355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Белла Дижур » Путешественники-невидимки » Текст книги (страница 2)
Путешественники-невидимки
  • Текст добавлен: 11 сентября 2016, 16:32

Текст книги "Путешественники-невидимки"


Автор книги: Белла Дижур



сообщить о нарушении

Текущая страница: 2 (всего у книги 6 страниц)

Один английский учёный, Роберт Бойль, проделал такой опыт. Он поместил кусок свинца в тугоплавкую стеклянную колбу с узким изогнутым горлом. Такие колбы называются ретортами. Отверстие реторты он запаял и взвесил её. Затем поставил на огонь. Два часа длилось нагревание. Кусок свинца за это время превратился в порошок – в окалину. Тогда Бойль снял реторту с огня и вскрыл её. Воздух со свистом ворвался внутрь реторты, но Бойль не обратил на это никакого внимания.

Взвесив реторту с окалиной свинца и сравнив с первоначальным весом, учёный увидел прибавку.

Какой же вывод из этого сделал Бойль? Не подозревая о роли газа кислорода, о его способности соединяться с металлами, Бойль и не искал никаких новых объяснений своему опыту. Он удовольствовался старым.

«Всё дело в теплотворе! – решил Бойль. – Во время нагревания он проник сквозь стеклянные стенки реторты, вошёл внутрь металла и отяжелил его…»

Ломоносов не верил в существование загадочного теплотвора.

«Что происходит в запаянной реторте во время прокаливания? – думал он. И сам себе отвечал: – Химическая реакция. Частички воздуха, которые остались в реторте, присоединяются к частичкам свинца. Образуется новое вещество – окалина. Вес металла, конечно, становится при этом больше. Но одновременно должен убавиться вес воздуха, потому что часть его использовалась на образование окалины. Значит, общий вес всех веществ, заключённых в реторте, не убавился и не прибавился. – Таков закон природы…»

Когда Ломоносов все эти свои сомнения излагал перед учёными, они только плечами пожимали.

– Дерзкий человек! Он хочет нарушить основы науки! – говорили учёные. – Он не верит в «теплотвор»!

Ломоносов решил повторить опыт Роберта Бойля и показать, в чём была его ошибка. Он взвесил запаянную реторту, в которой находился свинец, прокалил её и снова взвесил.

После прокаливания вес не изменился. В чём же дело? Почему у Бойля получилось иначе?

– Очень просто, – объяснил Ломоносов. – Бойль открыл реторту до взвешивания. Впустил в неё внешний воздух. Он занял место того, который во время опыта соединился с металлом. Вот за счёт этого ворвавшегося внешнего воздуха реторта и стала тяжелее…

А Ломоносов взвешивал, не открывая. В его реторту не проникло ничего извне. И, конечно, результаты его опыта надо было признать более точными. Так просто и наглядно доказал великий учёный справедливость своих слов о том, что материя не может ни исчезнуть, ни возникнуть из ничего.

Несмотря на убедительность опытов и ясность мыслей, учение Ломоносова мало распространялось. Русские цари и все те, кто правил Россией, относились с недоверием к своим отечественным учёным.

Многие труды Ломоносова остались ненапечатанными. Проходили десятки лет, рукописи Ломоносова лежали покрытые архивной пылью. Другие учёные открывали то, что давно было открыто Ломоносовым. Слава о них гремела на весь мир, а имя гениального русского учёного оставалось неизвестным.

Так случилось и с законом сохранения вещества.

Много времени спустя после Ломоносова его вновь открыл французский учёный Лавуазье. Некоторые исследователи утверждают, что Лавуазье знал о работах Михаила Васильевича Ломоносова. Другие считают, что Лавуазье открыл закон самостоятельно. Но как бы там ни было, документы, письма и статьи, найденные в архивах, свидетельствуют, что первооткрывателем величайшего закона природы надо признать Ломоносова.

Сложная судьба была у этого человека! Во многом переросший своих современников, горячий патриот родины, он с трудом добивался признания и сносных условий для работы.

Придавая огромное значение точным измерениям в химии, Ломоносов долгие годы не имел лаборатории, где мог бы экспериментировать, искать подтверждение своим гениальным мыслям. Уже будучи профессором химии, он всё ещё писал: «Хотя имею я усердное желание в химических трудах упражняться и тем отечеству честь и пользу приносить, однако без лаборатории принуждён только одним чтением химических книг и теорией довольствоваться». Много усилий затратил он, пока добился строительства первой в России химической лаборатории.

В проекте, который Ломоносов представил Академии наук, он писал:

«В химических действиях намерен я поступать таким порядком: 1. Нужные в химических трудах употребительные натуральные материи сперва со всяким старанием вычистить, чтобы в них никакого постороннего примесу не было, от которого обман быть может… 2. Вычищенные материи разделять сколько можно на те, из которых они натурально сложены. 3. Для лучшего доказательства, что разделённые материи из оных простых состоят, намерен оные снова соединять сколь возможно. 4. Разные натуральные и сделанные материи соединять разными химическими способами для произведения новых действий и материй, которые могут часто пользовать в познании натуры и к прирощению художеств. 5. Сделанные другими химиками важные опыты, которые хотя и вероятны, однако несколько сомнительны… или неточно описаны, повторить и тем их справедливость или подлог исследовать».

И последнее:

«При всех помянутых опытах буду я примечать и записывать… самые действия, вес или меру употребляемых к тому материй…»

В проекте этом изложена огромная программа действий. Ломоносов выполнил свой план. Он исследовал много сложных веществ, разлагал их на составные части, соединял из этих составных частей новые вещества, проверял опыты других учёных.

И всегда помнил главное правило работы химика – соблюдал меру и вес.

С тех пор все многочисленные лаборатории нашей страны не забывают эту основную заповедь ломоносовского учения.


В гостях у химиков

Пройдём же в какую-либо химическую лабораторию и посмотрим, как там работают. В каждом городе их можно найти десятки. В одних исследуют руду, в других – металлические сплавы, в третьих – пищу.

Трудно перечислить все ветви и ответвления, которые появились в современной химической науке. И, конечно, лаборатория мукомольного завода, где проверяют качество муки, будет отличаться от лаборатории горного рудника или завода, где варят сталь.

Но, заглянув и туда и сюда, мы найдём много общего. Мы увидим высокие лабораторные столы, покрытые линолеумом или стеклом, полки с расставленными на них склянками, причудливо изогнутые стеклянные приборы, сушильные шкафы, электрические печи и удивительную химическую посуду.

Я говорю «удивительную» потому, что она не похожа на обычную посуду, какой пользуются в домашнем обиходе. Наполненные цветными жидкостями стоят на столах высокие стаканы и колбы. У колб самые разнообразные горлышки. У одних – короткие и широкие, у других – узкие и длинные, а у третьих – изогнутые.

В лаборатории пользуются и фарфоровой посудой, но и она не похожа на нашу домашнюю. Это – узкие лодочки, стаканы, тигли разных размеров от маленького, как детский напёрсток, до больших, как чайная чашка.

Тот, кто хоть раз побывал в химической лаборатории, надолго запомнит ту особую тишину, которая царит здесь. Тысячи солнечных зайчиков играют в стекле приборов. Работники лабораторий в халатах, с полотенцами через плечо, переходят от прибора к прибору, сосредоточенно склоняются над своими записями, вглядываются в еле видные осадки на дне колб или сидят на высоких круглых табуретках около весов.

Но как не похожи эти весы на те, что мы постоянно видим в магазинах!

Эти – лабораторные – качаются от малейшего прикосновения. Они находятся в стеклянных футлярах и приводятся в движение особым винтом. Но не так-то просто ими пользоваться!

Неопытный человек не только не сумеет взвесить на них, но ещё вдобавок и весы испортит. «Расстроит» – говорят химики, будто это не весы, а музыкальный инструмент!

А гирьки! Ты посмотри на эти гирьки! Вес легчайшей пушинки можно определить ими.

Если взять один грамм какого-либо порошка и разделить его на десять тысяч частей, то каждую десятитысячную долю можно будет взвесить на этих весах.

Что было бы, если бы мы вздумали обратиться к продавщице с просьбой взвесить нам один грамм конфет? Продавщица решила бы, что мы шутим. А вот для химика грамм – очень большая величина. Он привык обращаться с десятыми, сотыми, тысячными и десятитысячными долями грамма.

Точные лабораторные весы называются аналитическими, потому что они помогают химикам производить химические анализы. Пользуясь ими, химики могут определять такие ничтожные количества, какие на обычных весах будут совершенно неощутимы.

Но, как это ни удивительно, химикам известны ещё более точные способы исследования. Например, в некоторых лабораториях имеются электромагнитные весы. Они в десять тысяч раз точнее аналитических. Но и это ещё не предел точности!

Есть способы, при которых можно определить миллиардные доли грамма. Способы эти основаны на особых свойствах того или иного вещества. Одни из них окрашивают пламя, придают ему то зелёный, то жёлтый, то лиловый цвет. Другие сами светятся, третьи имеют отличительный аромат…

Всякий раз, когда я вхожу в химическую лабораторию, меня охватывает особое волнение. Ведь здесь проникают в тайны всех окружающих нас веществ, узнают, что из чего состоит.

Мне всегда кажется, что здесь незримо присутствуют все те, кто отдал свою жизнь изучению природы.

И среди них возвышается светлоглазый сын русского помора, чьё учение до сих пор неугасимо светит современной науке.

В какую бы лабораторию мы ни заглянули, всюду правило Ломоносова о соблюдении меры и, веса не забыто.

Высушивает ли химик какое-либо вещество в сушильном шкафу, прокаливает ли что-нибудь в печи, смешивает ли в фарфоровой чашке цветные растворы, – везде и во всём соблюдает он это правило.

Он должен работать чётко, чисто и аккуратно.

Стоит ему уронить крошечную каплю раствора, потерять почти невидимую крупинку исследуемого порошка, не смыть в стакане едва заметный осадок – и результаты его работы будут ошибочными.

Вес окажется не точным.

Не удивительно, что химик относится к своим весам, да и ко всем своим приборам, бережно, как скрипач к своей скрипке.

Работа химика требует точности не меньшей, чем исполнение музыкального произведения.

Вот эти-то тщательность и чистота приёмов и помогли химикам в изучении окружающей нас природы.


Всевидящий глаз

Можно с уверенностью сказать, что нет ни одного вещества в природе, которое не побывало бы в руках у химиков.

Разнообразный мир окружает нас. Мы радуемся его беспрерывному движению, краскам, формам, звукам.

Химики, как и мы с тобой, любят землю с её травами, рудами, металлами, красотой гор и запахом цветов. Но химики не только любуются миром, они изучают его. В течение многих веков они исследуют сложное хозяйство природы.

А попробуй только назвать все известные тебе вещества. Ты насчитаешь их не одну сотню. Только оглядевшись в своей комнате, ты увидишь их множество: хлеб, вода, фарфор, дерево, бумага, стекло, краска, которой покрыты стены, чернила в чернильнице.

В кухне ты найдёшь новые вещества: алюминий, из которого сделаны кастрюли, пластмасса электрических выключателей, медь водопроводного крана, холст полотенца…

А на улице? Здесь ещё десятки веществ: асфальт, кирпич, глина, песок, камень. Зайдём в горный музей, и там за стеклянными витринами нам откроются сотни минералов, драгоценных камней, имеющих каждый свой особый химический состав.

Поднимемся на высокие горы или спустимся к реке, пойдём в лес или поле – и всюду, всюду мы найдём разнообразнейшие вещества природы.

Одни из них жидкие, другие твёрдые, одни имеют резкий запах, другие отличаются яркой окраской, третьи обладают сладким вкусом…

Одни из них окружают нас всюду, другие представляют собой редкость в природе. На для всевидящего глаза науки и это не препятствие. Химикам известны составы не только веществ, имеющихся на нашей планете, они заглянули не только на дно океанов и проникли вглубь земли, им удалось узнать, из чего состоят солнце, луна, звёзды и планеты.

Далеко от нас расположены небесные светила, никто из людей ещё никогда не бывал ни на одной планете и не мог привезти оттуда образцов для химического анализа. Однако, исследуя особыми остроумными способами свет солнца, луны и звёзд, химики узнали их состав. Оказалось, что далёкие небесные светила – близкие родственники нашей планеты. Они состоят из тех же химических элементов, что и наша Земля.

Сведений о характере и поведении химических элементов накопилось огромное количество. Эти сведения интересуют не только химиков, но и учёных других специальностей.

Взять для примера медиков. Что им, казалось бы, заниматься химическими элементами? Их дело лечить людей!

Однако лечить людей, не зная, как и из чего устроено человеческое тело, брались только колдуны и шаманы, но их время давно прошло.

Современная медицина изучает человека, знает строение всех его органов, знает химический состав каждой клеточки. Это знание привело медиков к необходимости изучать, как влияют те или иные химические элементы на живой организм.

Агрономы, постоянно заботясь об урожае, тоже вынуждены заниматься этими невидимками. Ведь и растения состоят из элементов. Во время роста они берут их из пищи, которую находят в воздухе и в почве.

Но этой пищи растению не всегда хватает. Агрономам приходится подкармливать растение солями, содержащими необходимые химические элементы.

Геологи тоже интересуются химическими элементами. Они знают, где надо их искать: в минерале или морской воде, в теле водоросли или вулканической лаве.

Они знают, какой элемент более распространён в природе, а какой трудно отыскать.

И, наконец, каждый человек в своей повседневной жизни то и дело сталкивается с целым рядом химических элементов.

Глубоко проникает химия во все отрасли человеческой деятельности. И чем культурнее становились народы, тем большую потребность испытывали они в химических знаниях.


О характере и поведении элементов

Некоторые учёные для большей ясности называли химические элементы «кирпичиками мироздания».

Они говорили, что все вещества в природе сложены из химических элементов, как дома из кирпичей.

Но это сравнение нельзя признать верным! Ведь кирпич остаётся самим собой в любой постройке, будь то одноэтажный домик или высотный дворец: ни цвет, ни форма, ни другие его качества не меняются. Иное дело химический элемент! Соединяясь с другими химическими элементами, он как бы утрачивает свои личные свойства.

Мне это стало понятно после того, как я узнала, что натрий и хлор вместе составляют поваренную соль, которую мы каждый день употребляем в пищу.

Натрий – блестящий серебристый металл, хлор – газ жёлто-зелёного цвета, удушливого запаха.

Куда же девается блеск натрия, цвет и запах хлора? Ведь соль совсем иная – белая, кристаллическая, солёная на вкус!

Все личные свойства химических элементов скрылись. Они могут проявиться только при каких-либо совсем особых обстоятельствах. Если, например, действовать на соль электрическим током или подвергать её очень сильному нагреванию, тогда элементы разлучатся и проявится характер каждого. Но обычное дружеское сожительство химических элементов в соли вырабатывает новые черты, характерные именно для соли, а не отдельно для натрия или хлора.

Сочетаясь во множестве различных комбинаций, химические элементы образовали цветные минералы и зелёные деревья, морскую воду и металлические руды, нашу пищу и наше собственное тело.

В настоящее время известно около ста химических элементов. У каждого из них свои особые приметы, свой характер, свои вкусы, симпатии и поведение.

Конечно, слова «поведение», «характер» и «симпатии» элемента нельзя понимать буквально. Атомы химического элемента – неодушевлённые, невидимые частички материи – не могут быть добрыми или злыми, чуткими или грубыми, дружелюбными или враждующими. Эти выражения лишь помогают понять сущность, взаимоотношений химических элементов.

Много лет после окончания института я работала в химических лабораториях. Приходилось исследовать и металлические сплавы, и руды, и песок, и состав почвы, и воду, и многое-многое другое.

И вот здесь-то в практической работе, при «личном» общении с химическими элементами, их характер и поведение стали мне знакомы, как характер и поведение самых близких друзей.

Случалось ли тебе, взглянув в лицо товарища, догадаться без слов, весел он или задумчив, здоров или болен, боится отвечать урок или твёрдо знает его?

Так длительное общение с химическими элементами в лаборатории приучает химика по каким-то едва уловимым признакам догадываться о многом таком, чего ни в одном учебнике не прочтёшь.

И так же как ты среди своих друзей отличаешь ребят замкнутых или, наоборот, очень общительных, так и химик говорит об одних элементах, что они «гордецы» и не желают вступать ни в какие «химические дружбы», а другие, наоборот, легко соединяются со многими химическими элементами.

И больше того, у химика возможны даже свои «любимцы» – химические элементы, которые его больше интересуют, с которыми ему веселее работать.

Наверное, какой-нибудь равнодушный, сухой человек, прочитав эти строки, рассмеётся.

– Как можно «любить» химический элемент? – скажет он.

Правда, химия – наука строгая. Но тому, кто не побоится её трудностей, она откроет многое.

Отказываясь зачастую от отдыха, от развлечений, рискуя здоровьем, а иной раз и жизнью, химики во все времена самоотверженно трудились. Они стремились подчинить природу воле человека. А для этого надо было выведать все её тайны, узнать, как и из чего построены окружающие нас вещества.

О том, как были открыты некоторые химические элементы, изучены их превращения и странствия в природе, будет рассказано в следующих главах.


Рассказ второй
Элементы-близнецы


Гемфри Дэви

В 1778 году в маленьком английском городке Пензэнс родился человек, который сыграл немалую роль в истории химии. Звали его Гемфри Дэви.

Пока Гемфри учился в школе, ни учителя, ни родные не замечали в нём особых способностей к наукам. Он был обычным шаловливым мальчишкой. Больше всего Гемфри любил валяться на берегу моря, смотреть, как плывут по синему небу белые облака. И ещё одно занятие привлекало будущего учёного – ловля рыбы.

Лишь после смерти отца Гемфри понял, что так больше продолжаться не может! Отец его был резчиком по дереву. И при его жизни семья жила очень бедно, а после смерти нужда хозяйкой поселилась в их доме.

Гемфри пошёл работать учеником к местному аптекарю. Работа была не сложная, но скучная. Изволь-ка целые дни растирать мази да разливать микстуры по бутылям! Но, как это ни странно, именно аптекарское ремесло привело Гемфри к науке.

Ему нравилось смешивать жидкости и смотреть, что из этого получится. Он пристрастился к работе и часто задерживался в аптеке до полуночи. Не только для того, чтоб выполнить задание хозяина! У него появились собственные интересы! Он проделывал различные химические опыты. И тут Гемфри понял, как много упущено времени, как мало знаний унёс он из школы.


Гемфри Дэви.

Но учиться никогда не поздно. Гемфри засаживается за книги, изучает анатомию, физику, химию, философию. На удивление всем, Гемфри оказывается очень способным человеком. Его лучшие друзья – книги раскрывают перед ним новый мир, а опыты, которые становятся всё сложнее и значительнее, помогают ему постичь многие тайны наук.

В короткий срок о Гемфри Дэви распространилась слава, как об одном из самых образованных людей своего города. Покинув Пензэнс, Гемфри поработал несколько лет в научном институте города Бристоля, потом Лондонский королевский институт принял его на должность помощника профессора химии. Это был очень высокий пост для двадцатидвухлетнего Гемфри. Он получил возможность развить свой талант учёного. К его услугам были лучшие лаборатории Англии. И он полностью отдался любимой науке – химии.

В конце восемнадцатого и начале девятнадцатого века, когда жил Дэви, химия ещё не была такой обширной наукой, как в наши дни. Но учёные неутомимо стремились разгадать тайны строения всех веществ природы. Изучали состав горных пород, воды, почвы, питательных продуктов. Сжигали растения и исследовали оставшуюся золу, интересовались газами, из которых состоит воздух…

Химики понимали, что, только разобравшись, как и из чего построена природа, можно будет научиться управлять ею.

А кроме того, практическая жизнь требовала от учёных безотлагательной помощи. Гемфри Дэви испытал это на себе. К молодому профессору то и дело обращались люди различных производств. Кожевники просили указать им, какими веществами лучше дубить кожу. Земледельцы хотели проведать секреты земледелия и приносили на химический анализ землю, перегной, навоз. Шахтёрам нужна была безопасная лампа для работы в шахте…


И Дэви помогал и кожевникам, и земледельцам, и шахтёрам. Изобретённым им составом дубили кожу, его лекции по химии земледелия посещало много людей, а безопасная лампочка, изобретённая Дэви, до сих пор служит шахтёрам и носит его имя.

Но вся эта практическая деятельность не отвлекала Дэви от решения больших научных задач – от открытия химических элементов.

В начале восемнадцатого века их было известно пятнадцать. К концу века называли уже тридцать пять. А открытия всё продолжались.

То и дело в журналах и газетах появлялись сообщения: открыт ещё один химический элемент!

Случались и ошибки в этом нелёгком деле. За химический элемент иной раз принимали сложное вещество. Например, известь долго считалась элементом, пока не выяснили, что она состоит из кальция и кислорода.

Гемфри Дэви главным занятием своей жизни считал поиски новых химических элементов.

И в этих поисках он оказался впереди многих своих современников.


Блестящие шарики

Гемфри Дэви пришёл в науку в то время, когда уже было сделано одно величайшее открытие. Учёные создали первый аппарат, дававший электрический ток.

Электричество… Для нас, людей двадцатого века, за этим словом кроются самые обыденные понятия: свет в квартирах, электрические приборы, трамвай, электропоезд.

А двести лет тому назад люди ещё не знали, какое огромное применение найдёт себе невидимая сила электричества. Но многие учёные начали пользоваться ею для различных нужд науки.

Гемфри Дэви оказался одним из первых, кто понял, что электрический ток может помочь химику.

Дэви смотрел на кусок извести или глины, на порошок магнезии и думал:

«Что таят в себе эти знакомые незнакомцы? Как поведут они себя, если атаковать их электрическим током?»

И вот атака началась. Первыми жертвами стали вещества, которые известны под названием «едкие щёлочи». Куски щёлочи похожи на сахар-рафинад. Хранят щёлочь в плотно закупоренных банках, берегут от влаги и воздуха. Стоит взять такой кусочек в руки, как сразу поймёшь – не случайно этим щёлочам дано название «едкие»: кожа на руках воспалится, покраснеет, особенно, если на ней есть ссадины или царапины. А если уронить щёлочь на платье – дыра неизбежна!

Решив исследовать едкие щёлочи, Дэви начал готовиться к этому делу, как полководец к большому сражению.

Он собрал несколько электрических батарей, проверил их действие и соединил все вместе. Получилась батарея огромной мощности. Всю её силу Дэви решил обрушить на едкую щёлочь, чтобы узнать, из каких веществ она состоит.

В раствор щёлочи в воде Дэви опустил две проволочки, идущие от батареи и заменявшие электрический провод.


И вот ток побежал по проволокам, достиг жидкости в колбе. Она забурлила, зашевелилась. Один за другим в ней начали возникать пузырьки газа. Но вид их не радовал Дэви. Он понимал, что это кислород и водород, из которых состоит вода.

«А щёлочь? Где же её составные части? Может быть, она не поддаётся разложению?

Может быть, надо действовать электричеством на сухую щёлочь?» – думал учёный.

Но в сухом виде она не пропускает сквозь себя электрический ток!

Дело казалось безнадёжным. Бывали минуты, когда у Дэви появлялось желание всё бросить, но он гнал от себя сомнения и работал ещё настойчивее.

Сотни опытов проделал он, пока набрёл на правильный способ.

Когда после многих бессонных ночей, после огорчений и тревог счастливая мысль пришла ему в голову, он даже вскрикнул от радости:

– Да! Именно так! Именно так надо поступить! Щёлочь для этого опыта должна быть не очень сухой и не очень влажной…

Дэви взял небольшой сухой кусочек щёлочи, подержал его на открытом воздухе несколько секунд – пусть чуть-чуть увлажнится – и быстро соединил его с электрической батареей.

Долгое терпение и настойчивость учёного были вознаграждены великолепным зрелищем.


Сотни опытов проделал Дэви.

На этот раз картина была совсем иной, нежели в прежних опытах!

Щёлочь начала плавиться, а из неё, как пленники из заточения, выпрыгивали блестящие металлические шарики.

В первую минуту они показались Дэви похожими на капли ртути, но он тут же отказался от этого сравнения. Его шарики жили всего несколько минут. Они взрывались, вспыхивая ярким пламенем, а те, которые не сгорали, быстро теряли свой металлический блеск, покрывались белым налётом.

Молодого учёного не тревожила судьба металлических шариков, он считал, что вопрос о сохранении шариков – второй вопрос. А сейчас можно порадоваться великому открытию, совершённому им.

Он, Гемфри Дэви, открыл в щёлочи новый металл. Ни один учёный мира и не подозревает о существовании такого!

Гордостью переполнилось сердце Гемфри. Он вспомнил покойного отца. Как жаль, что ему не удалось дожить до этого часа, когда его сын становится великим учёным!

Однако предаваться раздумьям и печали было не время. С новым металлом предстояло ещё немало хлопот.

Во-первых, надо было разложить не одну порцию щёлочи, чтоб извлечь из неё неведомый металл, во-вторых, необходимо было сохранить металл, чтобы изучить его свойства.

И хотя победа была совершенно очевидной, капризный металл лишил Дэви покоя. Сохранить его не было никакой возможности: он упрямо не хотел жить ни в воздухе, ни в воде, ни в спирте, ни в кислоте, и ни в какой другой «квартире», которую предлагал ему учёный.


Металлы-близнецы

Я думаю, читатель давно догадался, что Дэви освободил из щёлочи нашего старого знакомого – натрий.

«А если это не натрий, – думает, вероятно, читатель, – то это какой-нибудь другой металл, похожий на натрий, как могут быть похожи только родные братья…»

Так оно и есть. В своих опытах Дэви брал две щёлочи. Одна называется едкий натр, из неё Дэви получал натрий. А из другой, по названию едкое кали, – металл калий.

И они имеют большое сходство. Оба серебристого цвета, оба лёгкие, не тонут в воде, а плавают на ней; оба настолько мягкие, что их можно резать ножом, как сыр; оба плавятся при очень невысокой температуре.

Поставим на горячую электрическую плиту три сосуда. Пускай в одном будет кусочек металлического натрия, в другом – калий, а в третьем – железо. Калий начнёт плавиться, когда градусник покажет 62,3 градуса, натрий немного позднее, при температуре 93 градуса. А железо? Оно даже не успеет покраснеть. Чтобы расплавиться, ему нужна температура в полторы тысячи градусов!

Свойство калия и натрия расплавляться при невысокой температуре отличает их от большинства знакомых нам металлов. Даже легкоплавкому олову нужна температура в 232 градуса, не говоря уже о золоте и меди. Те начинают плавиться лишь после того, как измерительные приборы покажут выше тысячи градусов.

И все же калий и натрий – металлы. Кроме свойственного обоим металлического блеска, они обладают ковкостью. Но увы! Изделиями из этих металлов можно было бы пользоваться только в безвоздушном пространстве! Самое незначительное присутствие воздуха, воды заставляет их немедленно изменяться, превращаться в сложные вещества, присоединяя к себе атомы других химических элементов.

А в металлическом натрии, как и в металлическом калии, никаким самым точным химическим анализом невозможно обнаружить атомов какого-либо другого сорта.

Калий и натрий – химические элементы. Одни из тех, сочетание которых с другими элементами создаёт окружающую нас природу. Они, как братья, во всем похожи друг на друга, и в природе их можно всегда найти рядом – в одних и тех же горных породах.


В каменном жилище

Возьми кусок простого серого гранита, вглядись в его пёстрый рисунок. Нетрудно заметить, что гранит неоднороден. Он состоит из трёх минералов. Среди тёмных пластинок слюды и полупрозрачных кристалликов кварца поблескивают белые, желтоватые, серые или розовые точки. Это – полевой шпат.

Сочетание трёх минералов – полевого шпата, слюды и кварца – придаёт граниту не только красоту. Само слово «гранит» связывается в нашем представлении с чем-либо особенно крепким, устойчивым.

Пойдём за город, к обрывистому берегу реки, туда, где выступают обнажённые гранитные скалы. Здесь мы увидим картину разрушения твёрдого гранита.


Народная пословица гласит: «вода камень точит». К этому надо прибавить, что солнце и воздух старательно помогают воде.

На Урале, да и в других местах Советского Союза, встречаются причудливые формы камней. Эти камни жгло летним зноем, охлаждало морозом, размывало быстрой водой горных речек, обдувало резкими ветрами. И силы природы нарушили целость гранита. Потускнели листочки слюды, выпали кристаллики кварца, измельчились, превратились в песок.

Но больше всего нас интересует судьба серых, жёлтых и розовых полевых шпатов. В них, в этих цветных минералах, дремлют два брата – калий и натрий.

От действия воды, солнца и ветра полевой шпат рассыпается в порошок. И тут у калия и натрия начинается новая жизнь. Выброшенные природными силами из каменного жилища, они отправляются путешествовать каждый своей дорогой.


Начало путешествия

За кем же из них отправимся мы? Натрий более знаком нам. Пойдём за ним. Вот бежит горный ручеёк. Он торопливо несётся с горы, увлекая за собой мелкие песчинки, глинистый ил. Исследуем его воду и мы найдём здесь много натрия.

Но, конечно, не надо думать, что в воде ручейка плавают кусочки серебристого металла натрия! Ведь мы уже знаем, что в природе – на открытом воздухе или в воде – натрий не может оставаться неизменённым.

В природе он как бы постоянно скрывается под шапкой-невидимкой.

В воде ручья мы найдём натрий в виде различных солей. Одна из них тебе хорошо знакома. Она постоянно перед тобой на обеденном столе, называют её поваренной. Но в ручье есть ещё множество других солей! Может быть, тебе знакомы их названия: углекислые, сернокислые, фосфорнокислые?

Тот же, кто впервые слышит, что вода в ручье содержит соли, может удивиться, почему она не кажется солёной, когда её пьёшь? И колодезная вода тоже не имеет соленого вкуса. Наоборот, пить её очень приятно. Причём в каждом ручье или колодце вода имеет свой особый вкус, цвет и запах.


    Ваша оценка произведения:

Популярные книги за неделю