355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Иванов » Астероидно-кометная опасность: вчера, сегодня, завтра » Текст книги (страница 7)
Астероидно-кометная опасность: вчера, сегодня, завтра
  • Текст добавлен: 9 октября 2016, 05:05

Текст книги "Астероидно-кометная опасность: вчера, сегодня, завтра"


Автор книги: Борис Иванов


Соавторы: Юрий Медведев,Леонид Соколов,Владимир Светцов,Андрей Витязев,Вадим Поль,Лидия Рыхлова,Нелли Куликова,Виктор Шор,Дмитрий Глазачев,Сергей Барабанов
сообщить о нарушении

Текущая страница: 7 (всего у книги 35 страниц) [доступный отрывок для чтения: 13 страниц]

3.8. Диаметры астероидов

Абсолютная звездная величина H – важная характеристика астероида, которая позволяет оценить его линейные размеры, если найдено или из каких-либо соображений принято значение альбедо. Формула (3.7) связывает диаметр астероида, выраженный в километрах, его абсолютную звездную величину и геометрическое альбедо p. Данная формула позволяет достаточно надежно оценивать диаметры астероидов, имеющих значительные по величине альбедо (более 0,05). При меньших альбедо относительная ошибка может быть весьма большой.

Поскольку альбедо зависит от длины волны света, то в формуле (3.7) предполагается использование альбедо в тех же лучах V, в которых оценивалась звездная величина Солнца и величина H (обозначается как pV).

Для АСЗ усредненное значение альбедо равно 0,14 [Stuart and Binzel, 2004]. Если при данном значении альбедо подставить в формулу (3.7) значение H = 17,75m, то найдем, что данному значению звездной величины отвечает значение диаметра, равное 1 км.

Для оценки фотометрического значения диаметра астероида по его абсолютной звездной величине можно воспользоваться таблицей, опубликованной на сайте Центра малых планет (табл. 3.5). Таблица дает величины диаметров для значений альбедо 0,5, 0,25 и 0,05. Для значений H из левой колонки диаметры приводятся в километрах, для значений H из правой колонки – в метрах (как показывает формула (3.7), значения H, различающиеся на 15 звездных величин, при одном и том же значении альбедо дают значения диаметров, различающиеся ровно в тысячу раз).


Таблица 3.5. Диаметры астероидов в зависимости от их абсолютной звездной величины и принятого значения альбедо

Примечание. Для определения диаметра при данной звездной величине нужно найти звездную величину в левой или правой колонке. В центральных трех колонках будет указан диаметр объекта в километрах, если звездная величина из левой колонки, и в метрах, если из правой.

Если принять для астероидов, как это часто делается, среднее значение альбедо равным 0,13, то минимальные и максимальные значения альбедо для отдельных астероидов могут отличаться от него примерно в пять раз. Формула (3.7) показывает, что предельные значения диаметров при этом могут отличаться от номинального значения, соответствующего среднему значению альбедо, примерно в 2,25 раза.

Формулы типа (3.7) позволяют найти фотометрические, или, иначе говоря, принятые значения диаметров, если известно альбедо, либо определить альбедо, если известен диаметр. Но величина альбедо астероидов почти столь же трудно определяемая величина, как и диаметр.

В конце XIX в. измерения угловых значений диаметров первых четырех астероидов были проведены американским астрономом Э. Барнардом с помощью нитяного микрометра на 90– и 100-см рефракторах Ликской и Йеркской обсерваторий. Эти измерения позволили впервые определить величины диаметров и соответствующие им значения альбедо четырех астероидов (табл. 3.6) [Герелс, 1974].


Таблица 3.6. Измеренные диаметры крупных астероидов и полученные значения альбедо

Однако метод непосредственного измерения диаметров не может быть распространен на другие астероиды в силу малости их диаметров и больших относительных ошибок измерений. В течение длительного времени результаты Барнарда оставались едва ли не единственным источником представлений об альбедо астероидов. Лишь в семидесятые годы XX в. появились новые, перспективные методы определения их диаметров и альбедо – поляриметрический и радиометрический методы.

Поляриметрический метод основан на тесной корреляции, которая, как показал Вайдорн [Widorn, 1967], существует между степенью поляризации света, отражаемого некоторой поверхностью при разных углах фазы, и ее альбедо. Существование корреляции было установлено на основе изучения поляризационных кривых для многочисленных лабораторных образцов. Типичные поляризационные кривые имеют вид, представленный на рис. 3.16.


Рис. 3.16. Поляризационные кривые для ряда астероидов [Dollfus and Zellner, 1979]. Знак +/– соответствует знаку поляризации

На этом рисунке вдоль горизонтальной оси отложены углы фазы, а по вертикальной оси – степень поляризации отраженного света, выраженная в процентах. Степень поляризации P, которая при нулевом угле фазы равна нулю, сначала уменьшается с ростом фазового угла, затем достигает минимального значения и в дальнейшем растет до положительных значений. Как оказалось, ряд характеристик поляризационной кривой, в особенности угол h наклона кривой к горизонтали при смене знака поляризации, весьма чувствителен к величине альбедо и слабо зависит от других характеристик поверхности. Исследования лабораторных образцов позволили калибровать зависимость альбедо от величины угла h. В дальнейшем получение кривых поляризации для нескольких десятков астероидов позволило найти их альбедо и диаметры.

Радиометрический метод определения диаметров и альбедо астероидов основан на сравнении блеска астероидов в видимой области спектра и их теплового излучения в инфракрасной области. Как показывает формула (3.7), для каждого значения абсолютной звездной величины можно найти множество пар значений альбедо и соответствующих значений диаметров, удовлетворяющих этой формуле. Астероид с заданной абсолютной звездной величиной может иметь большое альбедо и малые размеры. Но такой же блеск может быть обеспечен телом с небольшим альбедо, но больших размеров. Разница между ними заключается в том, что тело с большим альбедо отражает большую часть света по сравнению со вторым и, следовательно, его температура будет ниже. Его излучение в инфракрасной области спектра будет меньше. Если выполнено измерение потока тепла от астероида, то возможно найти такие значения альбедо и диаметра, которые, с одной стороны, удовлетворяют формуле (3.7), а с другой, обеспечивают наблюдаемый поток. Метод одновременного определения диаметров и альбедо астероидов, основанный на подобных соображениях, был развит в работах Д. Аллена [Allen, 1971] и Д. Матсона [Matson, 1971]. В дальнейшем он был усовершенствован и широко применялся на практике. С использованием этого метода были определены диаметры и альбедо свыше двухсот астероидов.

Диаметры нескольких десятков астероидов были оценены с высокой точностью на основе наблюдений покрытий звезд этими астероидами [Millis and Dunham, 1989].

В январе 1983 г. на орбиту вокруг Земли был выведен спутник IRAS (In-frared Astronomical Satellite). Основной целью его запуска был обзор неба в четырех полосах инфракрасной области спектра в окрестности длин волн 12, 25, 60 и 100 микрометров. Результаты наблюдений IRAS, касающиеся астероидов, явились наиболее полным набором данных о диаметрах и альбедо этих тел [Matson et al., 1989; Veeder and Tedesco, 1992], хотя они не свободны от систематических ошибок [Лупишко, 1998]. Более поздняя версия обработки данных IRAS содержится в работе [Tedesco et al., 2002].

Данные IRAS охватывают диаметры и альбедо двух тысяч астероидов, причем каждое значение сопровождается оценкой точности найденной величины. Точность определения диаметров колеблется на уровне от 1 % до 10 %.


Рис. 3.17. Распределение альбедо астероидов крупнее 40 км [Veeder and Tedesco, 1992]

Данные IRAS, прежде всего, подтвердили известный ранее результат, что распределение альбедо астероидов является бимодальным.

Как видно из рис. 3.17, имеется два максимума распределения альбедо: один – в окрестности альбедо, равного 0,05, другой – в окрестности значения 0,2. В области больших диаметров (бо́льших 40 км) очень мало астероидов с альбедо около 0,1, но в области малых диаметров бимодальность не наблюдается. В области больших диаметров число астероидов с альбедо менее 0,1 почти в три раза превышает число астероидов с альбедо более 0,1. О распределении альбедо у АСЗ будет сказано в дальнейшем.

Бимодальность распределения альбедо указывает на то, что в поясе астероидов имеется по крайней мере две группы астероидов с резко отличными оптическими свойствами поверхностных слоев. Астероиды с альбедо меньше 0,03 отражают столь мало света, что единственным подходящим веществом, обеспечивающим столь сильное поглощение, оказывается углерод. Эти соображения дают основание для выделения обширного класса астероидов, получивших название углистых, или С-астероидов. Другой обширный класс астероидов с высокими альбедо получил наименование каменных, или S-астероидов (см. раздел 3.14).

3.9. Массы и плотности астероидов

Поскольку энергия, выделяющаяся при столкновении тела с Землей, пропорциональна массе тела, получение оценки массы является необходимым элементом оценивания угрозы со стороны каждого потенциально опасного тела.

Масса m, объем v и средняя плотность ρ связаны соотношением

m = vρ.

Если предположить, что астероид имеет сферическую форму, то

m = (π/6)D3ρ, (3.8)

где D – диаметр астероида.

На практике три величины m, D и ρ могут определяться как независимо друг от друга, так и с привлечением данных о двух других параметрах. Сравнение по-разному найденных значений позволяет контролировать различные методы и полученные оценки и определять для каждого астероида согласованный набор этих параметров.

Методы получения оценки массы астероидов можно условно разделить на динамический и астрофизический (или физический).

Динамический метод основан на анализе отклонений, вызываемых притягивающей массой тела в движении других небесных тел (больших или малых планет, космических аппаратов). Эти отклонения могут быть найдены либо из позиционных оптических или радиолокационных наблюдений возмущаемых тел, либо из радиотехнических измерений движения космических аппаратов, проходящих в непосредственной близости от возмущающей массы. Чтобы получить надежную оценку массы, наблюдения должны быть достаточно точными, а оцениваемая масса должна вызывать отклонения в движении тел, заметным образом превосходящие точность наблюдений. Как показывает опыт последних десятилетий, массы только самых крупных астероидов (в лучшем случае нескольких десятков) могут быть найдены из анализа современных позиционных наблюдений. Массы наименьших из этих астероидов оцениваются с ошибками, лишь немного меньшими самих оцениваемых величин.

Сближения космических аппаратов с астероидами представляют прекрасную возможность для определения их масс, но они пока редки и не могут обеспечить точные значения масс для большого числа тел. Этим путем были получены оценки масс астероидов Главного пояса (253) Mathilde и (433) Eros.

К динамическому способу определения массы для двойных астероидов следует отнести также использование третьего закона Кеплера, который в применении к спутниковой системе записывается в виде:

a3n2 = k2(m0 + m),

где a – большая полуось орбиты спутника относительно главного компонента, выраженная в а.е., n – среднее движение спутника в радианах в сутки, m0 и m – соответственно масса главного компонента и масса спутника, выраженные в долях массы Солнца, k – постоянная Гаусса.

Эта формула может быть применена для определения массы двойного астероида, если известны большая полуось орбиты спутника и период его обращения вокруг главного компонента. Таким путем была оценена, например, масса астероида (243) Ida.

Большая полуось и период обращения спутника могут быть получены из анализа световых кривых двойных астероидов. Например, для АСЗ 1996 F G3 были найдены значения суммарной массы, диаметров компонентов и, в результате, значение общей средней плотности компонентов, которая оказалась равной 1,005 ± 0,008 г/см3 [Железнов, 2002]. Тело с такой средней плотностью может быть фрагментом кометного ядра или же представлять собой «rubble pile» – рыхлое тело, сложенное из отдельных фрагментов с многочисленными пустотами между ними, возникшее в результате фрагментации и последующей аккреции.

Физический способ получения оценки массы астероидов состоит в вычислении массы по формуле (3.8) на основе знания его средней плотности и диаметра. Самые первые оценки масс астероидов были сделаны в предположении, что их плотность близка к средней плотности Земли или же к средней плотности метеоритного вещества, а в качестве диаметров использовались результаты микрометрических измерений. В дальнейшем появилась возможность использовать более точные значения диаметров, определенные поляриметрическим или радиометрическим методом, а при определении средней плотности астероида использовать его таксономический класс (см. раздел 3.14) и плотности предполагаемых метеоритных аналогов.

3.10. Вращение астероидов

Помимо вариации блеска, связанной с изменением расстояний от Солнца, Земли и угла фазы, все астероиды обнаруживают колебания блеска большей или меньшей амплитуды, в большинстве случаев с периодами от нескольких часов до одних суток. Соответствующий график изменения блеска называется световой кривой или кривой блеска (рис. 3.18)


Рис. 3.18. а) Изменения видимого блеска астероида (1173) Anchises. Наблюдения, выполненные 2–3 июля, 3–4 июля, 4–5 июля и 9–10 июля 1986 г., обозначены разными символами. Вертикальными черточками различной длины показаны вероятные ошибки наблюдений. б) Световая кривая (1173) Anchises, приведенная к единичным расстояниям от Солнца и Земли и нулевому углу фазы [French, 1987]

Обычно невозможно пронаблюдать весь цикл изменения блеска астероида в течение одной ночи, но в этом нет необходимости. На график наносятся точки, полученные в разные ночи, и по ним строится световая кривая. Если при этом периоды наблюдений разделены достаточно продолжительными интервалами времени, то при построении световой кривой учитывается изменение блеска, связанное с вариацией взаимных расстояний и взаимных положений Солнца, Земли и астероида за время между сериями наблюдений [Harris and Lupishko, 1989]. Световая кривая, полученная таким образом, называется композиционной (рис. 3.18 б) [French, 1987].

Характерной особенностью световых кривых астероидов является наличие двух максимумов и двух минимумов за период, причем очень часто оба максимума и оба минимума различаются по величине. Световые кривые некоторых астероидов имеют аномальное число экстремумов. Амплитуда колебаний блеска для разных астероидов меняется в пределах от нескольких сотых долей звездной величины ((1) Ceres) до двух звездных величин ((1628) Geographos, (1865) Cerberus). Причиной короткопериодических колебаний блеска является вращение астероида вокруг оси, проходящей через центр инерции тела. При этом изменяется видимая с Земли часть поверхности астероида и, возможно, альбедо видимой части. Последнее, правда, не играет заметной роли, как о том свидетельствует постоянство цветовых характеристик при вращении астероидов.

То, что вращение громадного большинства астероидов совершается вокруг единственной оси, сохраняющей свое направление в пространстве, подтверждается наблюдениями: световые кривые, как правило, являются строго периодическими с единственным и притом неизменным периодом. Такие кривые соответствуют вращению астероидов вокруг оси наибольшего момента инерции тела. Если представить фигуру астероида в виде трехосного эллипсоида, то вращение происходит вокруг его самой короткой главной оси. При отсутствии сил, не проходящих через центр инерции астероида, такой характер вращения может продолжаться произвольно долго. Если в результате нецентрального столкновения с другим телом ось вращения астероида будет выведена из этого состояния, движение астероида относительно его центра инерции приобретет характер кувыркания: ось вращения с течением времени не сохраняет свое положение в теле астероида и в зависимости от его формы (эллипсоида инерции) и величины полученного импульса перемещается более или менее сложным образом. Наблюдатель отмечает, что кривая блеска меняется сложным образом в соответствии с изменениями ориентации оси вращения. Такое вращение астероида сопряжено с постоянным изменением центробежных сил и сил сцепления между частицами вещества, что приводит для неупругого тела к потере энергии вращения и постепенному возвращению к состоянию вращения вокруг оси наибольшего момента инерции. В работе [Burns and Safronov, 1973] было показано, что процесс затухания сложного вращения астероидов протекает весьма быстро и практически все астероиды должны наблюдаться в состоянии вращения вокруг оси наибольшего момента инерции. Впоследствии А. Харрис пересмотрел этот вывод [Harris, 1994]. Согласно последней работе, для ряда небольших по величине и медленно вращающихся астероидов время затухания сложного вращения может превышать 108 лет, а для некоторых – даже превосходить время существования Солнечной системы.

На рис. 3.19 представлены данные о вращении 750 астероидов. Верхняя из двух нанесенных на этот рисунок прямых отделяет от основного массива те астероиды, для которых, согласно работе [Harris, 1994], время затухания сложного вращения превышает 108 лет, а в промежутке между двумя прямыми располагаются астероиды, для которых это время лежит в интервале 108 — 4,5·109 лет. Среди тел с очень большим временем затухания находятся астероиды (288) Glauke, (887) Alinda, (1220) Crocus, (1689) Floris-Jan, (3102)

Krok, (3288) Seleucus, (3691) Bede, (4179) Toutatis, (4486) Mithra, (13651) 1997 BR. Эти астероиды демонстрируют либо сложный характер кривых блеска, либо наблюдательные данные недостаточны, чтобы исключить для них возможность вращения не вокруг оси наибольшего момента инерции. Особенно интересен случай (4179) Toutatis. Этот потенциально опасный астероид был открыт в 1989 г. Он интенсивно наблюдался с помощью оптических средств и радиолокаторов в периоды его сближений с Землей в 1992, 1996 и 2000 гг. С помощью радиолокационных наблюдений удалось определить весьма причудливую форму астероида и сложный характер его вращения (рис. 3.20).

Размеры астероида составляют 4,60 × 2,40 × 1,92 км. Его ось вращения постоянно меняет свое направление как в теле астероида, так и относительно неподвижной системы координат. Кувыркания астероида могут быть приближенно описаны как вращение его тела вокруг длинной оси с периодом 5,367 ± 0,01 суток и равномерной прецессией этой оси вокруг постоянного направления в пространстве – направления вектора момента количества движения астероида относительно его центра инерции – с периодом 7,420 ± 0,05 суток [Ostro et al., 1999].


Рис. 3.19. Скорости вращений астероидов [Pravec et al., 2000]


Рис. 3.20. Последовательные фазы вращения астероида (4179) Toutatis [Hudson and Ostro, 1995]

Наблюдения различных астероидов в разных оппозициях показывают, что у одних астероидов амплитуда колебаний блеска за ротационный цикл остается неизменной или слабо меняется от оппозиции к оппозиции, в то время как у других эти изменения весьма заметны. Например, амплитуда колебаний блеска (16) Psyche в разных оппозициях меняется от 0,03m до 0,42m. Причина этих различий заключается в том, что ось вращения, сохраняющая неизменное направление в пространстве, в разных оппозициях образует с лучом зрения различный угол (так называемый угол аспекта). Если угол аспекта составляет 90° (в момент наблюдения ось вращения лежит в картинной плоскости), колебания блеска, связанные с вращением, оказываются максимальными. Напротив, если ось вращения почти параллельна лучу зрения (угол аспекта близок к нулю), наблюдаемая площадь поверхности остается неизменной и колебания блеска отсутствуют (при больших фазовых углах колебания могут наблюдаться в результате попадания в тень разных участков поверхности). На этих соображениях основываются методы определения направления оси вращения в пространстве. Для этого требуется сопоставить кривые блеска, полученные в разных оппозициях при различных углах аспекта. Наблюдения показывают, что ось вращения астероида (16) Psyche слабо наклонена к плоскости эклиптики: учитывая геометрию ее орбиты, только при этом условии данный астероид можно наблюдать при малых углах аспекта, когда колебания блеска оказываются минимальными. Тем не менее, методы определения оси вращения (координат полюса) являются весьма трудоемкими и сопряжены с большими ошибками. Поэтому направления осей вращения известны только для небольшого числа астероидов (см. http://vesta.astro.amu.edu.pl/Science/Asteroids, http://astro.troja.mff.cuni.cz/projects/asteroids3D).

Амплитуда колебаний блеска за один ротационный цикл дает некоторое представление о форме астероида. Так, если тело астероида аппроксимировать трехосным эллипсоидом с полуосями a > b > c и если вращение происходит вокруг оси c, что, как мы видели, является общим случаем, то величина амплитуды колебаний блеска выражается формулой [Binzel et al., 1989]

A(θ) = 2,5 lg(a/b) – 1,25 lg((a2 cos2 θ + c2 sin2 θ)/(b2 cos2 θ + c2 sin2 θ)), (3.9)

где θ – угол аспекта.

При θ = 90° амплитуда A = 2,5 lg(a/b). Если θ = 0°, то колебания блеска отсутствуют. Задав определенные значения амплитуды A и угла θ, можно по формуле вычислить отношение полуосей фигуры астероида. Если световая кривая получена по наблюдениям в одной оппозиции, то угол аспекта не известен. Чтобы получать статистически правильные выводы, следует применять формулу при каком-то определенном значении угла аспекта. Если допустить, что оси вращения астероидов не имеют какого-либо преимущественного направления (направлений) в пространстве (изотропное распределение), то ожидаемое среднее значение угла аспекта, как не трудно видеть, равно 60°.

Его и следует использовать в формуле (3.9). В тех случаях, когда имеются кривые блеска в разных оппозициях, может быть предложена другая, более сложная процедура, учитывающая всю имеющуюся информацию [Binzel and Sauter, 1992].

Формула (3.9) требует осторожности при ее использовании в тех случаях, когда световая кривая получена при значительных углах фазы, как о том свидетельствует пример астероида (1620) Geographos. Максимальная амплитуда колебаний его блеска, равная 2,03m, была найдена при угле фазы, равном 53°. По формуле (3.9) находим, положив угол аспекта равным 90°, что a/b = 6,5. Более аккуратная обработка всех имеющихся кривых блеска позволила оценить отношение осей астероида величиной 2,54–2,6 (см., напр., [Kwiatkowski, 1994; Magnusson et al., 1996]). Эти результаты хорошо согласуются с радиолокационными наблюдениями астероида (рис. 3.21 [Ostro et al., 1995]). Наибольший размер астероида, силуэт которого представлен на рис. 3.21, оценивается величиной 5,11 ± 0,15 км, а в поперечном направлении – 1,85 ± 0,15 км (отношение размеров равно 2,76 ± 0,21). Трехосная эллипсоидальная модель астероида по наземным фотометрическим наблюдениям дает a/b = 2,58 ± 0,16, b/c = 1,00 ± 0,15 [Magnusson et al.,1996].

Возвратимся снова к рис. 3.19. В нижней части рисунка располагаются медленно вращающиеся астероиды, к числу которых можно отнести тела с периодами вращения, большими 30 ч. Особенно велик процент таких астероидов среди тел с диаметрами, меньшими 10 км. В рассматриваемой выборке из 750 астероидов преобладают АСЗ. Мы уже видели, что многие из этих медленно вращающихся астероидов имеют кривые блеска, свидельтельствующие об их возможном вращении не вокруг оси наибольшего момента инерции. Наибольшие периоды вращения в среднем имеют астероиды диаметром около 100 км.


Рис. 3.21. Радарное изображение астероида (1620) Geographos [Ostro et al., 1995]. Форма астероида уникальна по своей вытянутости и, по-видимому, свидетельствует о его образовании в результате разрушения более крупного тела

Обращает на себя внимание существование отчетливо выраженной границы угловой скорости вращения астероидов, равной примерно 11 оборотам в сутки, или одному обороту за 2,2 ч. К этой границе вплотную расположен ряд астероидов с диаметрами в интервале от одного до десяти километров. Для астероидов от 40 км и более граница отодвигается в сторону меньших угловых скоростей. На рисунке имеется только пять точек, расположенных выше указанной границы. Все они соответствуют астероидам с диаметрами, меньшими 200 м. Нет никакого сомнения в том, что существование верхней границы угловой скорости астероидов с диаметрами, большими 200 м, связано с достижением при достаточно большой скорости предела устойчивости – равенства силы тяжести и центробежной силы инерции на экваторе вращающегося тела. Действительно, из условия равенства сил, действующих на частицу вещества, находим

Gm/r2 = ω2r,

где G – гравитационная постоянная, m – масса сферического тела радиуса r, ω – его угловая скорость.

Из этого условия вытекает формула для периода вращения тела, выраженного в часах, при котором достигается равенство сил:

Pc = 3,3/√ρ,

где ρ – средняя плотность тела, выраженная в г/см3.

Подставляя в последнюю формулу значение плотности, равное 2,25 г/см3, находим Pc = 2,2 ч. При большей скорости вращения частицы, находящиеся на экваторе, будут отделяться от тела, если их не удерживает сила сцепления с другими частицами.

Критическое значение скорости может быть уточнено, если учесть форму тела. В случае эллипсоидальной формы тела, вращающегося вокруг самой короткой оси, критический по величине период вращения оказывается приближенно равным [Pravec and Harris, 2000]:

где ΔV – полная амплитуда колебаний блеска за период вращения астероида.

На рис. 3.22 приведено распределение скоростей вращения АСЗ в зависимости от полной вариации блеска за период. Штриховые линии представляют критические значения скорости вращения при различных значениях плотности, отмеченных на рисунке. Как видно из рисунка, все астероиды с диаметрами больше 200 м имеют скорости вращения, качественно согласующиеся с формулой (3.10). Концентрация точек к линиям, соответствующим критическим скоростям вращения при различных плотностях, является свидетельством того, что тела, большие по размеру, чем несколько сотен метров, являются гравитационно связанными агрегатами, состоящими из отдельных фрагментов («rubble piles», буквально переводится как «груда булыжников»).


Рис. 3.22. Распределение скоростей вращения АСЗ в зависимости от полной вариации блеска за период [Pravec and Harris, 2000]

Справа от линий критических скоростей на рисунке располагаются только два астероида. С учетом данных [Pravec et al., 2000] их пять. Размеры всех пяти астероидов лежат в пределах от 30 до 130 м, а периоды обращения – в пределах от 2,5 мин до 97,2 мин. Такие скорости вращения означают, что эти тела представляют собой монолитные образования, которые сохраняют целостность при быстром вращении за счет сцепления между частицами вещества.

Еще одной примечательной особенностью АСЗ с размерами от нескольких сотен метров до 10 км является корреляция между амплитудой колебаний блеска и скоростью вращения. На рис. 3.23 представлено среднее значение амплитуды колебаний блеска для таких астероидов в зависимости от скорости вращения. Вертикальными черточками отмечены средние ошибки отложенных значений величины средней амплитуды. Начиная со значения 5 оборотов в сутки намечается устойчивая тенденция к уменьшению средней амплитуды колебаний блеска. Эта тенденция, как и ранее рассмотренные особенности, свидетельствует в пользу того, что быстро вращающиеся астероиды представляют собой агрегаты слабо связанных обломков. Можно думать, что по мере увеличения скорости вращения сила, прижимающая обломки друг к другу, уменьшается, что ведет к их большей подвижности и постепенному уменьшению отношения самой большой из полуосей фигуры астероида к двум другим.


Рис. 3.23. Среднее значение амплитуды колебаний блеска АСЗ с размерами от нескольких сотен метров до 10 км в зависимости от скорости вращения [Pravec and Harris, 2000]

Наконец, в данном разделе следует упомянуть о том, что ряд АСЗ, в том числе потенциально опасных астероидов, обнаруживает такие особенности световых кривых, которые не могут быть объяснены иначе, как явлениями затмений и покрытий в двойных системах (рис. 3.24). Глубокие минимумы на кривой блеска обусловлены прохождениями спутника и/или его тени по диску главного компонента двойного астероида, а менее глубокие плоские минимумы – прохождением спутника за диском астероида или попаданием его в тень, отбрасываемую главным компонентом. Изучение кривых блеска позволяет определить параметры двойной системы, такие как диаметр главного компонента, отношение диаметра спутника к диаметру главного компонента, большую полуось орбиты спутника, период вращения главного компонента и период обращения спутника и т. д. К настоящему времени среди АСЗ найдено около 35 двойных систем (http://www.johnstonsarchive.net/astro/asteroidmoons.html).


Рис. 3.24. Долгопериодическая составляющая кривой блеска АСЗ 1996 F G3 [Pravec et al., 2000]. По вертикальной оси отложен блеск в лучах R, приведенный к единичным расстояниям от Земли и Солнца и углу фазы, равному 17°

Количество двойных астероидов среди АСЗ оценивается как 17 % [Pravec et al., 1999]. Примерно такой же процент двойных АСЗ был определен в работе [Bottke and Melosh, 1996] на основе статистики двойных кратеров на поверхностях Венеры и Земли. Это очень большой процент, который нуждается в объяснении. В нескольких работах ([Bottke and Melosh, 1996] и др.) был предложен механизм, согласно которому двойные АСЗ образуются в результате приливного распада «rubble piles» во время их тесных сближений с планетами земной группы. Быстрое вращение астероидов может способствовать эффективности подобного механизма. Действительно, главные компоненты обнаруженных двойных АСЗ в большинстве случаев очень быстро вращаются. Многие двойные АСЗ имеют малую объемную плотность, что характерно для «rubble piles».


    Ваша оценка произведения:

Популярные книги за неделю