355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Террористическое и нетрадиционное оружие » Текст книги (страница 4)
Террористическое и нетрадиционное оружие
  • Текст добавлен: 15 сентября 2016, 01:20

Текст книги "Террористическое и нетрадиционное оружие"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 4 (всего у книги 7 страниц)

В 1930-х годах в Японии усилия по созданию биологических средств были сосредоточены в так называемом «подразделении очистки воды» – отряде 731, расквартированном в Маньчжурии. Были наработаны культуры сибирской язвы, холеры, чумы и сыпного тифа, проводились испытания изготовленных из керамики авиабомб, снаряженные чумными блохами, в том числе – на людях. Возбудители различных болезней применялись против Красной Армии во время «Номонганского инцидента 1939 г.» в Монголии [5] и против китайских войск в 1937-45 г.г., но нет свидетельств, что эти атаки имели тактическое значение.

После Второй мировой войны исследования биологического оружия интенсивно велись в США и СССР. США отказались от биологических вооружений в 1969 г. Свидетельства, появившиеся вслед за крахом Советского Союза, указывают на наличие обширной программы развития биологического оружия в этой стране.

Применение химического и биологического оружия (ХБО) террористами

Такое применение требует:

• материала ХБО – отравляющего вещества, токсина или болезнетворных бактерий;

• устройства доставки к цели, которое переводит материал ХБО в боевое состояние без снижения его физиологической активности;

• метеорологических условий, допускающих эффективное применение ХБО.

Практически добиться реализации всех предпосылок применения ХБО непросто даже опытному террористу.

Метеорологические условия Существенно влияют на эффективность ХБО, ими невозможно управлять и их трудно предсказать.

Дождь и снег прибивают материалы ХБО к земле, гидролитически разлагают их, уменьшая токсичность. На солнечном свету погибают многие болезнетворные бактерии и ускоряются химические реакции. Температура среды также влияет на стабильность ХБО: высокая температура ускоряет разложение химических веществ, а низкая – может изменить их агрегатное состояние, уменьшив эффективность. Ветер рассеивает и уносит аэрозоли и пары материалов ХБО.

Известны меры, позволяющие уменьшить влияние погодных условий, например – добавление к отравляющим веществам присадок, увеличивающих вязкость, повышающих химическую стабильность. Правильно подобрать такие присадки довольно сложно.

Устройства доставки

Поражение ХБО возможно тремя путями:

• ингаляционным (при вдыхании паров или аэрозоля);

• пероральным (с водой или пищей);

• инъекционным или кожно-резорбтивным (через кожу).

Средства доставки ХБО могут быть стационарными (например —установленный неподвижно генератор аэрозоля) или подвижными (генератор, установленный на транспортном средстве). Скрытое применение возможно при отравлении через кожный покров, заражении пищи или питьевой воды.Методы применения ХБО включают:

• Инъекцию или прямой контакт жертвы с материалами ХБО.

• Вскрытие емкостей с материалами ХБО (колб, бутылок и пр.) механическим способом.

• Вскрытие емкостей с материалами ХБО взрывом или сжатыми газами.

• Контакты с распространителями болезней – зараженными людьми, насекомыми и животными.

Попадание материалов ХБО в пищу или питьевую воду, как и прямое внесение яда в организм (например, пулями, в которые внесен материал ХБО) представляет наибольшую угрозу. Для перевода материалов ХБО в аэрозольное – наиболее эффективное для применения

– состояние могут использоваться садовые опрыскиватели. Боевики «Аум Синрике» проткнули зонтиком в токийском метро полиэтиленовый пакет с чрезвычайно токсичным зарином; при этом окружающие получили поражения его парами. Этой же сектой зарин распылялся с грузовика, разъезжавшего по кольцевому маршруту в городе Мацумото – в этом случае отравляющее вещество подогревалось, что увеличивало парообразование. «Аум Синрике» применила также бинарные устройства [6] и инъекции для индивидуальных убийств.

Пример применения бактерий – атака сектантов «Райжниши» на салатный бар в Даллесе, штат Орегон в 1984 г. Использовалась культура Salmonella typhimuriumx , что вызвало болезнь у 751 человека. Согласно доказательствам, добытым Комиссией правды и согласия Южной Африки, таллий и ботулинический токсин применялись в этой стране для заражения пищи и воды. Водные источники заражались холерой, гепатитом А, фосфорорганическими веществами в ходе тайных операций, проводимых силами безопасности и полувоенными формированиями Родезии и Южной Африки. Известно также об атаках станций хлорирования воды, сопровождавшихся разрушением оборудования и выпуском газообразного хлора.

Для биологического нападения воздействие через кожу неэффективно, так как неповрежденная кожа – барьер для большинства бактерий и вирусов, поэтому биологические материалы диспергировались в аэрозоль. В ряде случаев применялись зараженные насекомые.

Некоторые бактерии, вирусы и паразиты, использовавшиеся при совершении преступлений, перечислены ниже [7] .

Бактерии

Bacillus anthracis, (сибирская язва)

Coxiella burnetii,

Rickettsiaprowazekii (тиф),

Salmonella typhimurium,

Salmonella typhi,

Shigella species,

Vibrio cholerae, (холерный вибрион)

Yersinia enterocolitica,

Yersiniapestis (чума).

Вирусы

Вирус иммунодефицита человека,

Viral haemorrhagic fevers, (вирус лихорадки Эбола ),

Yellow fever virus, (вирус желтой лихорадки)

Паразиты

Ascaris suum.

Giardia lamblia,

Schistosoma species

Болезнетворные культуры в виде сухого порошка более удобны, однако изготовить такой порошок сложно: частицы должны быть достаточно малы, чтобы находиться в воздухе во взвешенном состоянии, но достаточно велики, чтобы оседать в легких.

Врожденный или приобретенный иммунитет и другие, пока плохо изученные физиологические факторы существенно влияют на эффект биологической атаки. Контакт с болезнетворными бактериями может остаться без последствий для одного человека, в то время как та же самая доза той же культуры вызовет болезнь или смерть другого.

Тенденции

Анализируя тенденции применения ХБО, следует принимать во внимание:

• информация о ХБО доступна в Интернете;

• генная инженерия предоставляет возможность создавать болезнетворные микроорганизмы, не требующие выживания их носителя (такие возбудители как вирус Эбола, вирус Jlacca, вирус Марбурга, ограничивают свое распространение, потому что заболевание часто приводит к смерти зараженного);• террористы могут использовать культуры возбудителей таких болезней, к которым население или животные не могут приобрести иммунитета. Например, недавно у домашнего скота были обнаружены возбудители ящура – инфекционной вирусной болезни, последняя вспышка которой в Соединенных Штатах произошла в 1929 году. Минимизировать потери удалось карантином, уничтожением заболевшего скота и других животных (кошек, собак, домашней птицы), а также дезинфекцией.

2.3. Угрозы, связные с использованием ядерной энергии

Хауард Сегуайн, Джон П. Салливэн

Лидер чеченских боевиков Шамиль Басаев угрожал в октябре 1995 г. применить радиоактивные вещества (РВ) против российских городов и утверждал, что располагает пятью контейнерами с РВ. На видеосъемке эти контейнеры были продемонстрированы, а один из них – заложен в Измайловском парке Москвы.

Российскими властями найденные РВ были охарактеризованы как малоопасные, но инцидент продемонстрировал уязвимость общества.

Чеченские боевики угрожали напасть и на российские ядерные реакторы. Хотя такие действия связаны с большим риском для самих террористов, вероятность их нельзя недооценивать. Такое нападение может сопровождаться повреждением ядерной установки (например – выстрелом из гранатомета) и утечкой радиоактивного вещества.

2.3.1. Неконтролируемое ядерное оружие

4 января 1977 г. боевики Ульрики Майнхоф [8] попытались похитить ядерное оружие с американской военной базы в западногерманском Гиссене. Это нападение было нейтрализовано. Ядерная безопасность в бывшем Советском Союзе вызывает сомнение ввиду многочисленных сообщений об утечках делящихся материалов, растущего влияния групп организованной преступности, экономических трудностей, снижения мотивации среди российских военных и ученых.

«Ядерный чемоданчик»

Портативные заряды были разработаны для применения в операциях Главного разведывательного управления Генерального штаба. Генерал Российской армии Александр Лебедь неоднократно утверждал, что несколько таких устройств утрачено. Пока заявления Лебедя не нашли подтверждения, однако его описание «ядерных чемоданчиков» весьма напоминает аналогичные американские ядерные устройства (SADM, рис. 2.6), которые пытались получить террористы Осамы бин Ладена.

Рис. 2.6

Имитация ядерного устройства SADM (оружия диверсантов Армии США), изготовленная фирмой WMD Training Devices как учебное пособие для агентов спецслужб

Самодельные ядерные заряды (СЯЗ)

Завершение холодной войны увеличило риск неконтролируемого распространения делящихся материалов и изготовления СЯЗ.

Устройство ствольного типа. Для такого, наиболее простого в изготовлении СЯЗ, необходимо около 40 кг высокообогащенного (оружейного) урана. При взрыве энерговыделение может быть эквивалентно взрыву 10–18 кт (тысяч тонн) тринитротолуола. Ядерный взрыв происходит при выстреливании цилиндра делящегося материала в полость другого цилиндра, благодаря чему сборка становится сверхкритической (рис. 2.7). В первых образцах ствольных ядерных зарядов использовался оружейный уран, содержавший 90 % изотопов массой 235 ядерных единиц, но для устройства с невысокими характеристиками пригоден уран и несколько меньшего обогащения. Оружейный и природный уран не отличаются по внешнему виду, это – белые на свежем изломе, очень тяжелые металлы, которые на воздухе быстро покрываются налетом цвета спелой сливы, а затем и вовсе чернеют (рис. 2.8). Помимо сборки с ураном, элементы такого СЯЗ – прочный ствол (типа артиллерийского), длиной метр или более, и заряд пороха.

Рис. 2 .7

Схема и общий вид сброшенной на Хиросиму авиабомбы Мк-1 с зарядом ствольного типа. Давление газов от горения бездымного пороха 1 разгоняет по стволу 2 поддон с собранным из колец цилиндром U 235 (3). Соединение элементов 3 и 4 из оружейного урана приводит к достижению сборкой сверхкритического состояния

Рис. 2.8 Образец урана, залитый в прозрачный компаунд

Имплозивное устройство (рис. 2.9). Требует наличия около 8 кг плутония или в несколько раз большего количества оружейного урана.

Рис. 2.9 Слева – демонстрационный макет одного из первых британских имплозивных зарядов. Черная сердцевина в центре – сборка с делящимся веществом (плутонием). Макет демонстрирует, как, при одновременном подрыве на его внешней поверхности, нескольких десятков детонаторов, происходит направленный внутрь взрыв, сжимающий сборку и переводящий ее в сверхкритическое состояние. Справа – произведенный фирмой WMTD имитатор самодельного ядерного заряда имплозивного типа. Имитация не слишком удачная, поскольку размер «заряда» – чуть ли не минимальный, который допускают ядерно-физические ограничения. Изготовление такого малогабаритного заряда – сложнейшая задача, для этого нужны специалисты наивысшей квалификации и уникальное оборудование, да еще необходимо где-то украсть плутоний высокой чистоты. Детонаторов в таком заряде – всего несколько штук, а инициирование во множество точек осуществляется с помощью сложной системы каналов, заполненных изготовленным по особой технологии взрывчатым веществом с высокостабильными характеристиками

Значительно более эффективный по сравнению со ствольным, сложный в осуществлении, но потенциально реализуемый для хорошо финансируемой группы вариант (рис. 2.10). При имплозии, сферическая сборка с плутонием сжимается со всех сторон взрывом шарового слоя мощного взрывчатого вещества (рис. 2.11). Сама сборка состоит из нескольких концентрических шаровых слоев (плутония, замедлителя нейтронов, инерционного, рис. 2.12). Для инициирования имплозии применяются несколько десятков подрываемых одновременно детонаторов. Иногда, чтобы уменьшить количество детонаторов, используют взрывные линзы (рис. 2.13), каждая из которых также снабжена детонатором, расположенным не ее вершине.

Рис. 2.10

Габариты низкотехнологичного СЯЗ, который в состоянии изготовить террористы, будут, скорее всего, метровыми – как и заряда «Гаджет», подорванного в 1945 г. над Нагасаки

Рис. 2.11

Вверху – элементы израильского заряда имплозивного типа. Плутоний не существует в природе в ощутимых количествах, его получают в ядерном реакторе. Этот металл радиоактивен и настолько ядовит химически, что детали из него покрывают никелем, чтобы избежать прямого контакта. Полость в никелированной (вероятно – плутониевой) сердцевине закрывается ввинтной крышкой: туда, перед боевым применением, помещают изотопный источник. Источник этот инициирует цепную реакцию нейтронами, когда внутренняя поверхность сжимаемой взрывом плутониевой сборки ударом вминает золотую оболочку, на которую электролитически нанесен полоний, в шарик из бериллия (до этого момента полоний и бериллий не контактируют, так что и нейтроны не эмиттируются). Шаровой слой темного цвета, скорее всего, предназначен для увеличения инерционности сборки и повышения тем самым времени протекания цепной реакции, а значит, и мощности взрыва. Он может быть изготовлен из вольфрама или природного урана. Нижний рисунок: окруженная сферическими сегментами взрывчатого вещества сборка, содержащая плутоний

Рис. 2.12

Элементы ядерного заряда американской авиабомбы Б-61

Рис. 2.13

Взрывная линза для формирования детонационной волны заданной формы. Состоит из двух различных по характеристикам, взрывчатых составов. Скорость детонации внешнего заряда выше, чем внутреннего

Монтаж сборки, блоков взрывчатого вещества и системы инициирования – сложная операция и для ее проведения могут применяться различные приспособления (рис. 2.14)

Рис. 2.14 Подобные приспособления доктор Дж. Кистяковский использовал при сборке имплозивных зарядов для первых образцов ядерного оружия США

Имплозивное устройство на основе окиси плутония. Требует наличия 35 кг такой окиси, более безопасной в обращении, чем металлический плутоний. Энерговыделение оценить сложно, но, в любом случае, взрыв приведет к рассеиванию весьма опасных радиоактивных и ядовитых веществ, что создаст угрозу здоровью и вызовет панику среди населения.

Элементы обеспечения подрыва СЯЗ. Для значительного энерговыделения необходимо, чтобы в момент, когда сборка стала сверхкритической, в ней появилось много нейтронов, с которых и начинается цепная реакция деления. Для этого могут применяться изотопные источники, но они недостаточно интенсивны, а в обращении – весьма опасны. В штатных образцах ядерного оружия для инициирования цепной реакции деления применяются нейтронные трубки, но меры их учета и охраны – такие же, как и для ядерных зарядов. Появление боевых трубок у террористов маловероятно, однако возможно применение ими нейтронных трубок и элементов их питания, демонтированных из медицинских или геофизических приборов (рис. 2.15)

Рис. 2.15

В нейтронной трубке (слева) происходит ионизация тяжелого водорода – дейтерия, а затем эти ионы ускоряются напряжением более 100 тысяч вольт к мишени, содержащей тритий. При реакции изотопов водорода образуется, в течение миллионных долей секунды, десятки миллионов нейтронов, облучающих заряд, цепная реакция зарождается в сверхкритической сборке сразу в миллионах точек и поэтому энерговыделение значительно. Схема питания нейтронной трубки – высоковольтная, в ней применяются специальные коммутаторы (справа), которые также могут быть использованы и в схеме инициирования детонаторов

2.3.2. Радиоактивные вещества (РВ)

Это оружие, в отличие от химического и биологического, не запрещенное международными соглашениями, оказывает психологическое воздействие, «загрязняя» людей, оборудование, окружающую среду. РВ могут служить и для поражения и для ограничения доступа в места их применения.

При применении РВ испускание радиации не сопровождается взрывом, она скорее действует как отравляющее вещество: может вызвать болезнь или смерть при приеме «загрязненной» пищи, ингаляторно, при внешнем облучении.

РВ могут быть доставлены ракетой, самолетом, боеприпасом, а диверсантами – на автотранспортном средстве или судне. Подобно материалам ХБО, РВ могут быть рассеяны в виде аэрозоля в системе вентиляции, водоснабжения, среди скопления людей или на продовольственных складах.

Потенциальные источники РВ

К ним относятся хранилища ядерного топлива, кабинеты лучевой терапии в больницах, лаборатории дефектоскопии, где имеются радиоактивные изотопы. Получение РВ из лабораторий или медицинских учреждений более вероятно, поскольку ядерное топливо весьма опасно в обращении, а его хранилища надежно охраняются. Радиоактивные отходы из медицинских или промышленных учреждений могут быть получены без особых усилий. Это – спецодежда, перчатки, оборудование, которые пришли в соприкосновение с радиоактивностью. Большинство содержащихся в них радиоактивных изотопов распадается в течение недель, месяцев или лет, но некоторые сохраняют активность в течение 500 лет и более [9] .

Другие источники, содержащие РВ:

• Измерительные приборы, источники – эталоны с америцием-241, цезием-137, кобальтом-60, иридием-92, радием-226, полонием-210, а также источники нейтронов. Активность изотопов в них иногда превышает 4ТБк.

• Стерилизаторы, ускорители частиц [10] (цезий-137, кобальт-60), активностью 4 – 40 ТБк.

• Изотопные источники электроэнергии: плутоний-238 (рис. 2.16), стронций-90, активностью 4ГБк для плутония и 1ТБк для стронция.

• Радиолюменисцентные материалы, использующиеся в светящихся шкалах приборов (прометий-147, тритий, радий-226), активностью до ЮТБк.

Рис. 2.16 Образец плутония – не оружейного, а изотопа с массовым числом 238. В Pu238 не может возникнуть цепная реакция деления, но другие самопроизвольные ядерные реакции протекают столь интенсивно, что металлический Pu238 всегда пребывает в раскаленном состоянии

Два основных используемых в промышленности изотопа – америций-241 и цезий-137. Америций-241 является в основном излучателями альфа-частиц и применяется при измерениях влажности, содержания примесей свинца в краске, в устройствах противопожарной тревоги, а также – в геологии для исследований почв, при производстве фольги и бумаги – чтобы определять их толщину. Цезий-137 – бета и гамма излучатель – используется в различных датчиках уровня при управлении производственным процессом, а также – в медицинских целях.

Медицинские источники излучений, как и промышленные, могут представлять опасность при индивидуальном облучении или рассеивании содержащихся в них РВ: кобальта-60 и цезия-137 используемых для терапии рака, а также многих других изотопов: иода-125, иридия-192, фосфора-32, радия-226 и стронция-90. Радиоактивные медицинские препараты могут также включать иод-123, иод-131, таллий-201, ксенон-133, и технеций-99ш. Некоторые примеры РВ и медицинских источников на их основе:

Иод-125 широко используется в радиотерапии. Источники, содержащие этот изотоп, представляют цилиндрические капсулы из титана, размерами 4.5 х 0.8 мм.

Кобальт-60, бета и гамма излучатель, используемый для терапии рака. Источник обычно представляет либо цилиндр размером 1–2 см, либо «гамма-скальпель», который содержит сотни источников, помещенных в двойные капсулы из нержавеющей стали.

Радий также используется в терапии. В источниках применяется его хлорид или сульфат, смешанный с инертным наполнителем и помещенный капсулы размером 1х 10 мм из золотой фольги толщиной. Другие источники капсулированы в иглах, трубочках или контейнерах иных форм. В Соединенных Штатах радий, где возможно, заменяют на цезий-137.Применение террористами СЯЗ не слишком вероятно в ближайшем будущем, применение же более доступных РВ вполне возможно. Правоохранительные органы должны знать, где располагаются источники РВ и учитывать вероятность их применения при террористических актах.

2.4. Признаки применения террористами отравляющих, болезнетворных и радиоактивных веществ

Распознать эти признаки сложно, поскольку различно действие таких веществ. Особенно трудно распознать биологическое нападение, так как заболеванию обычно предшествует инкубационный период.

Признаки применения химических веществ

Проявляются через минуты – часы…

• Необычно выглядящие мертвые или умирающие люди, животные, отсутствие насекомых.

• Странный внешний вид пострадавших, металлический налет на их зубах, тяжелое состояние, симптомы рвоты, дезориентации, затруднения дыхания, конвульсии.

• Необычно выглядящие жидкости, аэрозоли, капельки, маслянистые пленки, необычный запах, туман не связанный с погодными условиями.

• Подозрительные пакеты, устройства для распыления, необычные боеприпасы.

Признаки применения биологических веществ

Проявляются через часы – дни…

• Необычно выглядящие мертвые или умирающие животные, люди, рыба.

• Нехарактерная для данной местности картина развития болезни.

• Необычно выглядящие жидкости, аэрозоли, подозрительные емкости и упаковки.

• Необычное роение насекомых

• Подозрительная вспышка болезни

Признаки применения радиоактивных веществ

Отсроченное проявление симптомов…

• Значительное число людей или животных с признаками радиационного поражения.

• Необычные металлические предметы, устройства, иногда выглядящие, как боеприпасы.

• Контейнеры со знаками радиационной опасности (рис. 2.17).

• Нагретые, в условиях отсутствия подвода к ним тепла, предметы.

• Голубоватое свечение окружающего некоторые предметы воздуха.

Рис. 2.17 Знаки радиационной опасности, используемые в разных странах

2.5. Управляемое оружие

Террористические группы не оставляют попыток самостоятельного изготовления такого оружия. Примером могут служить радиоуправляемые (рис. 2.18) фугасы, которые применяются чеченскими боевиками в значительных масштабах. Время от времени к террористам попадают и высокотехнологичные образцы управляемого оружия, похищенные с армейских складов или полученные от производителей как по внешне законным, так и по криминальным каналам.

Рис. 2.18

Самодельный радиоуправляемый фугас, в котором для подрыва используется полевая радиостанция. В других самодельных минах для той же цели применяются устройства управления детских игрушек, автомобильная сигнализация

2.5.1. Переносные зенитно-ракетные комплексы (ПЗРК, рис. 2.19)

Общее количество произведенных бывшим Советским Союзом, Соединенными Штатами, Францией, Швецией и Великобританией ПЗРК превысило двести тысяч. Кроме того, Китай, Северная Корея, и Пакистан также производят копии разработанных в этих странах ПЗРК.

Применение ПЗРК требует обучения. Учитывая их рыночную стоимость (от полусотни тысяч до нескольких миллионов долларов), можно ожидать, что террористы пройдут его. На высотах более 7,5 км самолеты неуязвимы для ПЗРК, самые опасные операции – взлетно-посадочные. Ежегодно, начиная с 1985 года, происходит одно – два нападения с использованием ПЗРК, обычно в местностях, где идут конфликты малой интенсивности.

Рис. 2.19 Пуск ракеты британского переносного зенитно-ракетного комплекса «Блоупайп»

Более десятка террористических организаций имеют ПЗРК. У финансируемых или поддерживаемых государствами есть доступ к современным их образцам. Мусульманские экстремисты в Ливане в 1986 г. сбили вертолет ООН, получив ПЗРК из Сирии или Ирана. Получили 750 «Стингеров» от США и афганские муджахеды, которые все еще обладают несколькими сотнями из них и направили свою террористическую активность против страны-производителя (рис. 2.20).

Рис. 2.20 Афганские муджахеды готовятся к пуску ракеты ПЗРК «Стингер»

Пассивные меры защиты против ракет «земля-воздух»: снижение сигнатуры самолета в инфракрасных лучах, отстрел ложных целей, протектирование баков горючего и дублирование систем управления. Активные меры включают постановку помех и подавление приемников инфракрасного излучения.

2.5.2. Противотанковые ракетные комплексы (ПТРК)

Пока распространены среди террористических групп не так широко, как ПЗРК. Отмечены случаи применения ПТРК против бронетанковых сил израильской армии мусульманскими экстремистами, получившими их от стран, в которых терроризм является элементом государственной политики. Среди использованных в террористических целях:

– ПТРК второго поколения АТ-13 «Метис-М» (рис. 2.21), с диапазоном дальности стрельбы от 80 до 5500 м. Вес пусковой установки и ракеты – 23.8 кг;

Рис. 2.21 Противотанковый ракетный комплекс «Метис М1», тепповизионный прицел 1ПН86-ВИ к нему и ракета 9М131М

– ПТРК третьего поколения АТ-Х-14, «Корнет» (рис. 2.22), с диапазоном дальности от 100 до 5500 м. Общий вес пусковой установки и теплового прицела – 36.5 кг.

Рис. 2.22 Противотанковый ракетный комплекс «Корнет-Э» и ракета 9М133-1

Помимо кумулятивных боевых частей, эти ПТРК могут комплектоваться также и термобарическими, что превращает их в мощное оружие уличных боев.

2.5.3. Мины с элементами искусственного интеллекта

Советская противопехотная система НВУ-П (рис. 2.23), более известная как «Охота», охраняет территорию радиусом около 30 м, распоряжаясь пятью минами. Как только сейсмический датчик зарегистрирует движение человека, включится обрабатывающий блок, определит местонахождение нарушителя, и если тот окажется в зоне поражения одной из мин – к ней по проводам пройдет подрывной импульс тока. В запасе останутся еще четыре мины – любого типа. Это могут быть и гранаты РГД-5 или Ф-1, вместо запалов снабженные электродетонаторами или даже ямы, в которых шашки ВВ с электродетонаторами завалены камнями. Взводится «Охота» при помощи взрывателя-замедлителя МУВ-4: после того, как из него вытянут чеку и время замедления (3–6 минут – чтобы от нее успел удалиться сапер) истечет, он выбросит металлический боек, который и замкнет контакт, подавая питание на электронную схему. Обрабатывающие блоки могут быть объединены в минную позицию. Их можно приводить в боевое или безопасное положение с пульта управления, подключенного к ним опять же проводами. Поставив минное поле «на паузу», саперы могут без опаски устанавливать новые мины взамен подорванных. Когда «Охота» израсходует последнюю мину или начнет иссякать энергия батарей питания – она подорвет сама себя: пошлет импульс на детонатор, помещенный в прикрепленную изолентой к корпусу обрабатывающего блока толовую шашку. Считается, что безнаказанно приблизиться к взведенному блоку невозможно.

Рис. 2.23

В нижней части рисунка – позиция противопехотной минной системы НВУ-П «Охота». Вверху слева – обрабатывающий блок «Охоты», с сейсмическим датчиком 1 и ликвидационной толовой шашкой 2, справа (3) – замедлитель МУВ-4, при срабатывании которого подается питание на схему изделия

Американские противотанковые мины М93 (рис. 2.24) предназначены для применения армейской авиацией в составе кассет. Рассеянные, они могут долго оставаться в невзведенном состоянии, но по радиосигналу – раскрывают до того момента сложенные опорные поверхности, принимая боевое (вертикальное) положение на грунте, и начинают «слушать», что происходит вокруг, а также – регистрировать колебания почвы. Если, проанализировав акустические и сейсмические сигналы, мина «решает», что от нее не далее чем в сотне метров появилась бронецель – запускается пороховой двигатель боевого блока (прицеливающегося в полете) и машина поражается в крышу башни ударным ядром.

Рис. 2.24

Слева – выпрыгивающая противотанковая мина М93 – в служебном и боевом состоянии. Справа – противовертолетная мина ПВМ

Советская противовертолетная мина ПВМ по принципу действия сходна с М-93: она также анализирует акустическую обстановку, реагируя на звук подлетающего вертолета и поражает его ударным ядром, размещенном в узле, напоминающем танковую башню.Случаи применения террористами мин с элементами искусственного интеллекта пока не известны, но такой вероятностью нельзя пренебрегать.

Раздел 3 Высокотехнологичное оружие и связанные с его применением угрозы

3.1. Лазеры

Дэн Линдси, Роберт Дж. Банкер

Слово «лазер» – аббревиатура: «Light Amplification by Stimulated Emission of Radiation» (усиление света вынужденным излучением). В лазере возбуждается активная среда (рис. 3.1) расположенная в резонаторе, где пучки света отражаются от зеркал, набирая энергию, а выведенный из резонатора пучок фокусируется линзой. Лазеры могут излучать непрерывно или в импульсном режиме, а пучок излучения имеет малую расходимость и потому сохраняет поражающее действие на значительных дистанциях. Наиболее часто встречаются лазеры, излучающие в видимых частях спектра – красной или зеленой.

Национальный стандарт безопасности США подразделяет лазеры гражданского назначения на пять классов. К классам I, II и IIIа отнесены лазеры мощностью менее 5 мВт – недостаточной, чтобы нанести поражение глазу, защищаемому рефлекторным миганием век. Оружием террористов могут стать более мощные лазеры, отнесенные к классам IIIЬ и IV. Излучение мощностью от 5 мВт до 5 Вт повреждает человеческий глаз, а устройства, отнесенные к IV классу, наносят поражения не только глазам, но и причиняют ожоги коже.

Рис. 3.1 Лабораторный образец рубинового лазера мощностью 10 кВт и его рабочее тело

На лазеры, предназначенные для военного применения (рис. 3.2) не распространяются требования гражданских стандартов. Например, целеуказатели (устройства, предназначенные для подсветки мишени) могут уместиться в ладони, но их излучение инфракрасного диапазона (мощность – около 350 мВт) опасно для глаз: оно невидимо и человек встревожится только тогда, когда симптомы поражения уже проявятся. Танковые дальномеры устаревших образцов могут вызывать поражения сетчатки на дальностях в несколько километров.

Хотя международное право [11] запрещает применение специально предназначенных для ослепления лазеров (даззлеров), подобный образец – китайский ZM-87 – был предложен для продажи на международной оружейной выставке.

Рис. 3.2

Слева – снайперская пара, оснащенная лазерным целеуказателем и приемником излучения ANYPSQ-23, смонтированным на винтовке.

Справа – другой образец лазерного целеуказателя

Симптомы поражения глаз излучением – от формирования «пятна-послеобраза», напоминающего радужное пятно, долго «видимое» после взгляда на Солнце и сопровождаемого слезотечением и краткосрочным расстройством зрения, до ожогов сетчатки и кровоизлияний. Пораженные отворачиваются и стараются прикрыть глаза – как при взгляде на прямые солнечные лучи. Причиной поражений является образование плазменных пузырьков, а также термический нагрев тканей глазного яблока.

Когерентный свет, направленный на остекление кабины, рассеивается, создавая впечатление диффузного облучения, более интенсивного, чем некогерентный свет той же интенсивности (рис. 3.3). Если облучение достаточно интенсивно или осуществляется несколькими лазерами, множественными отражениями создается эффект «оптической стены», что может угрожать безопасности, понижая качество выполнения команд экипажем, делая возможными его отказ от миссии и аварию. Воздействие излучения некоторых лазеров, из-за стробоскопического эффекта, вызывает, помимо ослепления, потерю ориентации.


    Ваша оценка произведения:

Популярные книги за неделю