355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Террористическое и нетрадиционное оружие » Текст книги (страница 5)
Террористическое и нетрадиционное оружие
  • Текст добавлен: 15 сентября 2016, 01:20

Текст книги "Террористическое и нетрадиционное оружие"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 5 (всего у книги 7 страниц)

Рис. 3.3 Пример эффекта лазерного облучения остекления кабины

Для лазерного облучения характерно психологическое воздействие, порождаемое риском ослепления. Возможности современной медицины не позволяют восстановить тяжелые повреждения глаз, вызванные им.

Лазер как оружие обладает многими преимуществами. Во-первых, снаряду необходимо существенное время для достижения цели, а для излучения лазера, распространяющегося с максимально возможной скоростью, это время пренебрежимо. Во-вторых, в высокоскоростную цель снарядом попасть труднее, чем лучом. В-третьих, лазеры могут стрелять, пока обеспечиваются электроэнергией, в отличие от снарядов, которые могут быть выпущены по цели в ограниченном числе. В-четвертых, лазеры не наносят смертельные поражения. В-пятых, коммерческие лазеры сравнительно дешевы.

Недостатки у лазеров тоже есть. Во-первых, до настоящего времени зарегистрирован лишь один успешный случай их применения: для принуждения к посадке: трех аргентинских самолетов в ходе войны за Фолклендские острова, после облучения даззлерами мощностью 20 Вт, установленными на двух британских фрегатах. Во-вторых, биологические эффекты облучения по-разному проявляются в разное время суток. В-третьих, дым, пыль, облака ослабляют лазерный луч. Учитывая баланс преимуществ и недостатков, следует все же признать за лазерами террористический потенциал.

Даззлеры использовались российскими кораблями, например – разведывательным судном «Капитан Ман» против канадского патрульного вертолета вблизи Сиэтла в апреле 1997 г. В октябре 1998 г. в Боснии имели место облучения лазерами вертолетов армейской авиации США. Террористами облучались полицейские вертолеты в Южной Калифорнии в 1998 и 1999 г.г. и гражданские самолеты (на высотах от 1500 до 4000 м) близ Лос-Энджелеса в 1996 и 1997 г.г. Существенных последствий во всех этих случаях облучение не имело.

3.1.1. Контрмеры против лазерных угроз

Мэтт Бегерт Методы отклонения, ослабления или рассеивания луча разработаны для противодействия системам наведения высокоточного оружия (ВТО), в которых лазеры используются для определения дистанции и относительного расположения цели. Если лазеры предназначены для нанесения механических поражений (рис. 3.4), такие методы малополезны.

Рис. 3.4 Экспериментальный образец лазера, созданный по заказу ВМС США для изучения возможностей противоракетной обороны кораблей

Контрмеры должны включать уклонение от облучения быстрым маневром или уничтожение лазера, а также ослабление его излучения. Защитные очки (рис. 3.5) могут ослабить, излучение в определенном диапазоне длин волн, но не всегда исключают поражение глаз.

Рис. 5.5 Защитные очки, ослабляющие лазерное излучение в диапазоне длин волн 600–700 нм

Весьма полезен также приемник, предупреждающий о лазерном облучении.

3.2. Радиочастотное оружие (РЧО)

Лэрри Л. Альтджильберс, Айра В. Меррит, Хауард Сегуайн

Поражающий фактор такого оружия – радиочастотное электромагнитное излучение (РЧЭМИ), которое выводит из строя электронику или биообъекты, если плотность его мощности достаточна. До 1970-х годов, источники РЧЭМИ было принято называть «неядерными», чтобы подчеркнуть отличия характеристик генерируемого ими излучения от электромагнитного импульса ядерного взрыва (ЭМИ ЯВ). Такие источники излучения в частотном диапазоне от мегагерц до сотни гигагерц, начали создаваться в Соединенных Штатах и бывшем Советском Союзе в 1960-ых годах. Затем технологию РЧО переняли многие страны, создавая оружие, способное излучать РЧЭМИ мощностью от мегаватт до гигаватт.

В вооруженных силах РЧО может быть применено:

• в противовоздушной обороне;

• для обороны кораблей от ракетных атак;

• для нарушения коммуникаций противника;

• для отражения ракетных атак в воздушном бою;

• против космических объектов;

• против радиолокационной техники;

• против системы управления войсками.

Насколько известно, пока ни один образец РЧО пока на вооружение не поступил – в основном из-за нежелания военных принять концепцию достаточности функционального поражения целей, а не их уничтожения.

Миниатюризация полупроводниковых элементов электроники и зависимость от них всех современных систем приводит к возрастанию уязвимости и повышает вероятность применения РЧО террористами против:

• объектов инфраструктуы;

• средств связи и вычислительных центров;

• аэропортов, энергосетей, центров банковских услуг;

• правительственных учреждений;

• правоохранительных органов;

• для остановки их автомобилей и моторных лодок;

• создания помех и выведения из строя связи;

• создания сбоев в работе компьютеров.

Важным обстоятельством для террористов является то, что необходимые для создания РЧО компоненты доступны и их распространение не контролируется.

Применение РЧО в террористических целях характеризуется:

• скрытностью;

• повторяющимися атаками мощными, но короткими импульсами РЧЭМИ, что делает сложным установления месторасположения их источника;

• воздействием на неэкранированные электронные приборы;

• сложностью обнаружения нанесенных РЧЭМИ повреждений;

• отсутствием, в большинстве случаев, признаков поражения людей РЧЭМИ;

• отсутствием следов и улик на объекте, подвергшемся облучению РЧЭМИ.

3.2.1. Классификация

Бенфорд и Сведжль указывают на такое преимущество РЧО, как воздействие поражающего фактора со скоростью света, что делает невозможным для цели уклонение от атаки маневром. Существенная расходимость пучка РЧЭМИ выступает при этом преимуществом, поскольку не требуется его точного наведения на цель, в то время как лазерам, с их узкими световыми пучками, такое наведение необходимо.

Образцы радиочастотного оружия могут отличаться друг от друга:

• источниками первичной энергии: в боеприпасах таким источником служит взрывчатое вещество, в источниках многократного действия – емкостные, индукционные инерционные и другие неразрушаемые накопители;

• базированием: стационарным, мобильным, на борту самолета или автомобиля;

• эффектами воздействия на цель (помехи, выведение из строя – кратковременное или на неограниченное время);

• «полосным» или «внеполосным» воздействием РЧЭМИ на цель (рис. 3.6): «полосное» реализуется по тем каналам, которые и предназначены для приема излучения данного частотного диапазона; в случае «внеполосного» воздействия, РЧЭМИ проникает также и в каналы, которые для его приема не предназначены;

• предназначением – для открытого или тайного применения, в военных или террористических целях.

РЧО можно классифицировать и по другим признакам, например:

• по механизмам генерации РЧЭМИ: при ускоренном движении электронов либо в ходе прямого преобразования энергии;

• по режимам излучения (единственный импульс, частотный режим формирования импульсов или непрерывная генерация);

• по спектру формируемого РЧЭМИ.

Рис. 3.6 Зависимость эффективности приема излучения характеризуется диаграммой направленности – длина ординаты, проведенной из центра диаграммы, пропорциональна эффективности приема. У любого устройства есть не только главный лепесток приема, но и нежелательные боковые, от которых полностью избавиться нельзя. При отклонении частоты воздействующего РЧЭМИ от рабочей, эффективность приема в пределах главного лепестка снижается, а по боковым лепесткам – растет. На рисунке – диаграмма излученияприема, типичная для радиолокатора: а) остронаправленная, для рабочей частоты; б) для частот, на порядок отличающихся от рабочей

По спектральным характеристикам источники разделяют на два класса: излучающие РЧЭМИ в узкой полосе частот (УПИ) и сверх-широко полосные излучатели (СШИ). Для УПИ характерны высокие значения спектральной плотности мощности и энергии РЧЭМИ, в то время как энергия импульса СШИ распределена в протяженном частотном диапазоне и потому обычно на рабочей частоте цели плотность мощности невелика (рис. 3.7).

Эксперименты свидетельствуют, что поражение электронных систем при воздействии последовательности импульсов РЧЭМИ происходит при меньших значениях суммарной их энергии, чем повреждение того же уровня – при однократном воздействии. Такой режим генерации характерен для источников многократного действия, но и некоторые взрывные источники формируют короткие (длящиеся микросекунды) последовательности импульсов РЧЭМИ.

Рис. 3.7 Спектральные плотности мощности электромагнитного излучения, генерируемого источниками различных классов в радиочастотном диапазоне

Для наиболее эффективного «полосного» воздействия необходима информация об уязвимых для цели частотах и направлениях. Для применения СШИ такие данные не требуются: в протяженном диапазоне наиболее «чувствительные» для цели частоты присутствуют наверняка, но, с другой стороны, энергия импульса РЧЭМИ рассредоточена и на долю таких частот ее приходится не очень много.

РЧО требует для своего создания многих технологий. Ограничимся описанием типов РЧО, представляющих опасность в качестве потенциального оружия террористов.

3.2.2. Электромагнитные боеприпасы (ЭМБП)

В 1994 году доктор А.Б. Прищепенко представил доклад на конференции в Бордо. Им были описаны устройства, в которых осуществлялось прямое преобразование химической энергии, содержащейся во взрывчатом веществе (ВВ), в энергию РЧЭМИ. Такие источники (собственно, и положившие начало классу СШИ) теперь называют «устройствами Прищепенко» (рис. 3.8, 3.9, 3.10). Доклад привел к изменению классификации РЧО, в зависимости от применяемых источников РЧЭМИ (рис. 3.11): прямого преобразования, в которых импульс тока поступает непосредственно на антенну, или таких, в которых УПИ генерируется при ускоренном движении электронов в электровакуумных приборах.

Рис. 3.8

105-мм реактивная граната со сферическим ударно-волновым источником РЧЭМИ: 1 – рабочее тело – монокристалл; 2 – детонационная разводка; 3 – магнитопроводы; 4 – постоянные магниты

Рис. 3.9

125-мм реактивная граната, снаряженная кассетными элементами на основе виткового генератора частоты: 1 – электроды, образующие неполный виток; 2 – металлическая труба, заполненная взрывчатым веществом и установленная с эксцентриситетом относительно электродов; 3 – пьезоэлемент (источник первичного энергообеспечения); 4 – малоемкостной конденсатор

Рис. 3.10

Схема взрывомагнитного генератор частоты (ВМГЧ) и фотография 122-мм боевой части неуправляемой ракеты на его основе. Медная труба 1 заполнена ВВ 2, и расположена соосно спирали 3. Между трубой и спиралью включен заряженный высоковольтный малоемкостной конденсатор 4. Расширяемая взрывом труба замыкает контур, далее точка контакта на основании конуса движется по виткам спирали, продавливая их изоляцию и закорачивая виток за витком, усиливая при этом ток, который осциллирует, так как емкость контура существенна. Период электрических колебаний уменьшается по мере сокращения индуктивности контура, но не становится меньше сотни наносекунд, что не очень благоприятно (волны в сотни раз «длиннее» самого ВМГЧ). Но эти «несущие» волны – не основные в излучении: компрессия поля трубой, усиливая ток тем больше, чем выше его мгновенное значение, приводит к появлению «быстрых» гармоник. Антенной служат еще не закороченные трубой витки обмотки

Рис. 3.11 Развитие источников радиочастотного электромагнитного излучения

Источники, в которых используется ВВ, срабатывают однократно. Источники же невзрывного типа могут долго излучать в частотном или непрерывном режиме, но, поскольку их схемы включают множество таких элементов, как индуктивные и емкостные накопители, плотность электромагнитной энергии в которых много ниже, чем химической во в ВВ (до 10000 Дж/куб. см), невзывные источники большой мощности представляют собой громоздкие и тяжелые устройства (рис. 3.12). УПИ меньшей мощности были применены в крупных авиабомбах.

Рис. 3.12 Излучатель гигаваттной мощности Техасского технологического университета

В отличие от УПИ на основе электровакуумного прибора, взрывной источник генерирует не луч, а поток РЧЭМИ во всех направлениях, но зато СШИ компактны, могут быть размещены в боеприпасах малых (рис. 3.13) и средних калибров, и, помимо поражений электроники, наносят повреждения осколками.

Источники всех типов нуждаются для своей работы в обеспечении электроэнергией. Сообщалось, что в ходе операции «Буря в пустыне» крылатые ракеты, несущие электровакуумные излучатели, прорывали иракскую ПВО. Энергия для питания УПИ отбиралась от двигателя ракеты. Маршевый полет при этом невозможен: ракета падала, как только начинал работать источник, зато он успевал «выдать» несколько десятков импульсов излучения.

Рис. 3.13 Общий вид 42-мм электромагнитной реактивной гранаты «Атропус» с боевой частью на основе пьезоэлектрического генератора частоты и пример эффекта временного ослепления автоматической миллиметровой РЛС наведения системы активной защиты танка при перехвате ракеты. Левая осциллограмма – нормальный сигнал от блока определения дальности до цели. Правая осциллограмма – после разрыва ЭМБП в нескольких метрах от РЛС под углом 160° по отношению к оси антенны. Система потеряла способность оценивать расстояние до цели, пуск и перехват не состоялись. Момент разрыва ЭМБП «Атропус» показан стрелкой

Для боеприпасов небольших калибров требуются автономные и значительно более компактные системы энергообеспечения. Первичный импульс тока или напряжения может быть получен от ферромагнитного или пьезоэлектрического генератора (рис. 3.14), при размагничивании или деполяризации его рабочего тела ударной волной, формируемой взрывом ВВ. Величина энергии может составить при этом единицы – десятки Джоулей, чего в ряде случаев бывает недостаточно и требует применения усилителя – взрывомагнитного генератора (ВМГ, рис. 3.15).

Рис. 3.14

Слева: схема ферромагнитного генератора. Формируемая взрывом мощная ударная волна нагревает ферромагнетик до температуры, превышающей точку Кюри. Освобожденное волной поле наводит ЭДС в обмотке 1, окружающей рабочее тело (магнит 2). К обмотке подключена нагрузка 3.

Справа: схема пьезоэлектрического генератора. Заряд взрывчатого вещества (ВВ) 1 состоит из двух конусов с разными скоростями детонации (у внутреннего конуса она меньше), чтобы обеспечить плоский фронт детонационной волны. Достигнув буфера 2, детонация формирует в нем ударную волну (УВ), которая, в несколько раз ослабившись (иначе – произойдет пробой), переходит из буфера в рабочее тело (РТ) 3 из сегнетоэлектрика, вызывая нагрев вещества РТ до температуры, превышающей точку Кюри и переход его в параэлектрическое состояние. Структурные элементы разрушаются и направленная поляризация вещества исчезает, что вызывает протекание тока деполяризации. Этот ток протекает через конденсатор, образованный металлизованными поверхностями на РТ и нагрузку 4, подсоединенные к обмотке 5. Взрыв используется лишь как спусковой механизм, но его энергия на пять порядков превышает заключенную в веществе рабочего тела

Рис. 3.15

Вверху: схема спирального взрывомагнитного генератора. Металлическая труба 1, заполненная взрывчатым веществом 2, окружена обмоткой 3. В обмотке первичным источником энергии создается начальный магнитный поток, далее подрывается ВВ и газы взрыва растягивают трубу в конус, основание которого движется по виткам обмотки, замыкая их и приближая точку контакта к индуктивной нагрузке 4, куда и вытесняется магнитный поток. Химическая энергия, содержащаяся в ВВ, при этом преобразуется в энергию импульса тока, величина которого в нагрузке может достигать десятков миллионов амперНиже – произведенный фирмой WMTD имитатор ВМГ (иногда используется также название «магнитокумулятивный генератор», МКГ)Доктором Коппом предложена концепция электромагнитной авиабомбы (рис. 3.16): такая бомба должна включать первичный источник питания (батареи), емкостной накопитель, ВМГ, высоковольтный взрывной трансформатор и излучатель – электроваккумный прибор, называемый виркатором (рис. 3.17).

Рис. 3.16

Концептуальная схема авиабомбы с узкополосным излучателем на основе электровакуумного прибора – виркатора и системы его энергообеспечения на основе магнитокумулятивного (взрывомагнитного) генератора

Рис. 3.17 Фотография и схема излучателя с виртуальным катодом – виркатора. РЧЭМИ генерируется при колебаниях объемного заряда электронов. Когда между эмиттером Э и сеткой С прикладывается от трансформатора импульс высокого напряжения, формируется электронное облако – виртуальный катод ВК (откуда и название прибора: «ВирКатор»), Электроны ускоряются к сетке, затем замедляются, пролетев сквозь ее ячейки, и колеблются далее относительно сетки вплоть до нейтрализации заряда (все это возможно лишь в вакууме, где электронам не мешают столкновения с молекулами). Поскольку движение электронов при этом не равномерно-прямолинейное, оно происходит с ускорением, и – для заряженных частиц – с излучением

3.2.3. Радиочастотное оружие на полупроводниковой элементной базе

Источники РЧЭМИ на полупроводниковой элементной базе компактны и могут быть размещены, включая батареи и антенну, в небольшом кейсе (рис. 3.18). Они способны генерировать импульсы РЧЭМИ длительностью от пикосекунд до микросекунд. Частота следования импульсов может быть подобрана такой, которая соответствует циклу обработки информации в компьютере или другой цели, что увеличивает эффект облучения.

Рис. 3.18

Источник РЧЭМИ на полупроводниковой элементной базе, размещенный в кейсе

3.2.4. Базирование радиочастотного оружия

Радиочастотное оружие авиационного базирования На борту самолета можно разместить генераторы РЧЭМИ любого типа и облучить значительное число целей. Энергия, необходимая для бортового излучателя РЧЭМИ, может отбираться от двигателей, а антенна – смонтирована на подвеске (рис. 3.19) или интегрирована в корпус. Невзрывные источники РЧЭМИ способны работать в течение десятков часов, однако должны быть приняты меры, чтобы их излучение не повредило электронику самолета-носителя.

Рис. 3.19

Применение невзрывного источника РЧЭМИ с самолета радиоэлектронной борьбы

Радиочастотное оружие на автотранспортных средствах Размещение РЧО на грузовике позволяет террористам скрытно поразить намеченные цели. Один из сценариев – применение РЧО из взятого напрокат автомобиля, с замаскированной антенной, оставленного недалеко от взлетно-посадочной полосы гражданского аэродрома.

Для применения полицейскими силами фирмой «Рейтеон» разработан автомобиль с УПИ частотой 96 ГГц (рис. 3.20), предназначенный для разгона демонстрантов: на расстояниях до 200 м РЧЭМИ причиняет им легкие ожоги.

Рис. 3.20 Источник РЧЭМИ, разработанный фирмой «Рейтеон» (США), установленный за базе автомобиля, предназначенного для разгона демонстрантов

В военной прессе России не раз упоминались мощные источники РЧЭМИ, созданные для применения в качестве оружия. УПИ «Ранец» (рис. 3.21), установлен на автомобиле высокой проходимости. «Ранец» предлагался к продаже на нескольких оружейных выставках, он генерирует короткие (10–20 не), мощные (более 500 МВт) импульсы в сантиметровом диапазоне длин волн. Декларировалась (но, насколько известно, не подтверждена) способность этого источника «обеспечивать круговую оборону от высокоточного оружия в радиусе до 10 км».

Рис. 3.21 Российский источник узкополосного РЧЭМИ «Ранец», установленный на автомобиле и предназначенный для обороны от высокоточного оружия

Известны также системы, вызывающие срабатывание или повреждающие «интеллект» неконтактных мин (рис. 3.22). Экспериментальный образец, предназначенный для этой цели, создан германской фирмой «Райнметалл» и размещен на автомобиле «Унимог».

Рис. 3.22

Слева – подрыв мины с неконтактным взрывателем, после ее облучения источником РЧЭМИ, установленным на автомобиле. Справа – антенны разработанной германской фирмой «Райнметалл» системы разминирования, установленные на автомобиле «Унимог»

3.2.5. Эффекты воздействия РЧЭМИ на цели

Одно из преимуществ РЧО заключается в скрытности действия, результат которого может проявиться во внезапно возникшей неисправности или помехах, что не обязательно свидетельствует о нападении. После воздействия РЧЭМИ могут наблюдаться:

– временный выход электроники из строя;

– длительный выход ее из строя;

– необратимые повреждения электронных устройств.

Временный выход из строя имеет место, если цель неспособна функционировать в условиях ее облучения, но восстанавливает работоспособность, когда облучение прекращается. Длительный выход из строя происходит при изменении характеристик какого-либо блока, что, как правило, требует вмешательства оператора. Необратимые повреждения происходят, если индуцированный РЧЭМИ токовый импульс «выжигает» важные элементы электронных схем (диоды, транзисторы и прочие) и дальнейшее функционирование цели невозможно без ее ремонта.

По мнению доктора Прищепенко, эффекты воздействия РЧЭМИ должны классифицироваться в зависимости от того, какое влияние они оказывают на выполнение целью боевой задачи. Дело в том, что обработка информации в системах оружия носит циклический характер. Если, например, в системе наведения ракеты происходит сбой в течение одного или немногих таких циклов, имеет место то, что доктор Прищепенко называет «коротким последействием». Такой эффект не может сорвать выполняемую целью боевую задачу, поскольку у системы наведения остается достаточно времени, для повторного «захвата». Более мощное воздействие приводит к «перенасыщению» полупроводников пространственными зарядами, что дольше делает невозможной нормальную их работу и, даже если работоспособность после облучения восстановится, цель уже не сможет выполнить боевую задачу. Такой эффект – намного более длительный, чем «короткое последействие» – доктор Прищепенко называет «временным ослеплением». Он продемонстрировал его при воздействии излучения малокалиберного ЭМБП (42-мм реактивной гранаты с пьезоэлектрическим генератором частоты, рис. 3.13) на радиолокационную станцию миллиметрового диапазона, а также на мины с неконтактными магнитными взрывателями. Следующей категорией наносимых РЧЭМИ повреждений доктор Прищепенко считает «стойкий отказ», при котором происходит глубокая деградация или «выгорание» полупроводниковых элементов и вероятность восстановления работоспособности цели в данном боевом эпизоде можно во внимание не принимать.«Выгорание» происходит вследствие выделения тепла при прохождении через полупроводниковые элементы токовых импульсов, индуцированных РЧЭМИ (таблица 3.1), и обычно наблюдается при воздействии сравнительно длительных (микросекундных) импульсов или последовательности их. Если же импульсы РЧЭМИ короткие (наносекунды и менее), то наблюдается другой эффект: пробой р-n переходов и неоднородных структур.Таблица 3.1. Мощность (кВт) токовых микросекундных импульсов, приводящих к выходу из строя полупроводниковых элементов различных классов.

При протекании импульсных токов возможны следующие повреждения:

– утрата диодами выпрямительных функций;

– интермодуляционные искажения;

– запирание (временная неработоспособность) микросхем;

– тепловой пробой;

– электрический пробой.Вследствие утраты диодами своих функций, подвергаются воздействию и другие элементы. Воздействие возможно также через паразитные связи, наводки на соседних кабелях, путем ударного возбуждения колебаний на различных резонансных частотах. Подобный сигнал преобразуется в «видеоимпульс» нелинейными устройствами, такими как биполярные транзисторы, и, благодаря своей аномальной мощности, вызывает срыв передачи данных, сброс информации, а в некоторых случаях – приводящие к повреждениям наиболее чувствительных элементов перегрузки (таблица 3.2).Таблица 3.2. Эффекты деградации в электронных устройствах и их полупроводниковых компонентах в зависимости от величины напряженности электрического поля РЧЭМИ.

Интермодуляция возникает в близко расположенных схемах, или кабелях, когда суперпозиция сигналов, в сочетании с нелинейными эффектами, приводит к возникновению модулированного сигнала, влияющего на работоспособность системы.

Исследования стойкости электроники к воздействию РЧЭМИ весьма важны для противодействия РЧО. Российский «РАДАН» (рис. 3.23) – универсальный ускоритель, по утверждению его создателей способный генерировать УПИ, СШИ, а также излучение лазерного и рентгеновского диапазонов. Его вес – около 20 кг, он поставляется во многие страны, работает от автомобильных аккумуляторов.

Рис. 3.23

«РАДАН» – источник РЧЭМИ ускорительного типа с лампой обратной волны

3.2.6. Воздействие РЧЭМИ на биообъектыТейлор и Гайри описали биологические последствия воздействия РЧЭМИ при поглощении его в кожных поверхностях. Некоторые из наблюдавшихся эффектов включали и хромосомные изменения, мутагенез, вирусную активацию и инактивацию (таблица 3.3.)Таблица 3.3. Последствия воздействия РЧЭМИ на биообъекты

3.2.7. Признаки применения радиочастотного оружия

В некоторых случаях признаками облучения могут служить ощущаемые слуховые галлюцинации (щелчки) и во всех – помехи и неожиданные отказы электроники. Как указывал доктор Прищепенко, одно из преимуществ радиочастотного оружия заключается в скрытности действия: оператор может не догадываться, что обслуживаемая им электронная система не просто дала сбой, а подверглась нападению.

3.2.8. Распространение радиочастотного оружия и меры снижения этой угрозы

Технологии РЧО продолжают совершенствоваться и распространяться, что угрожает странам, экономика и оборона которых зависят от микроэлектроники. РЧО разрабатывается по крайней мере десятком стран, и существенную помощь им оказывают ученые из бывшего Советского Союза. Некоторые из этих стран замечены в продаже передовых технологий агрессивным или поддерживающим терроризм государствам.

Лица, имеющие соответствующее образование, могут, пользуясь открытыми источниками, создать взрывной или невзрывной образец РЧО. В 1998 г. доктор Д. Шрайнер, ранее работавший в Центре разработке авиационного оружия ВМС, свидетельствовал перед комитетом Конгресса США, что «РЧО может быть сделано любым, кто имеет диплом инженера или даже опытным техником. Техническая информация для этого есть в открытых источниках, а необходимые детали не являются редкими и необычными, так что образцы такого оружия могут быть изготовлены подобно автомобильной системе зажигания».

Очевидно, что выведение из строя банковских сетей, системы управления воздушным движением или связи вполне способно угрожать стабильности государства. Электромагнитное нападение может и не привести к человеческим жертвам, но усилия пропаганды террористов будут направлены на демонстрацию связи между наступившими тяжелыми последствиями и мнимой нераспорядительностью властей. Оценки и экспериментальные факты показывают, что террористического применения РЧЭМИ стоит опасаться: даже значительные габариты направленных источников могут быть сочтены преступниками приемлемыми (могут вспомнить и про «чемоданчик»), На дистанциях в десятки – сотни метров излучатель можно наводить и «на глаз», не заботясь о «сжигании» собственной системы наведения за счет боковых лепестков излучения, да и уже упоминавшаяся скрытность действия выступает скорее как преимущество. Конечно, нельзя исключать и криминальное применение источников прямого преобразования: в этом случае к эффектам, вызванным РЧЭМИ, добавится действие ударной волны и осколков, доставка такого источника близко к цели приведет к большим значениям воздействующих плотностей РЧЭМИ, а отражение от стен и пола усугубит ситуацию.

При возведении важных объектов принимаются меры для их защиты от ЭМИ ЯВ, но экранирование не бывает идеальным (окна, щели, кабельные вводы и пр.). Учитывая, что волны РЧЭМИ, генерируемого как взрывными, так и невзрывными источниками не столь длинные, как у ЭМИ ЯВ, вполне возможны трудно предсказуемые эффекты, возникающие вследствие дифракционных и интерференционных явлений при облучении. Стойкость сооружения или изделия к ЭМИ ЯВ не гарантирует стойкости к излучению с той же плотностью мощности, но значительно более широкополосному и коротковолновому – этот факт не раз был подтвержден испытаниями.

Все же, риск электромагнитной террористической атаки и ущерб от нее могут быть понижены.

Вполне вероятно, что атаке будет предшествовать разведка объекта: обнаружение направлений его наибольшей уязвимости. Конечно, приемники РЧЭМИ будут при этом замаскированы (например, в детской коляске). Возможно пассивное срабатывание ЭМО (например – расположенного в проезжающей автомашине) от датчика, реагирующего на повышенный уровень излучения цели (один из лепестков передачи/приема на данной частоте). Службы охраны должны быть ориентированы на обнаружение любой электронной аппаратуры и признаков ее использования.

• Целесообразно искажать распределение диаграмм направленности излучения/приема важных объектов, устанавливая в некоторых местах простейшие маломощные излучатели.

• Чем больше зеленых насаждений будет окружать охраняемый объект, тем лучше: листва и хвоя хорошо поглощают и рассеивают РЧЭМИ.

• Важнейшие объекты должны быть снабжены датчиками, сигнализирующими об облучении мощным РЧЭМИ. Эта мера не убережет от атаки, но сигнал тревоги позволит задержать террористов и избежать ее повторения.

Наряду с применяемыми в настоящее время экранированием и схемотехническими мерами, целесообразно распространить защитные мероприятия и на элементную базу: интегрировать в структуру микросхем специально разработанные для блокирования перегрузок по току и напряжению элементы.

«Электромагнитная» разновидность терроризма пока не реализована, но меры по обучению персонала и оснащению наиболее важных объектов инфраструктуры для противодействия ей должны носить упреждающий характер.

Тенденции Можно предположить, что дальнейшее развитие технологий повлияет на развитие РЧО и его компонентов следующим образом.

• Повысятся средние и пиковые значения мощности РЧЭМИ, а также общая энергия излучения в импульсе.

• Увеличится КПД преобразования первичной энергии в энергию РЧЭМИ.

• Будут созданы сети синхронно управляемых источников РЧЭМИ.

• Повысится длительность формируемых импульсов РЧЭМИ [12] .

• Размеры элементов РЧО: источников первичной энергии, источников РЧЭМИ, антенн будут еще более уменьшены.

• Технологии РЧО станут доступны все большему числу специалистов.

• Потенциал РЧО станет учитываться во всех видах операций.

Дальнейшая миниатюризация полупроводниковых элементов приведет к возрастанию их уязвимости от РЧО, поэтому для повышения надежности электронной техники необходима разработка специальных мер ее защиты.


    Ваша оценка произведения:

Популярные книги за неделю