется, чтобы протопланетное облако непосредственно перед началом формирования планетезималей было обогащено короткоживущим изотопом алюминия (взрыв сверхновой?). Другой сценарий – это магнитно-индукционный разогрев планетезималей потоками заряженных частиц, выбрасываемых Солнцем во время прохождения им ранней стадии развития.

Так или иначе, несмотря на имевшее место перемешивание вещества в Главном поясе астероидов, в нем до сих пор сохранились свидетельства неоднородности физико-химических условий, существовавших в первичном протопланетном облаке и внутри формирующихся малых тел на начальной стадии образования Солнечной системы. При этом достаточно отчетливо прослеживается связь между температурным метаморфизмом вещества малых тел и их расстоянием от Солнца.

Хотя было сделано несколько попыток расширения и усовершенствования описанной выше таксономии астероидов, она до сих пор остается наиболее употребительным стандартом. Таксономия по Толену, как и ряд других таксономий, основывается на классификации спектральных кривых астероидов, полученных с помощью некоторого числа светофильтров. Но уже с середины восьмидесятых годов XX в. стала развиваться новая техника получения и измерения спектров астероидов при помощи щелевых спектрографов. Разложение пучка света в спектр в таких спектрографах осуществляется с помощью дифракционной решетки или комбинации решетки и призмы. Получаемый спектр направляется на ПЗС-матрицу, где он распределяется на большое число пикселов. Результирующая кривая интенсивности сравнивается с аналогичной кривой, полученной для звезды того же самого или близкого спектрального класса, что и Солнце. Описанный в самых общих чертах метод позволяет построить кривую, показывающую отношение интенсивностей падающего и отраженного потоков излучения в зависимости от длины волны, т. е. кривую спектральной отражательной способности.

Эта технология обладает рядом очевидных преимуществ по сравнению с использованием светофильтров: она позволяет получать спектры со значительно большим разрешением и притом для существенно более слабых объектов. Технология позволяет одновременно измерять спектр астероида и ночного неба и затем вводить коррекцию за вариацию атмосферных условий. Поскольку экспозиция длится относительно короткий промежуток времени, практически исключается неопределенность, связанная с возможным изменением цветовых характеристик астероида при его вращении.

Указанным способом к настоящему времени получены спектры порядка 3000 астероидов [Bus and Binzel, 2002a, b]. В работе [Bus and Binzel, 2002a] единым образом получены спектры 1447 астероидов. Это позволило авторам предложить новую таксономию астероидов, которая полностью основывается на анализе их спектров [Bus and Binzel, 2002b]. Благодаря большому разрешению и обилию спектров был подмечен ряд их особенностей, которые оставались не выявленными в предшествующих работах. Анализ почти полутора тысяч спектров обнаружил отсутствие резко выраженных линий разделов между различными типами спектральных кривых, за исключением одного случая. Тем не менее, для сохранения преемственности с устоявшимися представлениями было решено в основном сохранить структуру таксономии по Толену, расширив и подразделив ее на более мелкие составляющие, где это было возможно и необходимо.

Всего в новой таксономии содержится уже 26 классов. Тринадцать классов имеют однобуквенные обозначения: А, В, С, D, К, L, О, Q, R, S, Т, V и X. При этом классы А, В, D, Q, R, Т и V совпадают с классами Толена. Класс К был введен еще Беллом [Bell, 1988]. Класс О – абсолютно новый с четырьмя известными членами. Два новых класса L и S выделены из класса S Толена. Астероиды с промежуточными спектральными свойствами получили многобуквенные обозначения: Сb, Сg, Cgh, Сh, Ld, Sa, Sk, Sl, Sr, Sq, Xc, Xe и Xk. При этом классы X, Xc, Xe и Xk выделены в пределах класса X Толена, который охватывал классы Е, М и Р, если более тонкая дифференциация (по величине альбедо) была невозможна. Классы Сg и Cgh выделены в пределах класса G Толена, классы С и Сh ранее были представлены в классе C. Наконец, наиболее широкий класс S Толена в новой таксономии представлен набором классов L, Ld, S, Sa, Sk, Sl, Sr и Sq.

Из-за того что спектральные характеристики астероидов фактически меняются непрерывным образом и поскольку две таксономии основаны на несколько различающихся принципах, соответствие между классами обеих таксономий не всегда строго выдерживается. Тем не менее, это соответствие отражает преемственность двух таксономий. В то же время новая таксономия дает возможность более точного описания спектральных характеристик астероидов и позволяет глубже проникнуть в минералогию вещества, из которого они сложены. В качестве примера укажем на комплекс X с бесструктурными спектрами в таксономии Толена. Новая технология позволила выявить в спектрах характерные особенности, дающие основание подразделить этот комплекс на четыре класса X, Хc, Хe и Xk, причем в спектрах астероидов типа Хe присутствует полоса поглощения, ассоциируемая с минералом троилитом.

В связи с проблемой астероидной опасности особый интерес представляет таксономия астероидов, сближающихся с Землей. К настоящему времени таксономическая информация имеется для 370 АСЗ и 100 марс-кроссеров (астероидов, заходящих внутрь орбиты Mарса). 252 наблюдения АСЗ и марскроссеров были выполнены по единой методике в ходе спектроскопического обзора малых астероидов, проводившегося в период с 1994 г. по 2002 г. (см. http://smass.mit.edu). Результаты представлены в работе [Binzel et al., 2004]. В ходе обзора были найдены представители 25 из перечисленных выше 26 классов астероидов, содержащихся в таксономии по Басу (рис. 3.29), в том числе и два представителя редкого класса D, который характерен для астероидов внешней части пояса, прежде всего для троянцев и группы Гильды. Почти 90 % исследованных астероидов попадают в широкие комплексы S [S, Sa, Sk, Sl, Sr, K, L, Ld], Q [Q, Sq], X [X, Xc, Xk] и C [B, C, Cb, Сg, Cgh, Сh] (в квадратных скобках указаны классы, входящие в комплексы).

Из рисунка 3.29 видно, что среди АСЗ преобладают светлые астероиды (со сравнительно большими альбедо), относящиеся к комплексам S и Q. Они составляют 2/3 от общего числа АСЗ. Астероиды, принадлежащие к классам с низким альбедо (комплекс С, класс D) оказываются в меньшинстве. В Главном поясе, рассматриваемом как целое, имеет место противоположное соотношение. Быть может, все дело в наблюдательной селекции, которая «работает» в пользу более светлых и потому более заметных астероидов? В работах [Lupishko and Di Martino, 1998; Д. Лупишко, T. Лупишко, 2001] показано, что хотя селекция действительно увеличивает число открытых и классифицированных светлых астероидов, тем не менее, преобладание S-и Q-астероидов среди АСЗ является реальным.


Рис. 3.29. Число астероидов различных таксономических классов в популяции АСЗ [Binzel et al., 2004]. Число астероидов классов S и Sq указано в скобках рядом с обозначением класса. Классификация соответствует работе [Bus and Binzel., 2002b]

Этот вывод нашел подтверждение в работах [Binzel et al., 2002; Stuart and Binzel, 2004]. В них построены исправленные за наблюдательную селекцию распределения астероидов по таксономическим классам, с одной стороны, в Главном поясе, а с другой стороны, для АСЗ. В то время как для АСЗ отношение числа астероидов комплекса C к числу астероидов комплекса S составляет 0,75, в Главном поясе это отношение равно 1,8. Естественное объяснение этому факту заключается в том, что пополнение популяции АСЗ происходит в основном за счет астероидов, движущихся ближе к внутреннему краю пояса, где соотношение между светлыми и темными астероидами ближе к тому, что имеет место среди АСЗ.

Здесь уместно вновь вернуться к вопросу о том, вещество какого типа астероидов является аналогом обыкновенных хондритов, составляющих примерно 80 % всех метеоритов, наблюдавшихся при падении. По спектральным характеристикам наиболее близки к обыкновенным хондритам астероиды класса Q. Но эти астероиды не представлены в Главном поясе, и даже среди АСЗ их существенно меньше, чем астероидов класса S (отношение их числа равно 80/125). Почему же среди метеоритов доминируют обыкновенные хондриты? В ряде работ было показано, что спектры S-астероидов демонстрируют определенную тенденцию приближения к спектрам Q-астероидов и обыкновенных хондритов по мере уменьшения размеров астероидов. Возможное объяснение этой тенденции заключается в следующем. С уменьшением размеров астероида уменьшается и средняя продолжительность его существования как консолидированного тела до его распада в результате столкновения с другими телами. В результате можно утверждать, что по мере уменьшения размеров исследуемых астероидов наблюдатели имеют дело со все более «молодыми», все более свежими поверхностями. Отсюда вытекает, что указанная выше тенденция может быть вызвана постепенным изменением отражательных свойств S-астероидов под влиянием «космического выветривания» [Binzel et al., 2002]. Подобное изменение оптических свойств поверхности может происходить в результате осаждения на ней субмикроскопических частиц железа, что ведет по мере их накопления к ее постепенному «покраснению» (сдвигу максимума отражения в сторону более длинных волн). Поскольку столкновения являются случайным процессом, то не все малые тела одного размера имеют поверхности одинакового возраста. Зависимость оптических свойств от размера может проявляться только как тенденция. В работе [Binzel et al., 2004] показано, что по мере перехода от стометровых тел к телам пятикилометрового размера действительно статистически наблюдаются подобные изменения, которые соответствуют переходу от Q-астероидов к S-астероидам. Тем самым открывается путь к объяснению связи обыкновенных хондритов с наиболее распространенным на внутреннем крае пояса и среди АСЗ классом астероидов.

Другим веским подтверждением этой связи явились результаты исследования достаточно типичного S-астероида (433) Eros с помощью космического аппарата NEAR. По данным различных приборов, установленных на аппарате, элементный состав Эроса согласуется с составом обыкновенных хондритов, хотя зафиксирован недостаток серы. Вещество Эроса может быть подобным обыкновенным хондритам, хотя отнести его состав к определенной петрологической группе не удается [Chang, 2002].

В разделе 3.7 указывалось, что существуют вполне определенные динамические пути переноса вещества астероидов и комет из области Главного пояса в область движения планет земной группы. В работе [Binzel et al., 2004] эта связь между различными областями в поясе астероидов и различными группами АСЗ прослежена с точки зрения их физических свойств и минералогического состава. Так, например, АСЗ типа E происходят из областей вблизи внутреннего края Главного пояса (район группы Венгрии), АСЗ типа С происходят из центральной и внешней частей пояса, АСЗ типа Р – из внешней части пояса. Небольшие по размеру астероиды типа V, встречающиеся почти исключительно среди АСЗ, попали в этот район посредством мощных и «быстродействующих» резонансов ν6 и 3:1, о чем свидетельствует их отсутствие среди марс-кроссеров. Их происхождение, скорее всего, связано с астероидом (4) Веста, имеющим тот же самый таксономический тип. Определенные выводы делаются также относительно вклада комет в популяцию АСЗ. Среди АСЗ типов С, D и Х c низким альбедо преобладают астероиды,

имеющие так называемую постоянную Тиссерана, меньшую или равную 3 (такое значение постоянной может являться результатом гравитационного взаимодействия тела с Юпитером при их тесном сближении; оно характерно для комет семейства Юпитера). По оценкам авторов работы, до 10–18 % популяции АСЗ в пределах любого заданного диаметра могут являться угасшими кометами. Ранее упоминалось, что в работе [Bottke et al., 2002] вклад комет семейства Юпитера в АСЗ оценивался в 6 %. Видимое противоречие с результатами [Binzel et al., 2004] объясняется тем, что в первом случае подсчеты делались в пределах заданной звездной величины. Учет поправки за наблюдательную селекцию делает обе оценки эквивалентными [Lupishko et al., 2007].


    Ваша оценка произведения:

Популярные книги за неделю